首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Perfluorinated surfactants (PFSs) in size-fractionated street dust in Tokyo   总被引:1,自引:0,他引:1  
Murakami M  Takada H 《Chemosphere》2008,73(8):1172-1177
We investigated perfluorinated surfactants (PFSs) in size-fractionated street dust to identify their occurrence, contributions from traffic, and potential routes of entry into waters. Street dust was collected from residential areas and heavily trafficked areas in Tokyo and sorted into fine (<63 microm) and coarse fractions (63-2000 microm). Five PFS species were analyzed by liquid chromatography-tandem mass spectrometry: perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), and perfluoroundecanoate (PFUA). In fine fractions, PFS contents were significantly higher in heavily trafficked street dust than in residential street dust, but in coarse fractions, no significant differences were observed. Additionally, in heavily trafficked areas, PFS contents were significantly higher in fine fractions than in coarse fractions, but in residential areas, no significant differences were observed. PFS compositions differed between size fractions, not locations, indicating differences in sources between size fractions. Fine particles from traffic contributed to PFSs in street dust. Street dust possibly acts as the origin of PFSs in street runoff and eventually enters waters. This is the first report of PFSs in street dust.  相似文献   

2.
Distributions of total organic carbon (TOC), black carbon (BC), and polycyclic aromatic hydrocarbons (PAH) were investigated in different particle size fractions for four Norwegian harbor sediments. The total PAH (16-EPA) concentrations ranged from 2 to 113 mg/kg dry weight with the greatest fraction of PAH mass in the sand fraction for three of the four sediments. TOC contents ranged from 0.84% to 14.2% and BC contents from 0.085% to 1.7%. This corresponds to organic carbon (OC = TOC - BC) contents in the range of 0.81-14% and BC:TOC ratios of 1.3-18.1%. PAH isomer ratios suggested that the PAH in all four sediments were of pyrogenic origin. Furthermore, stronger correlations between PAH versus BC (r2 = 0.85) than versus OC (r2 = 0.15) were found. For all size fractions and bulk sediments, the PAH-to-BC ratios for the total PAHs were on average 6+/-3 mg PAH/g BC. These results suggest that PAH distributions were dominated by the presence of BC, rather than OC. As sorption to BC is much stronger than sorption to OC, this may result in significantly lower dissolved concentrations of PAH than expected on the basis of organic carbon partitioning alone.  相似文献   

3.
The presence of polycyclic aromatic hydrocarbons (PAHs) in an urban region (Heraklion, Greece) and processes that govern their atmospheric fate were studied from November 2000 until February 2002. Sixteen samples were collected, by using an artifact-free sampling device, on a monthly basis and the concentration of PAHs in gas and particulate phase was determined. The most abundant members (gas + particles) were phenanthrene (20.0+/-7.0 ng m(-3)), fluoranthene (6.5+/-1.7 ng m(-3)), pyrene (6.6+/-2.4 ng m(-3)), and chrysene (3.1+/-1.5 ng m(-3)). Total concentration (gas+particulate) of PAH ranged from 44.3 to 129.2 ng m(-3), with a mean concentration of 79.3 ng m(-3). Total concentration of PAHs in gas phase ranged from 31.4 to 84.7 ng m(-3) with non-observable seasonal variation. Conversely, maximum PAH concentrations in the particulate phase occurred during winter months. Particulate concentration varied from 11.4 to 44.9 ng m(-3), with an average of 25.2 ng m(-3). PAH distribution between gas and particulate phase was in agreement with the sub-cooled vapor pressure. Shift in gas/particle distribution due to difference in ambient temperature elucidated to some extent the seasonal variation of the concentration of PAHs in particles.  相似文献   

