首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diagnostic ratios and multivariate analysis were utilized to apportion polycyclic aromatic hydrocarbon (PAH) sources for road runoff, road dust, rain and canopy throughfall based on samples collected in an urban area of Beijing, China. Three sampling sites representing vehicle lane, bicycle lane and branch road were selected. For road runoff and road dust, vehicular emission and coal combustion were identified as major sources, and the source contributions varied among the sampling sites. For rain, three principal components were apportioned representing coal/oil combustion (54%), vehicular emission (34%) and coking (12%). For canopy throughfall, vehicular emission (56%), coal combustion (30%) and oil combustion (14%) were identified as major sources. Overall, the PAH's source for road runoff mainly reflected that for road dust. Despite site-specific sources, the findings at the study area provided a general picture of PAHs sources for the road runoff system in urban area of Beijing.  相似文献   

2.
The determination of sixteen polycyclic aromatic hydrocarbons in urban street dust has been done. Samples were collected from 12 sampling locations in a city centre location (Newcastle upon Tyne, north east England) and extracted using in situ pressurised fluid extraction followed by gas chromatography mass spectrometry. From the results it was possible to identify three groups, with respect to PAH concentration, with PAH contents ranging between 0.6-2.3 mg kg−1, 15.6-22.5 mg kg−1 and 36.1-46.0 mg kg−1. The total PAH content of samples from these sampling sites has been compared to 22 urban locations around the world; comparable levels were found in these samples compared to the other cities around the world.The potential source of PAHs has been investigated by investigating the proportion of pyrogenic and petrogenic material in urban street dust using specific individual PAH ratios. The results indicate that the PAH content of urban street dust from the chosen sites are more likely to be due to pyrogenic sources i.e. vehicle exhaust emissions. The particle size fractions (<63 μm; 63-125 μm; 125-250 μm; 250-500 μm; 500-1000 μm; and 1000-2000 μm) of individual PAHs in three selected sampling sites was investigated. In two of the selected sites the PAH content was independent of particle size whereas in sampling site 10 elevated PAH levels are noted in the <63 μm size fraction. Sampling site 10 is located at the junction of three road tributaries which are used as major access points to the east of the city centre. Finally, the potential health risk for unintentional consumption of PAHs was assessed in terms of a mean daily intake (based on an ingestion rate of 100 mg d−1). It was found that all 4-6 membered ring PAHs had concentrations in excess of the mean daily intake thereby reflecting a potential health risk, particularly in the smallest size particle fractions.  相似文献   

3.
An optimized method for the analysis of polycyclic aromatic hydrocarbons (PAH) in atmospheric aerosols with short sampling times (1h) has been used to determine the daily variations of PAH in the atmosphere. Of the various physicochemical parameters controlling the disappearance of PAH, the most important seem to be the thermic dependence and the chemical reactions with gaseous pollutants (NOx, O3, HNO3, OH). The RDI is used to identify the different sources of urban pollution: domestic heating, vehicle traffic (petrol and diesel), refineries, foundries, incinerators and power stations (coal, gas and oil) and to quantify the results for standard conditions. The characteristic concentration ratios from each source are often different from those in the literature, where the data are based on long sampling times and are affected by PAH reactivity differences. The results obtained are parameters for setting up a mathematical model for calculating concentrations of PAH at any receptor site.  相似文献   

4.
Urban aerosol was collected in a summer and a winter campaign for 7 and 3 days, respectively. Low volume samples were taken with a time resolution of 160 min using a filter/sorption cartridge system extended by an ozone scrubber. Concentrations of mainly particle associated polycyclic aromatic hydrocarbons (PAH) and oxidised PAH (O-PAH) were determined by gas chromatography/high resolution mass spectrometry. The sampling site was located in the city centre of Augsburg, Germany, near major roads with high traffic volume. The daily concentrations and profiles were mainly governed by local emissions from traffic and domestic heating, as well as by the meteorological conditions. During the winter campaign, concentrations were more than 10 fold higher than during the summer campaign. Highest concentrations were found concurrent with low boundary layer heights and low wind speeds. Significant diurnal variation of the PAH profiles was observed. Enhanced influences of traffic related PAH on the PAH profiles were evident during daytime in summer, whereas emissions from hot water generation and domestic heating were obvious during the night time of both seasons. A general idea about the global meteorological situation was acquired using back trajectory calculations (NOAA ARL HYSPLIT4). Due to high local emissions in combination with low air exchange during the two sampling campaigns, effects of mesoscale transport were not clearly observable.  相似文献   

