首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
研究了以含铝、钴的化肥废催化剂为原料制备硫酸铝钾(明矾)的方法。确定了最佳工艺条件:化肥废催化剂粒度为300目、硫酸浓度为9 mol/L、浸取时间为30 min、用K2CO3调滤液pH至1-2。在该条件下制备的KAl(SO4)2·12H2O产品纯度为98.2%,达到日本工业标准(JIS K1473-1970)工业级纯度。  相似文献   

2.
崔丽  王慧  黄开拓  许涛  梁吉艳 《化工环保》2017,37(4):415-420
在循环流厌氧反应器中研究了无机条件下采用厌氧颗粒污泥启动硫酸盐型厌氧氨氧化(S-ANAMMOX)的反应特性。结果表明:在1~124 d的运行时间内,从第37天开始出现了NH4+-N和SO_4~(2-)的同步去除,生成NO_2~-,NO_3~-,反应最终产物为N2和单质硫,NH4+-N和SO_4~(2-)的最高去除率分别达到92.47%和59.3%;当进水nN∶nS较高时,能显著提高NH4+-N去除率和总氮去除率;SO_4~(2-)与NH4+发生氧化还原反应产生NO2-和NO3-是pH降低的过程;进水nN∶nS、进水平均NH_4~+-N、SO_4~(2-)质量浓度和HRT均对S-ANAMMOX反应的氮硫转化比有一定影响,表明S-ANAMMOX反应是一个多步反应。  相似文献   

3.
采用炼油厂酸渣经水稀释后,添加含钠化合物进行中和反应,制备无水Na_2SO_4.最佳工艺条件为:将酸渣用水稀释20倍,按n(Na_2CO_3):n(SO_4~(2-))=1.10或n(NaOH):n(SO_4~(2-))=1.20的比例加入Na_2CO_3,溶液或NaOH溶液,油水分离去除油相后蒸发、干燥,在650℃下灼烧后溶解、过滤、蒸发、结晶,得到Na_2SO_4产品.NaCO_3法可将酸渣中约78%的SO_4~(2-)转化到产品Na_2SO_4中;NaOH法可将酸渣中约66%的SO_4~(2-)转化到产品Na_2SO_4中.制备的无水Na_2SO_4产品均达到GB/T6009-2003<工业无水硫酸钠>二类标准.  相似文献   

4.
以电解锰阳极泥与电解锌生产中产生的含SO_2尾气为原料,经过反应、浸出、浸出液两次净化和浓缩结晶制备硫酸锰,考察了反应时间、含SO_2尾气的流量及反应温度对Mn~(4+)转化率的影响.实验结果表明:在反应时间45 min、反应温度20~30 ℃、含SO_2尾气流量16 L/min的条件下,Mn~(4+)转化率达90%以上;尾气中SO_2利用率随尾气流量增加而降低;所得MnSO_4·H_2O产品质量达到GB1622-86<工业级硫酸锰标准>.  相似文献   

5.
钛白废酸制取高白度石膏   总被引:1,自引:0,他引:1  
黎铉海  孙秋割 《化工环保》2011,31(6):532-535
以石灰为中和剂、乙二胺四乙酸二钠(EDTA - 2Na)为络合剂、连二亚硫酸钠为还原剂,采用络合—还原法对钛白废酸进行处理,制取高白度石膏.实验结果表明,处理100 mL H2SO4质量浓度为213 g/L的钛白废酸,在中和反应液pH为0.75、EDTA - 2Na加入量为2.67g/L、络合反应时间为20 min、连...  相似文献   

6.
在以苯酚和丙酮为原料、硫酸作催化剂、“591”或硫基乙酸作助催化剂的硫酸改良法合成双酚 A 的工艺过程中,每生产1吨粗双酚 A 约产生含酚废酸4—5吨(含酸25—30%、含酚8000—10000ppm),同时还产生微酸性含酚废水8—10吨(含酸0.5%,含酚4000—6000ppm)。对上述废酸、废水问题国外主要通过改革工艺,采用氯化氢法或离子交换树脂法解决。目前国内有些厂利用本单位的含醛废水与含酚废酸、废水混合,然后加热使酚醛缩合,达到综合治理目的。在无含  相似文献   

