首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Indoor sources have been identified as a major contributor to the increase of particle concentration in indoor environments. The work presented here is a study of the characteristics of particulate matter number size distribution and mass concentration under controlled indoor activities in a laboratory room. The objective is to characterize particulate matter concentrations indoors resulted under the influence of specific sources. Measurements were performed in an empty laboratory (period September–October 2006) using a GRIMM SMPS+C system (particle size range between 11.1 and 1083.3 nm), a DustTrak Aerosol Monitor (TSI) and a P-Trak Ultrafine Particle Counter (TSI). The studied indoor activities included candle burning, hot plate heating, water boiling, onion frying, vacuuming, hair drying, hair spraying, smoking and burning of incense stick. The AMANpsd computer algorithm was used to evaluate the modal structure of measured particle number size distribution data. Furthermore, the change of the particle number size distribution shape under the influence of different emission sources was studied versus time. Finally the particle emission rates were computed. High particle number concentrations were observed during smoking, onion frying, candle burning and incense stick burning. The highest particle mass concentrations were measured during smoking and hair spraying. The shift of the particle size distribution to larger diameters suggests the presence of strong coagulation effect during candle burning, incense stick burning, smoking and onion frying. The size distribution was mainly bimodal during onion frying and candle burning, whereas the size distribution remained unimodal during incense stick burning and smoking experiments.  相似文献   

2.
Canada has recently established standards for the management of particulate matter (PM) air quality. National networks currently measure PM mass concentrations and chemical speciation. Methods used in the U.S. IMPROVE network are applied to the 1994--2000 Canadian fine PM data to obtain a regional reconstruction of the visibility based on particle composition. Nationally, the greatest light extinction occurs in the Windsor-Quebec City corridor. Variations in the dominant chemical species responsible for the reduction in visibility are presented for regions across the country. In most regions, sulfate and nitrate contribute most greatly to reduced visibility. The visibility implications of achieving the Canada-Wide Standard (CWS) across the country are evaluated, with the greatest improvement in visibility associated with achieving the CWS in southern Ontario. Elsewhere in the country, achieving the CWS will actually result in deteriorating air quality. Improving current estimates of visibility requires higher spatially and temporally resolved measurements of organic and elemental carbon fractions and particulate nitrate.  相似文献   

3.
This paper presents measurements of daily sampling of fine particulate matter (PM2.5) and its major chemical components at three urban and one rural locations in North Carolina during 2002. At both urban and rural sites, the major insoluble component of PM2.5 is organic matter, and the major soluble components are sulfate (SO4(2-)), ammonium (NH4(+)), and nitrate (NO3(-)). NH4(+) is neutralized mainly by SO4(2-) rather than by NO3(-), except in winter when SO4(2-) concentration is relatively low, whereas NO3(-) concentration is high. The equivalent ratio of NH4(+) to the sum of SO4(2-) and NO3(-) is < 1, suggesting that SO4(2-) and NO3(-) are not completely neutralized by NH4(+). At both rural and urban sites, SO4(2-) concentration displays a maximum in summer and a minimum in winter, whereas NO3(-) displays an opposite seasonal trend. Mass ratio of NO3(-) to SO4(2-) is consistently < 1 at all sites, suggesting that stationary source emissions may play an important role in PM2.5 formation in those areas. Organic carbon and elemental carbon are well correlated at three urban sites although they are poorly correlated at the agriculture site. Other than the daily samples, hourly samples were measured at one urban site. PM2.5 mass concentrations display a peak in early morning, and a second peak in late afternoon. Back trajectory analysis shows that air masses with lower PM2.5 mass content mainly originate from the marine environment or from a continental environment but with a strong subsidence from the upper troposphere. Air masses with high PM2.5 mass concentrations are largely from continental sources. Our study of fine particulate matter and its chemical composition in North Carolina provides crucial information that may be used to determine the efficacy of the new National Ambient Air Quality Standard (NAAQS) for PM fine. Moreover, the gas-to-particle conversion processes provide improved prediction of long-range transport of pollutants and air quality.  相似文献   