5.
Amounts of polycyclic aromatic hydrocarbons (PAHs) and oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) in samples collected from the air, from the dust on a guardrail, and from the soils on a tunnel roadway at five sampling sites in a regular roadway tunnel were chemically analyzed in order to determine their sources. Among the 23 PAHs found in the air samples, pyrene was found in the highest concentration (43±7.2 ng/m3), followed by fluoranthene (26±4.3 ng/m3). Among 20 oxy-PAHs found in the air samples, anthraquinone was found in the greatest amount (56±3.9 ng/m3). The average concentration of the major PAHs found in the guardrail dust samples were 6.9±0.77 μg/g for pyrene, 5.5±0.76 μg/g for fluoranthene, and 2.6±0.30 μg/g for phenanthrene. The average concentration of the major oxy-PAHs found in the guardrail dust samples were 9.2±3.5 μg/g for anthraquinone and 1.4±0.50 μg/g for 2-methylanthraquinone. The average concentration of the major PAHs found in the soil samples were 1.1±0.31 μg/g for fluoranthene, 0.92±0.21 μg/g for pyrene, and 0.72±0.16 μg/g for phenanthrene. The average concentration of the major oxy-PAHs found in the soil samples were 1.2±0.88 μg/g for anthraquinone, 0.18±0.04 μg/g for 4-biphenylcarboxaldehyde, and 0.13±0.08 μg/g for 2-methylanthraquinone. The BeP ratios calculated from the results suggest that most PAHs found in the samples collected from the roadway tunnel were from automobile exhaust gases.  相似文献   

6.
Environmental Science and Pollution Research - Polycyclic aromatic hydrocarbons (PAHs), as a class of important environmental pollutants, have received considerable concern due to their widespread...  相似文献   

7.
Exposure to ambient polycyclic aromatic hydrocarbons (PAHs) is a potential health concern for communities because many PAHs are known to be mutagenic and carcinogenic. However, information on ambient concentrations of PAHs in communities is very limited. During the Urban Community Air Toxics Monitoring Project, Paterson City, NJ, PAH concentrations in ambient air PM10 (particulate matter < or = 10 microm in aerodynamic diameter) were measured from November 2005 through December 2006 in Paterson, a mixed-use urban community located in Passaic County, NJ. Three locations dominated by industrial, commercial, and mobile sources were chosen as monitoring sites. The comparison background site was located in Chester, NJ, which is approximately 58 km west/southwest of Paterson. The concentrations of all of the individual PAHs at all three Paterson sites were found to be significantly higher than those at the background site (P < 0.05). The PAH profiles obtained from the three sites with different land-use patterns showed that the contributions of heavier PAHs (molecular weight > 202) to the total PAHs were significantly higher at the industrial site than those at the commercial and mobile sites. Analysis of the diagnostic ratios between PAH isomers suggested that the diesel-powered vehicles were the major PAH sources in the Paterson area throughout the year. The operation of industrial facilities and other combustion sources also partially contributed to PAH air pollution in Paterson. The correlation of individual PAH, total PAH, and the correlation of total PAHs with other air co-pollutants (copper, iron, manganese, lead, zinc, elemental carbon, and organic carbon) within and between the sampling sites supported the conclusions obtained from the diagnostic ratio analysis.  相似文献   

