首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
张培  刘芳  马涛  赵朝成  夏璐 《环境工程学报》2011,5(9):1961-1967
循环水系统中的微生物有悬浮态和附着态,悬浮细菌的存在对附着态生物粘泥的生长及特性有明显影响。通过向模拟循环冷却水系统中投加不同数量初始悬浮细菌,考察在营养水平不同的情况下,悬浮细菌数量对生物粘泥化学组成和脱氢酶活性的影响。结果表明,营养水平不同,初始悬浮细菌数量对生物粘泥的化学组成和脱氢酶活性的影响程度不同;在不同营养水平下,应分别控制初始悬浮细菌数量。贫营养下,初始悬浮细菌数量应控制在6×105个/mL左右;中营养下,初始悬浮细菌数量应控制在1×105~2.6×105个/mL之间;富营养下,初始悬浮细菌数量应控制在0.11×105~2.6×105个/mL之间最不利于生物粘泥的生长。  相似文献   

2.
为了更好地揭示岩溶地下水的影响因素,采用野外现场实测、自动观测、实验室分析相结合的方法,在"十一"旅游旺季对重庆金佛山水房泉流域各项理化指标进行连续监测。监测结果表明,岩溶地下水对外界条件反应敏感,其岩溶水理化性质容易受外界条件的影响,自然因素和人为因素的改变,可直接快速地改变地下水水质。旅游季节地下水水质发生明显变化,旅游因素对地下水质的变化有较好的响应关系。表现为旅游高峰前期的正常水平;旅游高峰期的骤然恶化,出现污染状况;旅游高峰后期,叠加降雨因素的影响从而使各个水质指标出现好转。  相似文献   

3.
通过对玄武湖的外围入湖口及湖心的悬浮颗粒物的组成、悬浮颗粒物沉降量及沉降速率的对比实验,阐述了外源水、面源水的污染物对湖水水质的影响,并从面源、点源、水体自净能力及补给水等,促使湖水水质变化的途径入手,依据各项监测结果及对数据的分析,找出了玄武湖多次发生水污染的原因是多方面、多途径的影响结果。从监测分析发现,入湖口悬浮颗粒物沉降量高于湖心点,说明玄武湖水污染主要是受外源影响。另外还发现,入湖污水经水生植物阻滞、吸附和吸收后,其悬浮颗粒物的沉积速率和沉降量明显增大,据此认为,控制外源性污染、补充清洁水及在入湖口周围广种水生植物,是减缓湖水水质恶化,促使水质改良的有效途径。  相似文献   

4.
复合式生物除臭反应器处理城市污水处理厂恶臭气体   总被引:4,自引:0,他引:4  
采用复合式生物除臭反应器处理北京某城市污水处理厂污泥浓缩池和脱水间散发的恶臭气体,研究了反应器对恶臭气体的净化效果和微生物悬浮生长区与附着生长区内的生物特性及对恶臭污染物的去除能力。该污水处理厂的恶臭气体中主要发臭物质为硫化氢和氨,除臭反应器的运行结果表明,在设备稳定运行期间,进气中硫化氢和氨的浓度分别为0.21~22.61 mg/m3和0.1~0.5 mg/m3,而出气中硫化氢浓度在0~0.06 mg/m3,氨浓度为0~0.02 mg/m3。对反应器内部测试表明,微生物悬浮生长区和附着生长区对硫化氢和氨都有一定的去除,但去除机理不同。硫化氢主要被附着生长区的嗜酸性硫细菌生物氧化,少量硫化氢在悬浮区溶于水被中性硫细菌氧化;氨主要在悬浮区靠生物硝化作用去除,少部分氨在附着区被去除,且多因化学中和作用转移到填料所含的水中。  相似文献   

