首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
乌鲁木齐市是“丝绸之路经济带”关键节点城市,为了解乌鲁木齐市2015—2018年空气污染状况,利用2015年1月1日—2018年12月23日乌鲁木齐市7个国控空气质量监测站的ρ(PM2.5)、ρ(PM10)监测数据,基于ArcGIS空间分析平台,分析乌鲁木齐市PM2.5、PM10的时空分布特征.结果表明:ρ(PM2.5)从2015年(66.60 μg/m3)到2016年(76.93 μg/m3)呈上升趋势,在2016—2018年呈单一下降趋势;ρ(PM10)从2015年(132.74 μg/m3)到2016年(125.93 μg/m3)呈下降趋势,在2016—2018年呈单一上升趋势.2015—2018年工业活动集中的乌鲁木齐市边缘各区的ρ(PM2.5)、ρ(PM10)平均值比城市中心(商业区、居民区)分别高11.28、7.17 μg/m3,说明工业集中地区的大气环境质量受污染影响明显.此外,2015—2018年乌鲁木齐市大气污染呈季节性和北高南低的区域性分布特征.气象因子分析表明,ρ(PM2.5)、ρ(PM10)均与相对湿度呈正相关,与降雨量、风速等气象因素呈负相关.2015—2018年,乌鲁木齐市大气中ρ(PM2.5)/ρ(PM10)呈先增后降的趋势,冬季以PM2.5污染为主,其他季节以PM10污染为主.研究显示,2015—2018年乌鲁木齐市空气污染状况变化与地形、气象条件、城市化建设均有一定的关系.   相似文献   

2.
陕西省PM2.5时空分布规律及其影响因素   总被引:2,自引:0,他引:2       下载免费PDF全文
PM2.5是导致中国多省市发生灰霾的罪魁祸首,明确其时空分布规律,厘清其影响因素对灰霾的综合治理意义深远.基于陕西省2015年50个监测站点的PM2.5浓度数据,采用空间数据统计方法、克里金插值法以及Morlet小波分析法对陕西省PM2.5浓度的时空分布规律进行研究,并运用灰色关联模型来探讨PM2.5浓度的影响因素.结果显示:①陕西省PM2.5浓度整体呈"冬高夏低、春秋居中"的季节性变化规律,"U型"起伏的月变化规律,周期性脉冲波动型的日变化规律以及"W型"起伏的时变化规律;②陕西省PM2.5浓度呈"北部低,中南部高"的空间分布特征,并且空间集聚性显著.不同季节的高值区均集聚于海拔相对较低的关中盆地内部城市.这与盆地内部空气不易扩散,静稳天气出现频率较高,易出现逆温现象密切相关;③影响陕西省PM2.5浓度最大的指标层是PM2.5污染来源(权重值为0.49),其次是城市化与土地利用(权重值为0.37),气象与地形因子影响最小(权重值为0.15).不同城市各指标层的综合关联度差异较大.④各指标因子与PM2.5浓度均为强度关联.降水量、机动车保有量、二氧化硫排放量、烟粉(尘)排放量、建成区面积、人口密度和人均GDP是影响陕西省PM2.5浓度的主要因子,影响各城市PM2.5浓度的主要因子具有一定的空间差异性.研究显示,人类活动对陕西省PM2.5的影响显著,尤其是城市化的快速推进,相关指标(如人口、机动车、能耗、工业总产值等)持续增长,将进一步加大PM2.5来源的多样性以及相关污染物的排放量.   相似文献   