4.
This paper analyzes day-of-week variations in concentrations of particulate matter (PM) in California. Because volatile organic compounds (VOCs) and oxides of nitrogen (NOx) are not only precursors of ozone (O3) but also of secondary PM, it is useful to know whether the variations by day of week in these precursors are also evident in PM data. Concentrations of PM < or = 10 microm (PM10) and < or = 2.5 microm in aerodynamic diameter (PM2.5) were analyzed. PM concentrations exhibit a general weekly pattern, with the maximum occurring late in the workweek and the minimum occurring on weekends (especially Sunday); however, this pattern does not prevail at all sites and areas. PM nitrate (NO3-) data from Size Selective Inlet (SSI) samplers in the South Coast Air Basin (SoCAB) tend to be somewhat lower on weekends compared with weekdays. During 1988-1991, the weekend average was lower than the weekday average at 8 of 13 locations, with an average decrease of 1%. During 1997-2000, the weekend average was lower than the weekday average at 10 of 13 locations, with an average decrease of 6%. The weekend averages are generally lower than weekday averages for sulfates, organic carbon, and elemental carbon. Because heavy-duty trucks typically represent a major source of elemental carbon, the weekend decrease in heavy-duty truck traffic may also result in a decrease in ambient elemental carbon concentrations.  相似文献   

5.
Combustion experiments were carried out on four different residual fuel oils in a 732-kW boiler. PM emission samples were separated aerodynamically by a cyclone into fractions that were nominally less than and greater than 2.5 microns in diameter. However, examination of several of the samples by computer-controlled scanning electron microscopy (CCSEM) revealed that part of the PM2.5 fraction consists of carbonaceous cenospheres and vesicular particles that range up to 10 microns in diameter. X-ray absorption fine structure (XAFS) spectroscopy data were obtained at the S, V, Ni, Fe, Cu, Zn, and As K-edges and at the Pb L-edge. Deconvolution of the X-ray absorption near edge structure (XANES) region of the S spectra established that the dominant molecular forms of S present were sulfate (26-84% of total S) and thiophene (13-39% of total S). Sulfate was greater in the PM2.5 samples than in the PM2.5+ samples. Inorganic sulfides and elemental sulfur were present in lower percentages. The Ni XANES spectra from all of the samples agreed fairly well with that of NiSO4, while most of the V spectra closely resembled that of vanadyl sulfate (VO.SO4.xH2O). The other metals investigated (i.e., Fe, Cu, Zn, and Pb) also were present predominantly as sulfates. Arsenic was present as an arsenate (As+5). X-ray diffraction patterns of the PM2.5 fraction exhibit sharp lines due to sulfate compounds (Zn, V, Ni, Ca, etc.) superimposed on broad peaks due to amorphous carbons. All of the samples contain a significant organic component, with the loss on ignition (LOI) ranging from 64 to 87% for the PM2.5 fraction and from 88 to 97% for the PM2.5+ fraction. Based on 13C nuclear magnetic resonance (NMR) analysis, the carbon is predominantly condensed in graphitic structures. Aliphatic structure was detected in only one of seven samples examined.  相似文献   