5.
太湖水体附着细菌和浮游细菌的丰度与分布特征   总被引:3,自引:0,他引:3  
为了探讨太湖水体附着细菌及浮游细菌丰度的变化规律,明确细菌丰度与环境因子的关系,应用荧光显微技术对太湖4个湖区细菌丰度及分布特征进行了研究,并探讨了其与总氮(TN)、总磷(TP)、叶绿素a(Chla)、总悬浮颗粒物(TSS)等环境因子之间的关系.结果表明,太湖水体中附着细菌占优势,占总细菌的65%(总细菌平均值为6.53×106cells/mL,附着细菌平均值为4.25×106 cells/mL,浮游细菌平均值为2.28 × 106 cells/mL);附着细菌与浮游细菌数丰度具有相似的时空分布规律,附着细菌与浮游细菌丰度都是河口区(10#)最高,其次梅梁湾(3 #)、湖心区(8#)和东太湖(24#)较低;春夏季高,秋冬季低;水温、TP对太湖水体中附着细菌及附浮游细菌的丰度影响比较大,它们与水体中附着细菌丰度及附浮游细菌均呈显著的正相关(p<0.05).太湖不同湖区附着细菌及浮游细菌的数量空间差异是由太湖不同湖区生态环境的异质性引起的.  相似文献   

6.
采用单室无膜悬浮阴极微生物燃料电池(MFC),对比分析了蛋白酶和淀粉酶强化剩余污泥为燃料的MFC(ESMFC)产电特性、酶特性和污泥减量化效果。研究表明,投加蛋白酶的ESMFC最大功率密度比对照组增加106.2%,投加淀粉酶时ESMFC最大功率密度比对照组增加48%。蛋白酶作用主要体现在投加后的前12小时,而淀粉酶作用时间则较长,为投加后的前144小时,但在运行前期,由于高温作用,导致系统内的酶活性较强,投加的淀粉酶作用则不明显。投加蛋白酶的系统内TCOD、TSS和VSS去除率分别为82%、65%和85%,而投加淀粉酶的系统内TCOD、TSS和VSS去除率分别达到86%、67%和88%。此研究对于ESMFC中外加酶的选择具有一定意义。  相似文献   

7.
以CDC生物膜反应器来模拟给水管网系统,选取聚乙烯(PE)、聚碳酸酯(PC)和不锈钢(SS)3种挂片材质,通过表征异养菌总数、细胞总数和颗粒物浓度研究颗粒物对不同管材出水的影响。结果发现,进水颗粒物浓度和体积浓度分别为63个·mL~(-1)和8.6×104μm3·mL~(-1),反应器稳定运行60 d后,3台不同管材反应器出水的颗粒物浓度和体积浓度都有所增长。其中PC出水的颗粒物浓度和体积浓度分别为4 151个·mL~(-1)和3.5×106μm3·mL~(-1),均高于PE和SS出水,且PC出水中异养菌总数和细胞总数分别为268 CFU·mL~(-1)和1.8×104cells·mL~(-1),也高于PE和SS出水。PC出水中可培养细菌比例从0.24%增加到了1.49%,高于PE和SS出水中可培养细菌比例的0.22%和0.24%。结果显示,颗粒物浓度和体积浓度与出水细菌含量具有显著相关性(R2均在0.96以上)。PC材质的管网更易吸附细菌,出水的颗粒物浓度和细菌数量也远远高于其他2种材质的出水,在实际使用中需谨慎选择使用。  相似文献   

8.
卡鲁塞尔氧化沟流速与水质组分分布的现场测试   总被引:3,自引:0,他引:3  
通过实测卡鲁塞尔氧化沟不同位置处流速与水质组分,分析了流速对沟内污泥、溶解氧浓度的影响以及溶解性组分的微生物转化规律。结果表明,溶解氧与流速呈正相关、污泥浓度(MLSS)与流速呈负相关;水质组分在沟中不同区段呈现出各自特点,反映了COD、氨和磷酸盐的生物转化历程;流速也是影响溶解性组分混合的重要因素,改善进水口附近混合液的流场,提高局部流速有利于缩短进水组分均布的距离。  相似文献   