3.
北京2012~2013年的冬春多次出现雾霾天气,可吸入颗粒物(PM10)污染严重.而PM2.5作为PM10中粒径较小的部分,在PM10中所占比重越高,污染越严重.因此,本研究选取了能够覆盖北京所有区县的30个PM2.5和PM10的质量浓度监测点,对该地区的PM2.5和PM10污染特征进行分析,确定其空间差异特征和时间性变化特征.普通克里格插值(Original Kriging)法得到的北京地区冬、春季颗粒物浓度分布图显示,颗粒物浓度从北部山区到南部地区逐渐递增,在中心城区处,西部高于东部,且局部地区存在一定的城乡差异.颗粒物浓度月变化曲线呈单峰单谷型,1月最高,4月最低;逐日变化反映了PM2.5和PM10浓度具有较好的相关性,且受气象条件影响显著;日变化呈双峰趋势.本文选取日平均气温(℃)、相对湿度(%)、风速(风级)、降水量(mm)等气象因子,利用Spearman秩相关分析研究各个气象因子对大气PM2.5和PM10浓度的影响.北京冬季PM2.5和PM10的质量浓度分别与气温、相对湿度正相关,与风速负相关,风速和相对湿度是影响污染物质量浓度分布的主要因素.  相似文献   

4.
李江苏  段良荣  张天娇 《环境科学》2024,45(4):1938-1949
PM2.5和PM10浓度超标引发的空气质量问题严重影响公众健康,研究PM2.5和PM10浓度对制定有效的污染防控和治理措施具有重要意义.运用时空分析法,分析2018年季度PM2.5和PM10浓度时空分布,并用GWR探究浓度差异的原因.结果表明:(1)PM2.5和PM10的浓度均呈冬春高、夏秋低的季节性规律;四季污染物浓度在胡焕庸线两侧存在显著差异,该线以东地区高浓度聚集在京津冀地区,该线以西地区高浓度聚集在新疆中南部.(2)PM2.5和PM10浓度的Moran’s I在四季均为正,且均在冬季增至最大值;PM2.5和PM10的分布格局基本一致,“高-高”类和“低-低”类集中分布现象明显.(3)各因素对PM2.5和PM10浓度的影响存在较大空间异质性.温度和坡度对PM2.5  相似文献   

5.
为了研究焦作市大气中PM2.5和PM10污染状况,基于2018—2020年焦作市50个环境空气质量监测站点的PM2.5和PM10浓度逐时观测资料,结合气象资料,分析了焦作市PM2.5和PM10浓度的时空分布特征及气象因素影响。结果表明:1)焦作市PM2.5和PM10呈双峰型日变化,且具有显著的U形逐月变化规律及冬高夏低、春秋居中的季节性特征。2)2018—2020年PM2.5和PM10浓度年均值呈西南高东北低的空间差异性特征。与2018年相比,2020年修武县PM2.5和PM10浓度的下降幅度最大,分别为30.25%、22.72%。3) Spearman相关性分析表明,PM2.5和PM10浓度与气温、风速呈显著负相关;与气压呈显著正相关;相对湿度与PM2.5浓度呈显著正相关,与PM10浓度呈显著负相关。焦作市环保局监测站在东北风、西南风风向PM2.5和PM10浓度污染较重,博爱县清化镇、沁阳市西万镇和武陟县乔庙乡监测站在西南风风向易出现高浓度颗粒物。该研究结果可为日后工业地区大气污染防治,生产生活的合理规划与布局提供重要参考。  相似文献   

6.
汤宇磊  杨复沫  詹宇 《中国环境科学》2019,39(12):4950-4958
为深入了解四川盆地PM2.5与PM10污染情况,通过机器学习的方法,基于卫星遥感气溶胶产品(MAIAC)与国家环境空气质量监测网数据以及气象、地理、社会经济变量等,构建2个随机森林机器学习模型(R2均为0.86),反演四川盆地2013~2017年间1km网格逐日PM2.5与PM10浓度时空分布,并分析两者的时空关联性.结果表明:2013~2017年四川盆地地面PM2.5与PM10平均浓度分别为47.8,75.2μg/m3.PM2.5与PM10浓度空间上均整体呈现"倒月牙"状分布,西部与南部区域浓度值较高.5a间,区域颗粒物浓度逐年递减,总降幅均达到27%,季节上则均具有"冬高夏低"的特点;PM2.5与PM10浓度空间相关性显著(相关系数0.96),呈现"内强外弱"的格局,春夏季相关系数(0.91、0.90)低于秋冬季(0.96、0.96).盆地西南部PM2.5与PM10比值较高,比值高低的季节性排序为冬季 > 秋季 > 夏季 > 春季.  相似文献   