6.
Abstract

Many studies have shown strong associations between particulate matter (PM) levels and a variety of health outcomes, leading to changes in air quality standards in many regions, especially the United States and Europe. Kuwait, a desert country located on the Persian Gulf, has a large petroleum industry with associated industrial and urban land uses. It was marked by environmental destruction from the 1990 Iraqi invasion and subsequent oil fires. A detailed particle characterization study was conducted over 12 months in 2004–2005 at three sites simultaneously with an additional 6 months at one of the sites. Two sites were in urban areas (central and southern) and one in a remote desert location (northern). This paper reports the concentrations of particles less than 10 µm in diameter (PM10) and fine PM (PM2.5), as well as fine particle nitrate, sulfate, elemental carbon (EC), organic carbon (OC), and elements measured at the three sites. Mean annual concentrations for PM10 ranged from 66 to 93 µg/m3 across the three sites, exceeding the World Health Organization (WHO) air quality guidelines for PM10 of 20 µg/m3. The arithmetic mean PM2.5 concentrations varied from 38 and 37 µg/m3 at the central and southern sites, respectively, to 31 µg/m3 at the northern site. All sites had mean PM2.5 concentrations more than double the U.S. National Ambient Air Quality Standard (NAAQS) for PM2.5. Coarse particles comprised 50–60% of PM10. The high levels of PM10 and large fraction of coarse particles comprising PM10 are partially explained by the resuspension of dust and soil from the desert crust. However, EC, OC, and most of the elements were significantly higher at the urbanized sites, compared with the more remote northern site, indicating significant pollutant contributions from local mobile and stationary sources. The particulate levels in this study are high enough to generate substantial health impacts and present opportunities for improving public health by reducing airborne PM.  相似文献   

7.
A numerical particulate matter (PM) measurement model is developed to characterize and evaluate PM sampling methods. Simulations are conducted using the model to evaluate currently widely used PM samplers, including Federal Reference Method (FRM) samplers. The simulations show that current PM samplers are very vulnerable to both changes in measurement target (i.e., natural variability of particle size distribution) and the sampler's design, manufacturing, and operating conditions, potentially resulting in significant errors in the monitoring data. The numerical model is used in conjunction with two types of commercially available PM monitoring devices to form a Comprehensive Particulate Matter Monitoring System (CPMMS). The first type of device can be any mass-based PM monitor with a well-defined sampling efficiency curve. The second type of device is one capable of measuring particle size distribution with a reasonably good relative accuracy between size categories but not necessarily accurate in measuring absolute mass concentrations. This study shows that CPMMS can produce much higher quality PM monitoring data than the current PM samplers under the same conditions. In addition, unlike past and current PM monitoring data such as total suspended particulates, coarse PM (PM10), fine PM (PM2.5), etc., the CPMMS monitoring data will survive changes in PM regulatory definition. A new concept, dosimetry-based PM metrics and standards, is proposed to define ambient PM level based on the deposition fraction of particles in the human respiratory tract. The dosimetry-based PM metrics is more meaningful because it correlates the ambient PM level with the portion that can be deposited in the respiratory tract without an arbitrary cutoff particle diameter. CPMMS makes dosimetry-based PM metrics and standards feasible.  相似文献   

8.
The gaseous and nonvolatile particulate matter (PM) emissions of two T56-A-15 turboprop engines of a C-130H aircraft stationed at the 123rd Airlift Wing in the Kentucky Air National Guard were characterized. The emissions campaign supports the Strategic Environmental Research and Development Program (SERDP) project WP-1401 to determine emissions factors from military aircraft. The purpose of the project is to develop a comprehensive emissions measurement program using both conventional and advanced techniques to determine emissions factors of pollutants, and to investigate the spatial and temporal evolutions of the exhaust plumes from fixed and rotating wing military aircraft. Standard practices for the measurement of gaseous emissions from aircraft have been well established; however, there is no certified methodology for the measurement of aircraft PM emissions. In this study, several conventional instruments were used to physically characterize and quantify the PM emissions from the two turboprop engines. Emissions samples were extracted from the engine exit plane and transported to the analytical instrumentation via heated lines. Multiple sampling probes were used to assess the spatial variation and obtain a representative average of the engine emissions. Particle concentrations, size distributions, and mass emissions were measured using commercially available aerosol instruments. Engine smoke numbers were determined using established Society of Automotive Engineers (SAE) practices, and gaseous species were quantified via a Fourier-transform infrared-based gas analyzer. The engines were tested at five power settings, from idle to take-off power, to cover a wide range of operating conditions. Average corrected particle numbers (PNs) of (6.4-14.3) x 10(7) particles per cm3 and PN emission indices (EI) from 3.5 x 10(15) to 10.0 x 10(15) particles per kg-fuel were observed. The highest PN EI were observed for the idle power conditions. The mean particle diameter varied between 50 nm at idle to 70 nm at maximum engine power. PM mass EI ranged from 1.6 to 3.5 g/kg-fuel for the conditions tested, which are in agreement with previous T56 engine measurements using other techniques. Additional PM data, smoke numbers, and gaseous emissions will be presented and discussed.  相似文献   