9.
研究了上流式反硝化生物滤池(DNBF)生物膜胞外聚合物(EPS)的空间分布特征,EPS的空间结构及组成对基质在生物膜内的传质作用有较大的影响,进而影响反硝化反应的进程和DNBF的脱氮效果。结果表明,沿水流方向生物膜EPS含量呈先升高后降低的变化趋势,在滤料层中间段为最高(56.14 mg·g~(-1))。将生物膜EPS分为悬浮型与附着型(包括溶解型、松散附着型和紧密黏附型)进行分层分析,发现每个分层的蛋白质含量均高于多糖含量;悬浮生物膜EPS中的多糖含量高于其他分层;溶解型和松散附着型生物膜EPS中的多糖含量高于紧密黏附型生物膜EPS。三维荧光光谱分析表明,悬浮生物膜EPS中所含主要物质为溶解性微生物分解副产物类,附着生物膜中,溶解型和松散附着型生物膜EPS包含酪氨酸类、色氨酸类蛋白质以及溶解性微生物分解副产物类蛋白质,紧密黏附型生物膜EPS主要包含溶解性微生物分解副产物类蛋白质。傅里叶红外光谱解析表明,羧基、酰胺基、羟基等是EPS中的主要基团。  相似文献   

10.
采用Biostyr曝气生物滤池(BAF)处理城市污水,研究了温度变化对其处理效果与微生物群落结构的影响。结果表明,温度低于18℃(低温)时,BAF对COD和NH_4~+-N去除率均低于60%;当水温在18~22℃(中温)之间变化时,BAF对COD和NH_4~+-N的去除效果稳定且明显高于低温时的去除率;当水温高于22℃(高温)后,BAF对COD和NH_4~+-N去除率与水温正相关,去除率随温度的升高而显著提高。PCR-DGGE分析表明,温度越高BAF内总细菌微生物群落多样性越好;定量PCR分析表明,BAF内总细菌、氨氧化细菌和硝化细菌的菌群密度均随温度升高而增大,与其对污染物的去除率变化趋势一致。BAF在低温环境下,滤池内的菌群结构变得简单、菌群密度降低,但出水水质仍能满足要求,表明BAF工艺具有良好的抗低温冲击能力。  相似文献   

11.
Indoor air quality has become a critical issue because people spend most of their time in the indoor environment. The factors that influence indoor air quality are very important to environmental sanitation and air quality improvement. This study focuses on monitoring air quality, colony counts, and bacteria species of the indoor air of a nursing care institution. The regular colony counts in two different wards range from 55 to 600 cfu m(-3) Regression analysis results indicate that the bacterial colony counts have close correlation with relative humidity or carbon dioxide (CO2) but not with carbon monoxide (CO) or ozone (O3). Real-time PCR was used to quantify the bacterial pathogens of nosocomial infection, including Acinetobacter baumannii, Citrobacter freundii, Escherichia coli, Klebsiella pneumoniae, and methicillin-sensitive Staphylococcus aureus. The most abundant bacteria species in the air of the nursing care institution is E. coli.  相似文献   

12.
昆明主城区城市地表径流污染特征分析   总被引:8,自引:0,他引:8  
谷雨  张乃明 《环境工程学报》2013,7(7):2587-2595
昆明市位于滇池上游,城市地表径流污染负荷对滇池水质具有直接影响。通过对昆明主城区内不同功能区12个监测点7次降雨径流过程水样的采集与分析,研究了昆明主城区城市地表径流污染特征。结果表明,昆明主城区城市地表径流中TSS、COD、TN和TP的多场降雨平均浓度分别为182.8、138.2、2.37和0.43 mg/L。不同功能区的地表径流水质存在显著差异(p<0.05);各功能区径流污染负荷顺序为:公路区>商业区>住宅区>文教区;不同功能区单场降雨径流水质动态变化规律是:污染物浓度在降雨径流初期相对较高,中后期浓度快速下降,并逐渐趋于稳定;地表利用功能、降雨特征和交通流量是影响城市地表径流水质的主要因素;城市地表径流中COD、TN、TP与TSS之间有较好的相关性,说明大部分的污染物质是以颗粒吸附态存在。  相似文献   