7.
PM2.5与PM10的时空分布特征及其相关性是大气颗粒物研究的主要内容,传统方法是基于监测站点数据进行分析,难以揭示PM2.5与PM10时空分布的区域特征.为此,本文利用地理加权回归模型估算了2016年新疆地区PM2.5与PM10的月均浓度,在此基础上对区域尺度的PM2.5与PM10浓度特征进行分析.结果表明:地理加权回归相较最小二乘回归的拟合精度更高,PM2.5和PM10的决定系数分别为0.93和0.96,且误差较小;PM2.5和PM10年均浓度分别为70.88 μg·m-3和194.53 μg·m-3,说明大气颗粒物污染严重,且空间分布呈西南高、东北低的特征;PM2.5和PM10季节浓度均为春季最高,夏季最低;PM2.5月均浓度2月最高,9月最低,PM10月均浓度3月最高,8月最低;PM2.5与PM10年均浓度的相关系数r为0.95,相关性较高;PM2.5/PM10冬季最高为51%,其余季节小于50%,说明冬季PM2.5对大气颗粒物污染贡献率较高,其余季节则以可吸入颗粒物中的粗颗粒贡献为主.  相似文献   

8.
北京市PM2.5时空分布特征及其与PM10关系的时空变异特征   总被引:1,自引:0,他引:1  
PM_(2.5)时空分布特征及其与其它污染物的相关关系是PM_(2.5)时空统计分析的主要研究内容.然而,现有的方法直接从监测站点的角度对时空分布特征进行分析,难以有效地揭示PM_(2.5)浓度的聚集分布特征;同时,常用的地理加权回归在对PM_(2.5)与其它污染物间关系进行建模的过程中,缺乏同时考虑时间异质性与空间异质性,从而不能准确地描述依赖关系的时空变异特征.为此,首先借助于空间聚类分析技术,对北京市2014年PM_(2.5)浓度的聚集结构进行探测,在此基础上,通过聚集结构来分析PM_(2.5)季节性时空分布特征.然后,利用地理时空加权回归对北京市PM_(2.5)与PM_(10)季节平均浓度间关系进行建模,依据回归结果分析PM_(2.5)-PM_(10)间关系的时空变异特征.实验结果表明,春夏季节PM_(2.5)污染程度及空间变异程度均低于秋冬季节,各季节PM_(2.5)浓度均表现为北部浓度低、南部浓度高的空间分布特征;地理时空加权回归具有更好的拟合效果,由回归系数进一步可发现,春夏季PM_(2.5)-PM_(10)相关性低于秋冬季PM_(2.5)-PM_(10)相关性;各季节均表现为西北部PM_(2.5)-PM_(10)的相关性高于东南部PM_(2.5)-PM_(10)的相关性.  相似文献   

9.
文章基于PM2.5遥感反演数据和人口格网分布数据,构建人口暴露风险指数模型,采用Theil-Sen Median与Mann Kendall检验法,识别2000-2020年间黄河流域PM2.5质量浓度值和人口暴露风险指数时间演化特征,通过空间探索工具,刻画其空间变化特征。研究结果表明:(1)PM2.5质量浓度平均值为46.53μg/m3,研究期内呈现出“快速增长—波动变化—持续下降”的态势。PM2.5污染不同等级面积比例变化明显,总体呈现出高浓度区域减少、低浓度区域增加的态势。(2)PM2.5年均质量浓度空间上东高西低。历年PM2.5年均质量浓度空间局部自相关显著。低值区域主要分布在青海、甘肃、宁夏、内蒙古等省份。高值区域集中分布在山西南部、陕西关中地区、河南中部、山东北部区域。(3)除2000年和2020年外,研究时段内均有90%以上人口暴露于PM2.5年均质量浓度35μg/m3限值以上,且...  相似文献   