9.
南京市大气气溶胶中颗粒物和正构烷烃特征及来源分析   总被引:10,自引:2,他引:10  
于2002年夏季(7月)和冬季(12月)采集南京市5个功能区的大气气溶胶(PM2.5和PM10)样品,对两个季节不同功能区颗粒物及其颗粒物中正构烷烃的分布特征和污染来源进行了分析。结果表明,南京市大气颗粒物含量冬季高于夏季,细颗粒高于粗颗粒。正构烷烃的变化规律同颗粒物一致,且主要分布在细颗粒物上。根据各个功能区正构烷烃(C15-C32)的CPI(CPI1、CPI2和CPI3)结果,可知南京市大气气溶胶中正构烷烃由生物源和人为源共同排放产生。%waxCn的结果表明生物源对气溶胶中正构烷烃的贡献率为20%~43%,对南京市大气颗粒物的贡献率为1.66%~4.76%。  相似文献   

10.
Monitoring of particulate matter outdoors   总被引:6,自引:0,他引:6  
  相似文献   

11.
The particle size distributions (PSDs) of particulate matter (PM) in the downwind plume from simulated sources of a cotton gin were analyzed to determine the impact of PM settling on PM monitoring. The PSD of PM in a plume varies as a function of gravitational settling. Gravitational settling has a greater impact on the downwind PSD from sources with PSDs having larger mass median diameters (MMDs). The change in PSD is a function of the source PSD of emitted PM, wind speed, and downwind distance. Both MMD and geometric standard deviation (GSD) in the downwind plume decrease with an increase in downwind distance and source MMD. The larger the source MMD, the greater the change in the downwind MMD and GSD. Also, the greater the distance from the source to the sampler, the greater the change in the downwind MMD and GSD. Variations of the PSD in the downwind plume significantly impact PM10 sampling errors associated with the U.S. Environmental Protection Agency (EPA) PM10 samplers. For the emission sources with MMD > 10 microm, the PM10 oversampling rate increases with an increase in downwind distance caused by the decrease of GSD of the PSD in the downwind plume. Gravitational settling of particles does not help reduce the oversampling problems associated with the EPA PM10 sampler. Furthermore, oversampling rates decrease with an increase of the wind speed.  相似文献   

12.
Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (< 100 microm) concentrations at the boundary of gravel sites ranged from 280 to 1290 microg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 microg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 microg/m3, were also above the daily air quality standard of 125 microg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 microg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 microm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.  相似文献   

13.
Modeling exposure to particulate matter   总被引:2,自引:0,他引:2  
Exposure assessment, a component of risk assessment, links sources of pollution with health effects. Exposure models are scientific tools used to gain insights into the processes affecting exposure assessment. The purpose of this paper is to review the process and methodology of estimating inhalation exposure to particulate matter (PM) using various types of models. Three types of models are discussed in the paper. Indirect type of models are physical models that employ inventories of outdoor and indoor sources and their emission rates to identify major sources contributing to exposure to PM, and use fate and transport and indoor air quality models to estimate PM concentrations at receptor sites. PM concentrations and time spent by a subject at each receptor site are input variables to the conventional exposure model that estimates the desired exposure levels. Direct type models use measured exposure or exposure concentrations in conjunction with information obtained from questionnaires to formulate exposure regression models. Stochastic models use exposure measurements, estimates can also be used, to formulate exposure population distributions and investigate associated uncertainty and variability. Since models developed using databases from western countries are not necessarily applicable in developing countries, the difference in requirements among western and developing countries is highlighted in the paper. Employment of exposure modeling methods in developing countries requires development of local information. Such information includes local outdoor and indoor source inventories, local or regional meteorological conditions, adjustment of indoor models to reflect local building construction conditions, and use of questionnaires to obtain local time budget and activity patterns of the subject population.  相似文献   