7.
介绍了利用含氟废酸制备氟硅酸钾的生产工艺。氟资源作为国家一种战略资源,如何充分、合理地利用含氟混合酸的有效成分氟化氢是十分必要的。通过对反应加入量、二氧化硅与混合酸反应时间、氯化钾加入浓度等生产条件的研究,确定了最佳的生产工艺条件。结果表明,最佳工艺条件为:二氧化硅与混合酸最佳工艺为:反应温度为80℃,反应时间6 h,混合酸过量2%(质量分数);氟硅酸和氯化钾反应时间1 h,摩尔比1∶1,120℃干燥2 h,并进行了试验验证。该工艺流程相对简单,生产易于控制,操作相对便利。制得的氟硅酸钾产品达到产品要求,副产的盐酸浓度提高至25%以上。  相似文献   

8.
采用零价铁(ZVI)活化过硫酸钠(PS)产生·SO_4~-,以·SO_4~-为氧化剂深度处理电镀添加剂生产废水。考察了废水p H、n(ZVI)∶n(PS)、c(S_2O_8~(2-))和反应温度对废水COD去除率的影响。实验得出废水处理的最佳工艺条件:废水p H为5.0,n(ZVI)∶n(PS)=1.00,c(S_2O_8~(2-))=15 mmol/L,反应温度为50℃。在此最佳工艺条件下反应60 min,COD去除率达到76.8%,出水COD约为42 mg/L,满足GB 18918—2002《城镇污水处理厂污染物排放标准》的一级标准要求。  相似文献   

9.
国外动态     
1982年日本三菱人造丝公司开始采用以抽提丁二烯后的 C_4馏份为原料生产 MMA(甲基丙烯酸甲酯)的新技术路线。该法打破了丙酮氰醇法(AGH法)在 MMA 生产中的长期拢断地位。ACH 法生产 MMA,废酸量约为 MMA 产量的2.5—3.5倍,一般采用硫酸回收法对废酸进行处理,即将废酸在800℃以上加热分解,使 SO_4~(-2)变成SO_2,使 NH_3转化为 N_2,然后使 SO_2氧化成硫酸。由于原料供应困乏及三废问题等,使 ACH 法难以得到更大的发展。三菱新法三废治理措施是:氧化工序产生的废气(含有机物、CO 的低 O_2浓度的气体)  相似文献   

10.
以液晶屏抛光废液为原料制备冰晶石,首先加入碳酸钠,反应生成氟硅酸钠沉淀,去除废液中的氟硅酸根;再向滤液中加入NaOH和NaAlO2混合溶液,反应生成冰晶石。最佳工艺条件为:碳酸钠加入量为理论加入量的2.2倍,冰晶石制备反应温度为80℃,反应原料中n(HF)∶n(NaAlO2)为5.4、n(Na)∶n(Al)为3.4、NaOH和NaAlO2质量分数为20%。在最佳条件下制得的冰晶石产品中n(Na)∶n(Al)为2.84,达到GB/T4291-2007《冰晶石》中牌号CH-1的质量标准。采用该工艺可实现液晶屏抛光废液的资源化综合利用。  相似文献   

11.
以太阳能电池行业含氟废酸为原料,通过投加沉淀法白炭黑将废酸中的氢氟酸转化为氟硅酸,再投加硫酸钠将氟硅酸转化为氟硅酸钠,实现废酸氟的资源化。在白炭黑过量20%,反应温度室温,反应时间30 min,氢氟酸转化率达99.50%。硫酸钠过量20%,反应时间30 min,氟硅酸的去除率大于98%。所得氟硅酸钠产品纯度大于99%,达到氟硅酸钠优等品要求。  相似文献   