10.
以山东省2014年PM2.5浓度监测数据为对象,利用时空指示克里格理论和方法,实现对PM2.5时空分布的不确定性分析.结果表明,山东省境内PM2.5的空间自相关范围大于100km,时间自相关范围为3d左右.此外,山东省境内各空间位置全年空气质量以大于0.8的概率达到空气质量"优"级别的时空占比为7%,以大于0.8的概率达到轻度污染级别的时空占比为34%,以大于0.8的概率超过严重污染级别的时空占比为1%;东部沿海地域空气质量达到轻度污染的概率明显高于中西部,夏季空气质量也明显优于其它季节.  相似文献   

11.
2005年四季在北京市不同功能区9个采样点采集大气PM10和PM2.5样品,并对其中有机物污染水平、分布特征及不同功能区PM10和PM2.5中有机物的相关性进行了探讨.结果表明,市区PM10和PM2.5中有机物年均值分别为41.39 μg/m3和34.84 μg/m3,是对照区十三陵的1.44倍和1.26倍;冬季有机物污染最严重,分别为春季的1.15、 1.82倍,秋季的2.06、 2.26倍,夏季的4.53、 6.26倍.不同季节PM2.5与PM10中EOM的比值超过0.60, 并呈现一定季节差异.各功能区有机污染表现出工业区(商业区)>居民区(交通区、对照区)的变化趋势,且不同功能区PM2.5中EOM对PM10中EOM的影响程度各异.有机组分的年均值有非烃>沥青质>芳烃>饱和烃的变化规律,而污染源的季节性排放是造成有机物组分季节变化的主要原因.  相似文献   

12.
樊啸辰  郎建垒  程水源  王晓琦  吕喆 《环境科学》2018,39(10):4430-4438
大气颗粒物是影响我国大多数城市环境空气质量的首要污染物,近年来随着监测技术的进步和采样设备的改进,相关研究对象逐渐从大粒径的PM_10、PM_(2.5)转移到更小粒径的PM_1上.碳质组分是大气颗粒物的重要组成部分.以北京市为研究区域,选取2016年7月、10月及2017年1月、4月作为4个季节的代表月,对大气环境中的PM_(2.5)和PM_1进行采集,分析了二者的质量浓度和季节变化特征.采用两层嵌套气象-空气质量模型系统(WRF-CMAQ)耦合模型对采样时段进行了模拟,分析观测期间PM_(2.5)和PM_1的来源贡献,并使用因子分析法解析了碳质组分的来源.结果表明,PM_(2.5)和PM_1的质量浓度均呈现春、夏、秋、冬这4个季节递增的趋势;PM_1是PM_(2.5)中的主要组成,而且秋冬季节随着灰霾发生频率的增加,PM_1质量浓度占PM_(2.5)的比值明显升高;北京市大气环境中存在明显的二次污染,且SOC更容易在粒径更小的PM_1中积聚.散煤燃烧、机动车尾气排放、居民面源及生物质燃烧排放是北京市大气颗粒物的重要贡献来源;汽油车尾气、柴油车尾气、生物质燃烧和燃煤排放是北京市大气颗粒物中碳质组分的主要来源.  相似文献   