4.
Krauss M  Wilcke W 《Chemosphere》2005,59(10):1507-1515
The sorption strength of persistent organic pollutants in soils may vary among different soil organic matter (SOM) pools. We hypothesized that polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were unevenly distributed and had different soil organic carbon (SOC)-water partition coefficients (K(OC)) among soil density fractions. We determined the concentrations and K(OC) values of 20 PAHs and 12 PCBs in bulk samples and three density fractions (light, <2.0, medium, 2.0-2.4, and heavy, >2.4 g cm(-3)) of 11 urban topsoils (0-5 cm) from Bayreuth, Germany. The K(OC) values were determined using sequential extraction with methanol-water mixtures (35% and 65% methanol) at 60 degrees C. The sum of 20 PAH concentrations in bulk soil ranged 0.4-186 mg kg(-1), and that of 12 PCB concentrations 1.2-158 microg kg(-1). The concentrations of all PAHs and PCBs decreased in the order light>medium>heavy fraction. When normalized to the SOC concentrations, PAH concentrations were significantly higher in the heavy than in the other density fractions. The K(OC) values of the PAHs in density fractions were 3-20 times higher than those of the PCBs with similar octanol-water partition coefficients (K(OW)). The K(OC) values of individual PAHs and PCBs varied up to a factor of 1000 among the studied soils and density fractions. The K(OC) values of 5- and 6-ring PAHs tended to be highest in the heavy fraction, coinciding with their enrichment in this fraction. For the other PAHs and all PCBs, the K(OC) values did not differ among the density fractions. Thus, there is no relationship between sorption strength and distribution among density fractions, indicating that density fractionation is not a suitable tool to distinguish among differently reactive PAH and PCB pools in soils.  相似文献   

5.
Diagnostic ratios and multivariate analysis were utilized to apportion polycyclic aromatic hydrocarbon (PAH) sources for road runoff, road dust, rain and canopy throughfall based on samples collected in an urban area of Beijing, China. Three sampling sites representing vehicle lane, bicycle lane and branch road were selected. For road runoff and road dust, vehicular emission and coal combustion were identified as major sources, and the source contributions varied among the sampling sites. For rain, three principal components were apportioned representing coal/oil combustion (54%), vehicular emission (34%) and coking (12%). For canopy throughfall, vehicular emission (56%), coal combustion (30%) and oil combustion (14%) were identified as major sources. Overall, the PAH's source for road runoff mainly reflected that for road dust. Despite site-specific sources, the findings at the study area provided a general picture of PAHs sources for the road runoff system in urban area of Beijing.  相似文献   

6.
In this study, the chemical composition of fine particulate matter samples collected at U.S. Environmental Protection Agency Speciation Trends Network sites in San Jose, CA, from February 2000 to February 2005 were analyzed. A San Jose site was initially established at 4th Street and then subsequently moved to Jackson Street in mid-2002. These sites are approximately 1 km apart. There were no known major changes in the nature of the sources in the area over this period. The study used positive matrix factorization model to extract the source profiles and their mass contributions and to compare the results for the congruence of the source apportionments between these two nearby sites. In the case of the 4th Street site, the average mass was apportioned to wood combustion (32.1 +/- 2.5%), secondary nitrate (22.3 +/- 2%), secondary sulfate (10.7 +/- 0.6%), fresh sea salt (7.7 +/- 0.9%), gasoline vehicles (7.3 +/- 0.5%), aged sea salt (6.8 +/- 0.4%), road dust (6.7 +/- 0.7%), diesel emissions (3.9 +/- 0.3%), and a Ni-related industrial source (2.5 +/- 0.4%). At the Jackson Street site, the average mass was apportioned to wood combustion (33.6 +/- 2.6%), secondary nitrate (20.3 +/- 1.9%), secondary sulfate (13.9 +/- 0.9%), aged sea salt (12.4 +/- 0.7%), gasoline vehicle (8.3 +/- 0.6%), fresh sea salt (5.3 +/- 0.5%), diesel emission (3.2 +/- 0.3%), road dust (1.9 +/- 0.1%), and Ni-related industrial source (1.3 +/- 0.1%). Conditional probability function analysis was used to help identify local sources. These results suggested that moving the sampling site a short distance had little effect on the nature of the resolved source types although some differences in their quantitative impacts were obtained in the positive matrix factorization analyses.  相似文献   

7.
A PAH contaminated river floodplain soil was separated according to grain size and density. Coal and coal-derived particles from coal mining, coal industry and coal transportation activities were identified by organic petrographic analysis in our samples. Distinct concentrations of PAHs were found in different grain size and density fractions, however, similar distribution patterns of PAHs indicated similar sources. In addition, although light fractions had the mass fraction by weight of less than 5%, they contributed almost 75% of the total PAHs in the soil. PAH concentrations of all sub fractions showed positive correlation with their TOC contents. Altogether, coal and coal-derived particles that were abundant in light fractions could be the dominant geosorbents for PAHs in our samples.  相似文献   