12.
三氯乙醛废酸脱醛处理技术(简称“废酸处理技术”,以下同)推广会议,已于84年秋召开。我厂84年4月将此项技术应用于生产。经过半年多的实践,对此项技术提出以下问题,与同行交流。1.三氯乙醛氯化和蒸馏工序对废酸脱醛的影响乙醇氯化形成中间体——氯油,氯油经蒸馏得粗醛,粗醛再蒸馏得精醛(即三氯乙醛)。蒸馏工艺有连续法和间歇法两种,间歇法又分为一次蒸馏和二次蒸馏。现将我厂用不同工艺蒸馏三氯乙醛排出废酸脱醛处理的结果列出,如表1所示。由表1中数据可见:①三氯乙醛蒸馏工  相似文献   

13.
含硫废水的治理   总被引:4,自引:0,他引:4  
浦家提 《化工环保》1993,13(1):23-26
采用“空气氧化-亚硫沉淀-废酸分解-SO_2吸收-生化处理”工艺路线,对染料厂的含硫废水进行了治理。治理结果,含硫废水的氧化率为80%,COD去除率为70%,硫的去除率达100%;吨废水的处理成本约45元。  相似文献   

14.
朱卫国  易杨柳 《化工环保》1992,12(6):371-371,375
1.概述湘潭市有机化工厂在生产硝基甲苯的过程中,每年排出约4000吨废酸。废酸外观呈棕红色,内含硝基甲苯(2—3%)和硫酸(70%左右),除极少部分的可回用于生产过程外,大部分的均未能得到利用,若不经处理而直接排放,则将会严重污染环境。目前,治理这种废酸的方法有:稀释中和法;吸附、萃取法;水蒸汽蒸馏法(汽提法);氧化法。其中,稀释中和法不能去除废酸中的有机物;吸附、萃取法需将废酸稀释,这给硫酸浓缩带来困难,同时使硫酸损失过大;汽提法虽能回收废酸中的硝基甲  相似文献   

15.
王爽  许国根  贾瑛  王坤 《化工环保》2018,38(6):657-662
以海藻酸钠(SA)、聚乙二醇(PEG)、氧化石墨烯(GO)和零价铁(ZVI)为原料制备了氧化石墨烯-零价铁-聚乙二醇-海藻酸钠凝胶球(GZPS),用于活化过硫酸盐(PDS)降解水中的偏二甲肼(UDMH)。对GZPS进行了表征,并优化了GZPS的制备工艺。实验结果表明:对UDMH去除率影响因素的主次顺序为:w(PEG) w(SA)w(GO)w(ZVI);GZPS的最佳制备工艺为SA、PEG、GO、ZVI的质量分数分别为5%,3%,0.3%,2%;在UDMH质量浓度为100mg/L、PDS加入量为4mmol/L、GZPS加入量为60g/L、反应温度为35℃、反应时间为80 min的条件下,UDMH的去除率达85%以上。GZPS活化PDS降解UDMH的反应符合准一级动力学,Fe溶出量仅为Fe-GO-PDS体系的12.7%,重复使用4次后对UDMH的去除率仍在65%以上。  相似文献   

16.
在离子液体1-丁基-3-甲基咪唑四氟化硼([C4MIM]BF4)的辅助下,采用溶胶-凝胶法制备了Nd掺杂Ti O2光催化剂(Nd-Ti O2(IL))。实验结果表明:在加入[C4MIM]BF4、n(Nd)∶n(Ti O2)=2.5%的条件下制得的Nd-Ti O2(IL)(记作2.5%Nd-Ti O2(IL))的光催化性能最好;在初始亚甲基蓝质量浓度10 mg/L、2.5%Nd-Ti O2(IL)加入量1 g/L的条件下,光催化反应180 min,亚甲基蓝降解率为84%,2.5%Nd-Ti O2(IL)光催化降解亚甲基蓝的表观速率常数为0.010 9 min-1。表征结果显示:Nd的掺杂抑制了Ti O2晶粒长大,增大了Ti O2的比表面积,2.5%Nd-Ti O2(IL)的比表面积为80.77 m2/g;[C4MIM]BF4的加入提高了Ti O2的晶化度;Nd以Nd3+的形式,通过晶格取代方式进入Ti O2晶格。  相似文献   