13.
为研究某电子垃圾拆解地大气中PM10及其典型污染物含量以及对人体健康的危害,采用主动式大气颗粒物采样器采集大气样品,分析ρ(PM10)及其所携带的ρ(PCBs),ρ(Cd)和ρ(Cu),利用美国环境保护署(US EPA)人体健康风险评估模型,评估PM10携带的污染物对研究区居住用地及工商业用地方式下人体的致癌及非致癌风险,分析模型参数对风险评估结果的敏感性.结果表明:在采样期间研究区ρ(PM10)日均值为0.05~0.32 mg/m3,14个样本均超过我国《大气环境质量标准》(GB3095—82)ρ(PM10)一级日均标准值(0.05 mg/m3);大气PM10中的ρ(PCBs)为8 971.5~17 197.6 pg/m3,高于国内外其他地区;ρ(Cd)和ρ(Cu)分别为2.7~18.3和127.8~1 218.0 ng/m3;ρ(PCBs),ρ(Cd)和ρ(Cu)最高值出现位置均为附近新近出现焚烧行为的YLY(玉露杨)采样点.健康风险评估结果表明,居住用地方式下PM10中污染物引起的致癌风险超过可接受风险(10-6),绝大部分由Cd引起;参数敏感性分析表明,污染物特征、成人个体及行为参数对致癌风险影响最大,儿童行为及污染物特征参数对非致癌风险影响最大;在进行健康风险评估时,参数须尽量通过实地调查获得,以降低评估结果的不确定性.  相似文献   

14.
在城市区域内,空气污染物的浓度在小范围内存在显著差异,而离散的地面监测点分布不均匀,且监测范围有限,无法满足污染物暴露评估等研究的需求.本研究基于GIS空间分析和多元逐步回归的模型构建的方法,建立了土地利用回归(LUR)模型,并模拟了北京市2019年PM2.5和PM10浓度的空间分布特征.选择土地覆盖数据、气象数据(风速、降水、温度)和植被覆盖度数据等预测变量,以研究区34个监测站点为中心建立0.1~5 km共7个系列缓冲区,表征不同尺度下各变量对PM2.5和PM10浓度的影响.研究结果表明:①进入PM2.5回归模型中的变量有:年均风速、温度、降水量和周围中等植被覆盖、耕地和不透水面的面积;进入PM10回归模型中的变量有:年均风速和周围中等植被覆盖的面积.两个模型的调整R2分别为0.829和0.677,模型精度较高.②抑制污染物浓度的变量,影响力随着空间范围扩大而增强;使污染物浓度增加的变量,影响力随着空间范围缩小而增强.③浓度模拟结果显示,PM2.5和PM10在西北部山区浓度较低,南偏东的城区浓度较高,并且向南有逐渐增加趋势.4植被覆盖度这一变量不仅进入了上述两个方程,且影响力都强于其他土地利用类型,故以后的模型改进应该考虑植被覆盖度这一因素.  相似文献   

15.
海口市PM_(2.5)和PM_(10)来源解析   总被引:1,自引:1,他引:1       下载免费PDF全文
以海口市为例,研究了我国典型热带沿海城市——海口市环境空气颗粒物的污染特征和主要来源.2012年春季和冬季在海口市区4个采样点同步采集了环境空气中PM10和PM2.5样品,同时采集了多种颗粒物源样品,并使用多种仪器分析方法分析了源与受体样品的化学组成,建立了源化学成分谱.使用CMB(化学质量平衡)模型对海口市大气颗粒物进行源解析.结果表明:污染源贡献具有明显的季节特点,并存在一定的空间变化.冬季城市扬尘、机动车尾气尘、二次硫酸盐和煤烟尘是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为23.6%、16.7%,17.5%、29.8%,13.3%、15.7%和13.0%、15.3%;春季机动车尾气尘、城市扬尘、建筑水泥尘和二次硫酸盐是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为27.5%、35.0%,20.2%、14.9%,12.8%、6.0%和9.5%、10.5%.冬季较重的颗粒物污染可能来自于华南内陆地区的区域输送,特别是,本地排放极少的煤烟尘和二次硫酸盐受区域输送的影响更为显著.  相似文献   