8.
The determination of sixteen polycyclic aromatic hydrocarbons in urban street dust has been done. Samples were collected from 12 sampling locations in a city centre location (Newcastle upon Tyne, north east England) and extracted using in situ pressurised fluid extraction followed by gas chromatography mass spectrometry. From the results it was possible to identify three groups, with respect to PAH concentration, with PAH contents ranging between 0.6-2.3 mg kg−1, 15.6-22.5 mg kg−1 and 36.1-46.0 mg kg−1. The total PAH content of samples from these sampling sites has been compared to 22 urban locations around the world; comparable levels were found in these samples compared to the other cities around the world.The potential source of PAHs has been investigated by investigating the proportion of pyrogenic and petrogenic material in urban street dust using specific individual PAH ratios. The results indicate that the PAH content of urban street dust from the chosen sites are more likely to be due to pyrogenic sources i.e. vehicle exhaust emissions. The particle size fractions (<63 μm; 63-125 μm; 125-250 μm; 250-500 μm; 500-1000 μm; and 1000-2000 μm) of individual PAHs in three selected sampling sites was investigated. In two of the selected sites the PAH content was independent of particle size whereas in sampling site 10 elevated PAH levels are noted in the <63 μm size fraction. Sampling site 10 is located at the junction of three road tributaries which are used as major access points to the east of the city centre. Finally, the potential health risk for unintentional consumption of PAHs was assessed in terms of a mean daily intake (based on an ingestion rate of 100 mg d−1). It was found that all 4-6 membered ring PAHs had concentrations in excess of the mean daily intake thereby reflecting a potential health risk, particularly in the smallest size particle fractions.  相似文献   

9.
The distribution of air particulate mass and selected particle components (trace elements and polycyclic aromatic hydrocarbons (PAHs)) in the fine and the coarse size fractions was investigated at a traffic-impacted urban site in Thessaloniki, Greece. 76±6% on average of the total ambient aerosol mass was distributed in the fine size fraction. Fine-sized trace elemental fractions ranged between 51% for Fe and 95% for Zn, while those of PAHs were between 95% and 99%. A significant seasonal effect was observed for the size distribution of aerosol mass, with a shift to larger fine fractions in winter. Similar seasonal trend was exhibited by PAHs, whereas larger fine fractions in summer were shown by trace elements. The compositional signatures of fine and coarse particle fractions were compared to that of local paved-road dust. A strong correlation was found between coarse particles and road dust suggesting strong contribution of resuspended road dust to the coarse particles. A multivariate receptor model (multiple regression on absolute principal component scores) was applied on separate fine and coarse aerosol data for source identification and apportionment. Results demonstrated that the largest contribution to fine-sized aerosol is traffic (38%) followed by road dust (28%), while road dust clearly dominated the coarse size fraction (57%).  相似文献   

10.
Okuda T  Naoi D  Tenmoku M  Tanaka S  He K  Ma Y  Yang F  Lei Y  Jia Y  Zhang D 《Chemosphere》2006,65(3):427-435
We developed a useful analytical method for the determination of polycyclic aromatic hydrocarbons (PAH) concentrations in the aerosol of China. We used an accelerated solvent extraction (ASE) method for the extraction of PAHs from the aerosol samples, in order to reduce the extraction time and the solvent volume used. The optimum purification method was developed, with aminopropylsilane chemically-bonded stationary-phase column chromatography, in order to remove many co-extractives which cannot be removed by conventional purification methods using silica-gel column chromatography. HPLC/fluorescence detection (FLD) was adopted as the analytical method, because it has very high sensitivity to PAH and it is easy to install, operate, and maintain as compared with GC/MS. With the analytical method developed in this study, the recovery and precision (RSD) for most of the PAHs ranged from 75% to 129% and from 2.8% to 22.7%, respectively. The concentrations of PAHs in the aerosol samples collected from October 2003 to April 2005 in Beijing, China were determined using the newly developed method. SigmaPAHs, which is the sum of the concentrations of all detected PAHs, was 177.8 +/- 239.9 ng m(-3) (n = 64). The SigmaPAHs concentration in the heating season (305.1 +/- 279.0 ng m(-3), n = 33) was 7.2 times higher than that in the non-heating season (42.3 +/- 32.0 ng m(-3), n = 31). These strong seasonal variations in atmospheric PAH concentration are possibly due to coal combustion for residential heating in winter.  相似文献   