8.
To better assess and understand potential health risk of urban residents exposed to urban street dust, the total concentration, sources, and distribution of 16 polycyclic aromatic hydrocarbons (PAHs) in 87 urban street dust samples from Tianjin as a Chinese megacity that has undergone rapid urbanization were investigated. In the meantime, potential sources of PAHs were identified using the principal component analysis (PCA), and the risk of residents’ exposure to PAHs via urban street dust was calculated using the Incremental Lifetime Cancer Risk (ILCR) model. The results showed that the total PAHs (∑PAHs) in urban street dust from Tianjin ranged from 538 μg kg?1 to 34.3 mg kg?1, averaging 7.99 mg kg?1. According to PCA, the two to three- and four to six-ring PAHs contributed 10.3 and 89.7 % of ∑PAHs, respectively. The ratio of the sum of major combustion specific compounds (ΣCOMB)?/?∑PAHs varied from 0.57 to 0.79, averaging 0.64. The ratio of Ant/(Ant?+?Phe) varied from 0.05 to 0.41, averaging 0.10; Fla/(Fla?+?Pyr) from 0.40 to 0.68, averaging 0.60; BaA/(BaA?+?Chry) from 0.29 to 0.51, averaging 0.38; and IcdP/(IcdP?+?BghiP) from 0.07 to 0.37, averaging 0.22. The biomass combustion, coal combustion, and traffic emission were the main sources of PAHs in urban street dust with the similar proportion. According to the ILCR model, the total cancer risk for children and adults was up to 2.55?×?10?5 and 9.33?×?10?5, respectively.  相似文献   

9.
This paper reports the distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in wash-off in urban stormwater in Gold Coast, Australia. Runoff samples collected from residential, industrial and commercial sites were separated into a dissolved fraction (<0.45 μm), and three particulate fractions (0.45-75 μm, 75-150 μm and >150 μm). Patterns in the distribution of PAHs in the fractions were investigated using Principal Component Analysis. Regardless of the land use and particle size fraction characteristics, the presence of organic carbon plays a dominant role in the distribution of PAHs. The PAHs concentrations were also found to decrease with rainfall duration. Generally, the 1- and 2-year average recurrence interval rainfall events were associated with the majority of the PAHs and the wash-off was a source limiting process. In the context of stormwater quality mitigation, targeting the initial part of the rainfall event is the most effective treatment strategy. The implications of the study results for urban stormwater quality management are also discussed.  相似文献   

10.
Wang Z  Chen J  Qiao X  Yang P  Tian F  Huang L 《Chemosphere》2007,68(5):965-971
To estimate the distribution and sources of soil polycyclic aromatic hydrocarbons (PAHs) in metropolitan and adjacent areas, soil samples were collected from urban, suburban and rural locations of Dalian, China, and concentrations of 14 PAHs were determined. The spatial PAH profiles were site-specific and determined by the sources close to the sampling sites. PAH concentrations decreased significantly along the urban-suburban-rural transect. The gradient implied that the fractionation effect influenced PAH distribution. Bivariate plots of selected diagnostic ratios showed general trends of co-variation and allowed to distinguish samples taken from different areas. An improved method, factor analysis (FA) with nonnegative constrains, was used to determine the primary sources and contributions of PAHs in soils. The FA model showed traffic average (74%) and coal related residential emission (26%) were two primary sources to Dalian soils. In addition, the FA model provided reasonable explanations for PAH contributions in soils from different sites. The results suggest that FA with nonnegative constraints is a promising tool for source apportionment of PAHs in soils.  相似文献   

11.
12.

Background

Air samples collected on three different urban sites in East of France (Strasbourg, Besan?on, and Spicheren), from April 2006 to January 2007, were characterized to measure the concentrations of polycyclic aromatic hydrocarbons (PAHs) in the particulate phase (PM10) and to examine their seasonal variation, diurnal variations, and emission sources.