16.
曾德珩  陈春江 《环境科学研究》2019,32(11):1834-1843
随着工业化与城镇化的深入推进,成渝城市群的PM2.5污染不断加剧,呈明显的区域性与复合性特征.该研究以2015—2017年成渝城市群空气质量监测站的日均ρ(PM2.5)数据为基础,结合区域气象、遥感与统计年鉴等多源数据,采用反距离插值法分析了ρ(PM2.5)的时空分布差异,采用Moran's I指数与LISA指数探索了ρ(PM2.5)的全局和局部空间自相关性,并利用空间回归模型研究了自然、经济社会等因素对ρ(PM2.5)的影响.结果表明:①成渝城市群ρ(PM2.5)分布存在明显的时空差异.时间上,2015年PM2.5污染最严重,ρ(PM2.5)年均值为54.38 μg/m3,2016年、2017年PM2.5污染状况逐年减轻,ρ(PM2.5)年均值分别为53.68与47.56 μg/m3;空间上,成渝城市群东北部ρ(PM2.5)较低,而南部ρ(PM2.5)较高.②空间自相关分析结果表明,PM2.5污染在成渝城市群存在显著的空间聚集性,成渝城市群南部ρ(PM2.5)呈高值-高值聚集,成渝城市群北部ρ(PM2.5)则呈低值-低值聚集.③空间回归结果表明,成渝城市群范围内某一地区邻近区域的ρ(PM2.5)平均值增加1%时,该地区ρ(PM2.5)将上升至少0.38%.城镇化率对ρ(PM2.5)的影响最大,其次是第一产业增加值,再次是工业增加值占比和降水量.城镇化率、降水量与ρ(PM2.5)呈负相关,而第一产业增加值、工业增加值占比与ρ(PM2.5)呈正相关.研究显示,加快城镇化进程、减少第一产业排放、降低工业增加值占比(尤其是重污染工业)是有效解决成渝城市群PM2.5污染的重要手段.   相似文献   

17.
根据陕西省2016年12月至2017年5月PM2.5质量浓度逐小时数据,利用ArcGIS分析陕西省PM2.5污染时空变化格局,并分析造成南北差异的原因,再利用小波分析手段探讨各市PM2.5污染时间序列周期和突变特性。结果表明:(1)陕西省冬季PM2.5污染重,春季污染轻,并表现出"关中高,南北低"的特征,秦岭南北经济发展差异和供暖差异是控制陕西省PM2.5污染空间格局的主要原因;(2)冬季和春季单日PM2.5浓度变化趋势基本一致,为"双峰双谷型",日最低值出现在16∶00~18∶00;(3)Morlet小波分析结果显示,陕西省PM2.5日均变化序列存在多时间尺度特征。陕北城市PM2.5污染第1主周期为40 d,关中城市和陕南商洛市有40 d和65 d两个共同周期,安康市和汉中市共同周期为20 d和80 d;(4)陕西省PM2.5突变事件冬季频繁而春季较少,多发生在1月和2月,春季1次大范围的沙尘天气,造成了陕西省5月5日8个城市PM2.5污染浓度剧增。  相似文献   

18.
为了提高PM2.5估算精度,获得连续的PM2.5浓度空间分布,本文提出了一种时空XGBoost模型(STXGB).STXGB模型引入克里金法,将地理信息和时间信息融合到XGBoost算法体系中,通过集成遥感数据、气象数据和地理信息数据建立了基于STXGB模型的PM2.5质量浓度空间估算方法.最后,以2019年中国区域PM2.5质量浓度月数据为例,采用基于样本、站点和时间的十折交叉验证法,评估了STXGB模型的性能,并与BP神经网络(BPNN)、随机森林(RF)、XGBoost、反距离加权XGBoost (XGBIDW)模型结果进行对比.结果表明,STXGB模型的预测精度优于其它模型,其中,STXGB模型验证的决定系数为0.92,均方根误差为6.51 μg·m-3,平均预测误差为4.26 μg·m-3,利用该模型生成的中国区域PM2.5浓度空间分布更为合理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号