11.
Pekey B  Karakaş D  Ayberk S 《Chemosphere》2007,67(3):537-547
Wet deposition and dry deposition samples were collected in an urban/industrialized area of Izmit Bay, North-eastern Marmara Sea, Turkey, from September 2002 to July 2003. The samples were analyzed for sixteen polycyclic aromatic hydrocarbon (PAH) compounds by using HPLC-UV technique. Wet and dry deposition concentrations and fluxes of PAHs were determined. The results showed that PAH concentrations were high because of industrial processes, heavy traffic and residential areas next to the sampling site. Total dry deposition flux of the fifteen 3-6 ring PAHs was 8.30 microg m(-2)day(-1), with a range of 0.034-1.77 microg m(-2)day(-1). The total wet deposition flux of the fifteen 3-6 ring PAHs was 1716 microg m(-2) 11 month(-1), with a range of 10-440 microg m(-2) 11 month(-1). Significant seasonal differences were observed in both types of deposition samples. The winter fluxes of total PAHs were 1.5 and 2.5 times greater than those of the warm period for wet and dry deposition samples, respectively. Factor analysis of dry deposition samples and back trajectory analysis of wet deposition samples were also used to characterize and identify the PAH emission sources in this study.  相似文献   

12.
Individual particles containing Cr and/or Pb and other major components were identified in road dust from a heavily used road (hereinafter 'heavy traffic road dust'), road dust from a residential area and soakaway sediment by electron probe microanalyser to locate their sources and carrier particles. Individual particles containing high levels of Cr and/or Pb (>or=0.2%) were identified using wavelength dispersive spectrometry (WDS) map analysis. Chromium, Pb and other major elements were then determined by means of a combination of WDS and energy-dispersive spectrometry in all identified particles, 50 particles containing neither Cr nor Pb from each type of road dust and soakaway sediment, and yellow road line markings. WDS map analysis revealed that many particles containing both Cr and Pb were present among the identified particles in heavy traffic road dust, whereas they were minor components in road dust from the residential area and soakaway sediment. The plots of X-ray intensities of Cr vs. Pb were linear for the identified particles containing both Cr and Pb in heavy traffic road dust, and the line closely fitted the plots for the three yellow road line marking samples. Individual particles were then classified using cluster analysis of element components. The results revealed that the adsorption of source materials or released metals onto soil minerals occurred in road dust and soakaway sediment, that the yellow road line markings were sources of Cr and Pb in heavy traffic road dust, and that materials containing Fe as a major component, such as stainless steel, were additional sources of Cr in both road dust and soakaway sediment.  相似文献   

13.
Olivella MA 《Chemosphere》2006,63(1):116-131
Fourteen polycyclic aromatic hydrocarbons (PAHs) were measured in surface waters and precipitation inputs to Lake Maggiore, a subalpine lake in Northern Italy, from July 2003 to January 2004. Particulate and dissolved phases in surface water and rain samples were determined. Analyses of PAHs were performed using XAD-2 resin to isolate the dissolved PAHs and subsequent extraction by accelerated solvent extraction (ASE). Both the dissolved and particulate phase PAH patterns in surface water and rainwater samples were dominated by the low molecular weight compounds (e.g., phenanthrene, fluoranthene and pyrene). More than 85% of PAHs in surface waters and 72% of PAHs in rainwater were associated to the dissolved phase. The SigmaPAH concentrations in surface waters (particulate and dissolved phases) were 0.584 +/- 0.033 ng l(-1), 2.9 +/- 0.312 ng l(-1) and in rainwater (particulate and dissolved phases) 27.5 +/- 2 ng l(-1), 75.4 +/- 9 ng l(-1), respectively. Temporal variability of PAH concentrations in rain and surface water samples were observed, with higher concentrations in November and December, coinciding with the largest precipitation amounts. The comparison of PAH signatures in rainwater and surface waters seems to indicate that wet deposition (2.5-41 microg m(-2) month(-1)) is the main source of PAH contamination into surface waters of Lake Maggiore.  相似文献   