17.
安格尔(Ангарский)国立技术研究所采用电化学法回收废碱液,废碱液组成为:游离碱1%-3.5%(质量分数),化合碱2%-5.75%(质量分数),亚硫酸盐和硫代硫酸盐1.5%-4%(质量分数),总钠3-10 g/L(质量浓度),此外,还含有少量环烷酸盐、酚盐、碳酸盐、乳化油、悬浮物等。   试验在电解槽中进行,可以选用Pt、Ti/Pt、Pb/PbO2、Ti/PbO2、Ti/MnO2等作电极材料。具体反应如下:   阴极:2H2O+4e→2OH-+H2↑   阳极:2H2O-4e→4H++O2↑      2OH--4e→2H++O2↑      S2--2e→S↓      S2-+4H2O+8e→SO42-+8H+   电解液:2S2-+O2+2OH-→S2O32-+H2O       2S2O32-+6H+→SO32-+3S↓+3H2O       S2-+2H+→H2S↑   同时还发生硫醇、噻吩、酚、环烷酸盐等含硫有机物的氧化反应。   电解槽中有多孔石棉隔膜和钢网阴极,电流强度为5-40 A。选择良好的阳极材料对阳极反应有电催化作用,可以促进生成结晶硫或硫酸盐。增加阳极电流密度(ia)可以提高硫代硫酸盐的转化率,当ia>400 A/m2时,硫代硫酸盐的转化率接近100%,酚的转化率达到87%-95%。连续电解1000 h,可使产碱率超过90%,单位电能损耗不超过4000 kVT.h/t(NaOH),电解装置电压4.5-5.5 V,回收液的游离碱度为6%-12%(以NaOH计)。进一步研究证明,利用膜法电解可以改善回收碱液的组分,并可将其中NaOH的质量分数提高到20%-30%。  相似文献   

18.
刘树根  田学达 《化工环保》2007,27(6):554-558
采用氧化焙烧-软锰矿浆吸收、磁化焙烧-磁选、酸浸工艺处理砷华废渣.氧化焙烧的适宜条件为焙烧温度650 ℃,焙烧时间60 min,废渣粒径97 μm.磁化焙烧的适宜条件为焙烧温度550 ℃,焙烧时间30 min.酸浸的适宜条件为硫酸质量分数20%.经全流程实验,硫以MnSO4*H2O的形式回收,产品质量达到工业级硫酸锰一级标准.铁回收率为84.8%,锌回收率为80.9%,处理后废渣中银含量达246 g/t.处理过程产生的废弃物中砷较为稳定.  相似文献   

19.
张兆云  刘超  吕晓英 《化工环保》2017,36(5):557-561
采用乙醇胺、乳酸及乙醇合成了乙醇胺乳酸盐,并将其与水复配制得含水量为15%的乙醇胺乳酸盐离子液体脱硫剂(ELIL脱硫剂),探讨了中试脱硫试验过程中脱硫剂的SO_2吸收性能及重复使用性能。试验结果表明:在长达72 h的吸收过程中,该脱硫剂的硫容(以SO_2计)与吸收时间呈一次函数关系;在硫容达到3.0%左右时,ELIL脱硫剂的黏度达到最大值;以w(SO_2)为0.69%的模拟烟道气连续中试运转72 h,尾气中的SO_2质量浓度远小于50 mg/cm~3,达到GB 13271—2014《锅炉大气污染物排放标准》的要求;使用5次后,ELIL脱硫剂的饱和硫容基本稳定在4.6%,重复使用性良好;随着重复使用次数的增加,SO_4~(2-)积累量逐次增加,可通过加入Ca(OH)_2除去SO_4~(2-),提高ELIL脱硫剂的脱硫性能。  相似文献   

20.
在农药行业三氯乙醛生产中排出大量废硫酸(生产1吨精醛,排出1吨废酸),废酸中除含三氯乙醛外,还含有三氯乙酸、半缩醛、乙醇等多种有机物。目前,该废酸大部分用于制造磷肥 Ca(H_2PO_4)_2·H_2O。但是,由于废酸中三氯乙醛进入磷肥,往往会对农作物生长带来不利影响。因此,我们从不同角度对消除磷肥中三氯乙醛污染的问题进行了初步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号