13.
Potential of bacterial communities in biofilms to recover after copper exposure was investigated. Biofilms grown outdoor in shallow water on glass dishes were exposed in the laboratory to 0.6, 2.1, 6.8 micromol/l copper amended surface water and a reference and subsequently to un-amended surface water. Transitions of bacterial communities were characterised with denaturing gradient gel electrophoresis (DGGE) and community-level physiological profiles (CLPP). Exposure to 6.8 micromol/l copper provoked distinct changes in DGGE profiles of bacterial consortia, which did not reverse upon copper depuration. Exposure to 2.1 and 6.8 micromol/l copper was found to induce marked changes in CLPP of bacterial communities that proved to be reversible during copper depuration. Furthermore, copper exposure induced the development of copper-tolerance, which was partially lost during depuration. It is concluded that bacterial communities exposed to copper contaminated water for a period of 26 days are capable to restore their metabolic attributes after introduction of unpolluted water in aquaria for 28 days.  相似文献   

14.
ABSTRACT

Indoor air quality has become a critical issue because people spend most of their time in the indoor environment. The factors that influence indoor air quality are very important to environmental sanitation and air quality improvement. This study focuses on monitoring air quality, colony counts, and bacteria species of the indoor air of a nursing care institution. The regular colony counts in two different wards range from 55 to 600 cfu m?3. Regression analysis results indicate that the bacterial colony counts have close correlation with relative humidity or carbon dioxide (CO2) but not with carbon monoxide (CO) or ozone (O3). Real-time PCR was used to quantify the bacterial pathogens of nosocomial infection, including Acinetobacter baumannii, Citrobacter freundii, Escherichia coli, Klebsiella pneumoniae, and methicillin-sensitive Staphylococcus aureus. The most abundant bacteria species in the air of the nursing care institution is E. coli.
IMPLICATIONS Indoor temperature, humidity, ventilation, accumulation of biological pollutants, and potential infection problems will seriously affect the indoor environments. Studying these factors is important to indoor environmental sanitation and air quality improvements. Results of using real-time PCR to evaluate the bacterial pathogens of nosocomial infection for a nursing care institution in Taiwan reveal that the main bacteria species existing in the indoor air is E. coli.  相似文献   

15.
Kang JH  Kondo F 《Chemosphere》2002,49(5):493-498
Total 15 surface river waters were collected from thirteen different rivers to investigate a relationship of bacterial counts and temperature to the degradation of bisphenol A (BPA). Autoclaved and non-autoclaved river water samples were spiked with 0.2 mg/l BPA. The spiked samples were placed at temperatures of 4, 20, and 30 degrees C and analyzed by high performance liquid chromatography. BPA was degraded at all temperatures in the non-autoclaved samples. However, BPA in the autoclaved samples was not changed at all temperatures for 20 d. These results show that the primary factor of BPA degradation in river water is bacteria. Moreover, three groups [group A (> 10000 CFU/ml), group B (2000-10000 CFU/ml), and group C (< 2000 CFU/ml)], were made on the basis of bacterial counts of the samples. Half-lives for BPA degradation in groups A, B, and C were 2, 3, and 6 d at 30 degrees C and were 4, 5, and 7 d at 20 degrees C, respectively. But at 4 degrees C, the loss of BPA was about 40%, 20%, and 10% in groups A, B, and C for 20 d, respectively. Bacterial counts exerted an influence on BPA degradation in river water with temperature. Our results also show that BPA-degrading bacteria are widely distributed in river waters.  相似文献   

16.
The seasonal treatment efficiency of a pilot-scale constructed wetland system located outdoors in a semi-arid, temperate climate was evaluated for graywater in a comprehensive, 1-year study. The system consisted of two wetland beds in series--a free water surface bed followed by a subsurface flow bed. Water quality monitoring evaluated organics, solids, nutrients, microbials, and surfactants. The results showed that the wetland substantially reduced graywater constituents during fall, spring, and summer, including biochemical oxygen demand (BOD) (92%), total nitrogen (85%), total phosphorus (78%), total suspended solids (TSS) (73%), linear alkylbenzene sulfonate (LAS) surfactants (94%), and E. coli (1.7 orders of magnitude). Except for TSS, lower removals of graywater constituents were noted in winter--BOD (78%), total nitrogen (64%), total phosphorus (65%), LAS (87%), and E. coli (1.0 order), indicating that, although wetland treatment slowed during the winter, the system remained active, even when the average water temperature was 5.2 +/- 4.5 degrees C.  相似文献   