14.
Leaf samples of six tree species were collected along urban roadsides and a campus site in Beijing for measurement of polycyclic aromatic hydrocarbons (PAHs). PAHs in leaves were attributed to two fractions, leaf cuticles and inner leaf tissues, using sequential extraction. Total concentrations of 16 PAHs in the cuticles and the inner tissues were 69.3+/-64.6 microg g(-1) (d.w.) and 1.07+/-0.2 microg g(-1) (d.w.) at roadside and 57.5+/-52.6 microg g(-1) and 0.716+/-0.2 microg g(-1) on campus, respectively. The lipid-normalized inner tissue PAHs varied from 5.8 microg g(-1) to 15.0 microg g(-1). Similarities in PAH spectra between leaf cuticles and airborne particles and between the inner tissues and gaseous phase imply that airborne particulates and gaseous PAHs are likely the sources of PAHs for cuticles and the inner tissues, respectively. Difficulty in migration of heavier PAHs into inner tissues could be another reason.  相似文献   

15.
Ambient air and deposition samples were collected in the period of July 2004-May 2005 in an industrial district of Bursa, Turkey and analyzed for polycyclic aromatic hydrocarbon (PAH) compounds. The overall average of fourteen bulk deposition fluxes for PAHs was 3300+/-5100 ng m(-2) d(-1). PAH depositions showed a seasonal variation and they were higher in winter months. This was probably due to increases in residential heating activities and decreases in atmospheric mixing layer levels. Ambient air samples, measured with a high volume air sampler, were collected from the same site. The average total concentration including gas and particulate phase was about 300+/-420 ng m(-3) and it was in the range of previously reported values. Some of the ambient air and bulk deposition samples were collected simultaneously in dry periods. Both concurrently measured values were used to calculate the dry deposition velocities whose overall average value was 0.45+/-0.35 cm s(-1).  相似文献   

16.
Levels of PAHs in soil and vegetation samples from Tarragona County, Spain   总被引:20,自引:0,他引:20  
The levels of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in 24 soil and 12 wild chard samples collected in Tarragona County (Catalonia, Spain), an area with an important number of chemical and petrochemical industries. Samples were also collected in urban/residential zones and in presumably unpolluted sites (control samples). In soils, the sum of the 16 PAHs ranged between 1002 and 112 ng/g (dry weight) for samples collected near chemical industries and unpolluted sites, respectively. With the exception of acenaphthylene, acenaphthene, anthracene and benzo[k]fluoranthene, no significant differences in the levels of the remaining PAHs were found among the different zones of sample collection. In chard samples, the highest value (sum of 16 PAHs) was observed in the residential area, followed by the industrial and the unpolluted zones, with concentrations of 179, 58 and 28 ng/g (dry weight), respectively. In general terms, the current PAH concentrations in soil and vegetation are lower than the levels reported in a number of investigations from different regions and countries. They are also below the maximum PAH concentrations allowed by the Catalan legislation for different uses of soil.  相似文献   

17.
Samples of ambient air (including gaseous and particulate phases), dust fall, surface soil, rhizosphere soil, core (edible part), outer leaf, and root of cabbage from eight vegetable plots near a large coking manufacturer were collected during the harvest period. Concentrations, compositions, and distributions of parent PAHs in different samples were determined. Our results indicated that most of the parent PAHs in air occurred in the gaseous phase, dominated by low molecular weight (LMW) species with two to three rings. Specific isomeric ratios and principal component analysis were employed to preliminarily identify the local sources of parent PAHs emitted. The main emission sources of parent PAHs could be apportioned as a mixture of coal combustion, coking production, and traffic tailing gas. PAH components with two to four rings were prevailing in dust fall, surface soil, and rhizosphere soil. Concentrations of PAHs in surface soil exhibited a significant positive correlation with topsoil TOC fractions. Compositional profiles in outer leaf and core of cabbage, dominated by LMW species, were similar to those in the local air. Overall, the order of parent PAH concentration in cabbage was outer leaf > root > core. Partial correlation analysis and multivariate linear stepwise regression revealed that PAH concentrations in cabbage core were closely associated with PAHs present both in root and in outer leaf, namely, affected by adsorption, then absorption, and translocation of PAHs from rhizosphere soil and ambient air, respectively.  相似文献   