Results

The average concentrations of ??PAHs were 12.6, 9.5, and 8.9?ng?m?3 for the Strasbourg, Besan?on, and Spicheren sites, respectively. Strong seasonal variations of individual PAH concentrations were found at the three sampling sites, with higher levels in the winter that gradually decreased to the lowest levels in the summer. The diurnal variations of PAH concentrations in summer presented highest concentrations during the morning (04:00?C10:00) and the evening (16:00?C22:00) times, indicating the important contribution from vehicle emissions, in the three sampling sites. Furthermore, the ratio of BaP/BeP suggests that the photochemical degradation of PAHs can suppress their concentrations in the midday/afternoon (10:00?C16:00), time interval of highest global irradiance. In winter, concentrations of PAH were highest during the evening (16:00?C22:00) time, suggesting that domestic heating can potentially be an important source for particulate PAH, for the three sampling sites.

Conclusion

Diagnostic ratios were used to identify potential sources of PAHs. Results showed that vehicle emissions may be the major source of PAHs, especially in summer, with a prevalent contribution of diesel engines rather than gasoline engines at the three sites studied, independently of the seasons.  相似文献   

13.
14.
A significant amount of contamination enters water bodies via stormwater runoff and, to reduce the amount of pollution, retention ponds are installed at many locations. While effective for treating suspended solids, retention ponds do not effectively remove dissolved constituents, such as polycyclic aromatic hydrocarbons (PAH). Previous laboratory studies demonstrates that aspen wood cuttings can be utilized to enhance the removal of dissolved contaminants. The objective of this pilot-scale field test was to determine if wood filters could effectively remove dissolved PAH from the runoff under field conditions. Four wood filter tests were conducted, lasting from 1 to 9 weeks, to determine the degree of PAH attenuation from the aqueous phase as a function of wood mass, residence times, and seasonable changes. The prototype wood filters removed on average between 18.5% and 35.6% (up to 66.5%) of the dissolved PAH contaminants. The PAH removal effectiveness of the wood was not affected by changes in water temperature or pH. The filter effectiveness increased with filter size and was highest in continuously submerged parts of the filter system. Also, heavier molecular weight PAH compounds (e.g. chrysene) were more effectively removed than lighter molecular weight compounds. Disassociation of weakly particle-bound PAH from the filter was identified as the most likely cause for a temporary drop of the wood filter's PAH load during intense storms. Simple filter design changes are likely to double the filter effectiveness and alleviate the disassociation problem.  相似文献   

15.
Urban air, snow and automobile exhaust samples were extensively cleaned up by open column liquid chromatography. The appropriate fractions were analysed for halogenated polycyclic aromatic hydrocarbons (XPAH) by gas chromatography/negative chemical ionization mass spectrometry (GC/NCIMS). XPAH were found in all three sample types. A urban air sample was found to contain chlorinated pyrenes, fluoranthenes and benzopyrene and brominated pyrenes and fluoranthenes. Furthermore, the concentration of 1-chloropyrene in that air sample was estimated to be 10 pg/m3. XPAH were also found in snow samples taken in the vicinity of a motor-way. Ethylene dibromide and ethylene dichloride, are probably the source of the halogen atoms in the XPAH detected in car exhaust.  相似文献   

16.
Bixiong Y  Zhihuan Z  Ting M 《Chemosphere》2006,64(4):525-534
A total of 188 surface soil samples were collected from different types of utilization soils in Tianjin area. Factor analysis and scatter point surface tension spine function interpolation were used to analyze types and spatial distributions of PAH sources of surface soils in Tianjin area. The results showed that most pollution sources were mixed sources including coal burning and petroleum spill. Mixed sources occupied 56.12%, 58.96%, 46.45% and 59.50% in farmland of wastewater irrigation, common farmland, wild land and city greenbelt, respectively. Other pollution sources such as vehicle emission, biogenic conversion, wood burning and natural gas combustion were also significant. The spatial distributions of pollution sources were closely related to geographic location, geographic condition and living habit of indigenes.  相似文献   