17.
The effect of 2,4,5- and 2,4,6-trichlorophenol on the microbiota from a polluted and a pristine site of a river was studied. Bacterial metabolic activity measurements by epifluorescence microscopy showed that the polluted site contained more metabolically active cells than the pristine site. Total culturable bacterial counts and tolerant bacterial counts from both sites were not affected by incubation (for up to 5 days) with 200 ppm of chlorophenols. However, the incubation with 500 ppm of 2,4,5-trichlorophenol prevented detection of total and tolerant bacterial counts in the pristine site, and inhibited tolerants in the polluted site. None of 250 bacterial colonies directly isolated from these samples was able to grow on chlorophenols. However, bacteria able to grow on 2,4,6-trichlorophenol, were obtained by enrichment of water and sediments samples.  相似文献   

18.
Discharge of contaminated ground water may serve as a primary and on-going source of contamination to surface water. A field investigation was conducted at a Superfund site in Massachusetts, USA to define the locus of contaminant flux and support source identification for arsenic contamination in a pond abutting a closed landfill. Subsurface hydrology and ground-water chemistry were evaluated in the aquifer between the landfill and the pond during the period 2005-2009 employing a network of wells to delineate the spatial and temporal variability in subsurface conditions. These observations were compared with concurrent measures of ground-water seepage and surface water chemistry within a shallow cove that had a historical visual record of hydrous ferric oxide precipitation along with elevated arsenic concentrations in shallow sediments. Barium, presumably derived from materials disposed in the landfill, served as an indicator of leachate-impacted ground water discharging into the cove. Evaluation of the spatial distributions of seepage flux and the concentrations of barium, calcium, and ammonium-nitrogen indicated that the identified plume primarily discharged into the central portion of the cove. Comparison of the spatial distribution of chemical signatures at depth within the water column demonstrated that direct discharge of leachate-impacted ground water was the source of highest arsenic concentrations observed within the cove. These observations demonstrate that restoration of the impacted surface water body will necessitate control of leachate-impacted ground water that continues to discharge into the cove.  相似文献   

19.
Expansion of aquaculture has increased concern over its environmental impact. The composition of effluents from intensive aquaculture is well documented, but few data on extensive aquaculture are available. During 12 draining operations, 523 water samples were collected downstream from six extensively-managed fishponds in northeastern France. Study ponds had surface areas of 2-620 ha and were managed for production of Cyprinids and Percids. Concentrations of total suspended solids, total phosphorus, and Kjeldahl nitrogen in effluents from the ponds were greatest during the final stage of draining. Loads of phosphorus were higher than those reported for effluents of more intensive aquaculture ponds in the USA, but the source of the potential pollutants was catchments and sediment rather than feeds and fertilizer. It will be necessary to reduce the water drawdown rate during the fishing stage and possibly implement other best management practices to prevent the TSS concentration from exceeding 1 g/L.  相似文献   

20.
The Waigang River, a major tributary of the Qinhuai River system, has suffered from long-standing pollution because of lack of management. Restoration was commenced in April 2006 to reduce pollutants and improve water quality. Four ecological areas and ten surface carriers were constructed for the culture of plants (mainly water hyacinth (Eichhornia crassipes) and ryegrass (Lolium perenne L.)) for phytoremediation. Chemical oxygen demand (COD), total suspended solids (TSS), total phosphorus, total nitrogen (TN), ammonia?Cnitrogen (NH3?CN), water transparency, and variations in phytoplankton population were investigated to evaluate the effects of restoration. Over 36?months, TSS, COD, TN, and NH3?CN levels decreased by 91.1, 55.3, 91.5, and 86.5?%, respectively. Transparency increased from 25?cm in 2006 to 165?cm in 2009. Improvements in water quality significantly enhanced the diversity of phytoplankton, which were harmed by pollution stress. Our results show that the water hyacinth and ryegrass cultured in the ecological areas and the surface carriers can be used to restore other heavily polluted rivers with conditions similar to those of the Waigang River, especially in the initial stages of restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号