18.
Distributions and concentrations of PAHs in Hong Kong soils   总被引:19,自引:0,他引:19  
Surface soil (0-10 cm) samples from 53 sampling sites including rural and urban areas of Hong Kong were collected and analyzed for 16 EPA priority polycyclic aromatic hydrocarbons (PAHs). Total PAH concentrations were in the range of 7.0-410 microg kg(-1) (dry wt), with higher concentrations in urban soils than that in rural soils. The three predominant PAHs were Fluoranthene, Naphthalene and Pyrene in rural soils, while Fluoranthene, Naphthalene and Benzo(b + k)fluoranthene dominated the PAHs of urban soils. The values of PAHs isomer indicated that biomass burning might be the major origin of PAHs in rural soils, but vehicular emission around the heavy traffic roads might contribute to the soil PAHs in urban areas. A cluster analysis was performed and grouped the detectable PAHs under 4 clusters, which could be indicative of the PAHs with different origins and PAHs affected by soil organic carbon contents respectively.  相似文献   

19.
Road dust samples were collected from central Shanghai in winter (January) and summer (August), respectively. Sixteen polycyclic aromatic hydrocarbons (PAHs) in the United States Environmental Protection Agency (USEPA) priority-controlled list were determined by GC/MS. Total PAH (t-PAH) concentrations in winter samples ranged from 9176 to 32,573 ng g−1 with a mean value of 20,648 ng g−1, while they varied from 6875 to 27,766 ng g−1 in summer with an average of 14,098 ng g−1. Spatial variation showed that city park (CP) samples had the lowest t-PAH concentration, while industrial area (ID) and traffic area (TR) and commercial area (CO) were the most polluted, in both seasons. PAH homologues concentrations were getting higher with the more rings and higher molecular weight (HMW) in all areas. The study of effective factors showed that grain size was only a minor factor influencing the accumulation of PAHs, whereas total organic carbon (TOC) was found to be closely correlated with t-PAH concentration. Prevailing winds could directly affect on the spatial distribution of PAHs. Chemical source apportionment studies took the form of principal component analysis (PCA), followed by compositional analysis. It was demonstrated that road dust PAHs in central Shanghai mainly came from the mixing of traffic and coal combustion. The contribution percentages of pyrogenic and petrogenic sources were respectively 71.0% and 11.4% in winter, while they were, 64.9% and 14.1% in summer, respectively. Road dust PAHs in Shanghai city mostly came from local sources.  相似文献   

20.
Heavy metal levels and solid phase speciation in street dusts of Delhi,India   总被引:36,自引:0,他引:36  
Street dust samples were collected from three different localities (industrial, heavy traffic and rural) situated in the greater Delhi area of India. The samples analyzed for Cd, Zn, Pb, Ni, Cu, and Cr indicated remarkably high levels of Cr, Ni, and Cu in the industrial area, whilst Pb and Cd did not show any discernible variations between the three localities. A multivariate statistical approach (Principal Component Analysis) was used to define the possible origin of metals in dusts. The street dusts were sequentially extracted so that the solid pools of Cd, Zn, Pb, Ni, Cu, Cr could be partitioned into five operationally defined fractions viz. exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to organic matter and residual. Metal recoveries in sequential extractions were +/- 10% of the independently measured total metal concentrations. Cd was the only metal present appreciably (27.16%) in the exchangeable fraction and Cu was the only metal predominantly associated (44.26%) with organic fraction. Zn (45.64%) and Pb (28.26%) were present mainly in the Fe-Mn oxide fraction and the residual fraction was the most dominant solid phase pool of Cr (88.12%) and Ni (70.94%). Assuming that the mobility and bioavailability are related to the solubility of geochemical forms of the metals and decrease in order of extraction, the apparent mobility and potential metal bioavailability for these highly contaminated street dust samples is: Cd>Zn approximately equal Pb>Ni>Cu>Cr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号