17.
Photolysis of polycyclic aromatic hydrocarbons in water   总被引:2,自引:0,他引:2  
We have studied the photochemical reactions of eight polycyclic aromatics and heteroatom analogs (PAHs). Quantum yields and rate constants in sunlight and at single wavelengths were measured and half-lives of the PAHs as a function of the time of year were calculated. Product studies and the effect of humic acid and oxygen on rates are reported.  相似文献   

18.
To obtain the characteristic factors or signatures of particulate polycyclic aromatic hydrocarbons (PAHs) to help identify the sources of particulate PAHs in the atmosphere, different carbonaceous aerosols were generated by burning different fossil fuels and biomass under different conditions in the laboratory, and the chemical characteristics of 14 PAHs were studied in detail. The results showed that (1) carbonaceous aerosols derived from domestic burning of coal, diesel fuel, and gasoline have much higher concentrations of PAHs than those derived from domestic burning of biomass; (2) carbonaceous aerosols derived from domestic burning of diesel fuel/gasoline have similar PAH components as those derived from high-temperature combustion of diesel fuel/gasoline, although the former have much higher concentrations of PAHs than the latter, suggesting that the burning temperature obviously affects the emitting amount of particulate PAHs, but only slightly influences the PAHs components; and (3) the ratios of benzo[b]fluoranthene/acenaphthylene, benzo[b]fluoranthene/fluorene, dibenzo[a,h]anthracene/acenaphthylene, dibenzo[a,h]anthracene/fluorine, and benzo[b]fluoranthene/benzo[k]fluoranthene in carbonaceous aerosols are sensitively dependent on their sources, indicating that these ratios are suitable for use as characteristic factors or signatures of particulate PAHs in the atmosphere.  相似文献   

19.
Zhou J  Wang T  Huang Y  Mao T  Zhong N 《Chemosphere》2005,61(6):792-799
PAHs in five-stage size segregated aerosol particles were investigated in 2003 at urban and suburban sites of Beijing. The total concentration of 17 PAHs ranged between 0.84 and 152 ng m(-3), with an average of 116 ng m(-3), in urban area were 1.1-6.6 times higher than those measured in suburban area. It suggested a serious pollution level of PAHs in Beijing. PAHs concentrations increased with decreasing the ambient temperature. Approximately 68.4-84.7% of PAHs were adsorbed on particles having aerodynamic diameter 2.0 microm. Nearly bimodal distribution was found for PAHs with two and three rings, more than four rings PAHs, however, followed unimodal distribution. The overall mass median diameter (MMD) for PAHs decreased with increasing molecular weight. Diagnostic ratios and normalized distribution of PAHs indicated that the PAHs in aerosol particles were mainly derived from fossil fuel combustion. Coal combustion for domestic heating was probably major contributor to the higher PAHs loading in winter, whereas PAHs in other seasons displayed characteristic of mixed source of gasoline and diesel vehicle exhaust. Biomass burning and road dust are minor contributors to the PAHs composition of these aerosol particles. Except for source emission, other factors, such as meteorological condition, photochemical decay, and transportation from source to the receptor site, should to be involved in the generation of the observed patterns.  相似文献   

20.
Halogenated polycyclic aromatic hydrocarbons (HPAHs) have been reported to occur in air, sediment, fly ash, and biota samples. This review summarized current existing data on the environmental occurrence, behavior, physicochemical properties, emission sources, and toxic equivalents of HPAHs. Firstly, the physicochemical properties of HPAHs were summarized. Then, an overview of environmental occurrence of HPAHs in ambient matrices including biological samples was reviewed. Meanwhile, the emission sources and possible formation mechanisms of HPAHs were discussed. Apart from that, the aryl hydrocarbon receptor (AhR)-mediated activities were summarized, which indicated that the position and number of halogen atoms on the parent PAHs molecule were important determinant factors affecting the AhR-mediated activity of individual HPAHs congeners. Finally, some research recommendations on HPAHs were given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号