14.
In this study, the chemical composition of fine particulate matter samples collected at U.S. Environmental Protection Agency Speciation Trends Network sites in San Jose, CA, from February 2000 to February 2005 were analyzed. A San Jose site was initially established at 4th Street and then subsequently moved to Jackson Street in mid-2002. These sites are approximately 1 km apart. There were no known major changes in the nature of the sources in the area over this period. The study used positive matrix factorization model to extract the source profiles and their mass contributions and to compare the results for the congruence of the source apportionments between these two nearby sites. In the case of the 4th Street site, the average mass was apportioned to wood combustion (32.1 +/- 2.5%), secondary nitrate (22.3 +/- 2%), secondary sulfate (10.7 +/- 0.6%), fresh sea salt (7.7 +/- 0.9%), gasoline vehicles (7.3 +/- 0.5%), aged sea salt (6.8 +/- 0.4%), road dust (6.7 +/- 0.7%), diesel emissions (3.9 +/- 0.3%), and a Ni-related industrial source (2.5 +/- 0.4%). At the Jackson Street site, the average mass was apportioned to wood combustion (33.6 +/- 2.6%), secondary nitrate (20.3 +/- 1.9%), secondary sulfate (13.9 +/- 0.9%), aged sea salt (12.4 +/- 0.7%), gasoline vehicle (8.3 +/- 0.6%), fresh sea salt (5.3 +/- 0.5%), diesel emission (3.2 +/- 0.3%), road dust (1.9 +/- 0.1%), and Ni-related industrial source (1.3 +/- 0.1%). Conditional probability function analysis was used to help identify local sources. These results suggested that moving the sampling site a short distance had little effect on the nature of the resolved source types although some differences in their quantitative impacts were obtained in the positive matrix factorization analyses.  相似文献   

15.
The results from a chemical characterization study of fine particulate matter (PM2.5) measured at three elementary schools in Central and Southeast Ohio is presented here. PM2.5 aerosol samples were collected from outdoor monitors and indoor samplers at each monitoring location during the period of February 1, 1999, through August 31, 2000. The locations included a rural elementary school in Athens, OH, and two urban schools within Columbus, OH. The trace metal and ionic concentrations in the collected samples were analyzed using an X-ray fluorescence spectrophotometer and ion chromatography unit, respectively. Sulfate ion was found to be the largest component present in the samples at all three of the sites. Other abundant components included nitrate, chloride, ammonium, and sodium ions, as well as calcium, silicon, and iron. The average PM2.5 concentrations showed similar temporal variations among the three sites within the study region. PM2.5 and its major component, sulfate ion, showed strong seasonal variations with maximum concentrations observed during the summer at all three of the sites. The indoor environment was found to be more contaminated during the spring months (March through May) at New Albany (a suburb of Columbus, OH) and East Athens (rural Ohio area). Potential source contribution function analysis showed that particulate matter levels at the monitoring sites were affected by transport from adjoining urban areas and industrial complexes located along the Ohio River Valley. A preliminary outdoor source apportionment using the principal component analysis (PCA) technique was performed. The results from the PCA suggest that the study region was primarily impacted by industrial, fossil fuel combustion, and geological sources. The 2002 emissions inventory data for PM2.5 compiled by Ohio Environmental Protection Agency also showed impacts of similar source types, and this was used to validate the PCA analysis.  相似文献   

16.
Almond harvest accounts for substantial PM10 (particulate matter [PM] < or =10 microm in nominal aerodynamic diameter) emissions in California each harvest season. This paper evaluates the effects of using reduced-pass sweepers and lower harvester separation fan speeds (930 rpm) on lowering PM emissions from almond harvesting operations. In-canopy measurements of PM concentrations were collected along with PM concentration measurements at the orchard boundary; these were used in conjunction with on-site meteorological data and inverse dispersion modeling to back-calculate emission rates from the measured concentrations. The harvester discharge plume was measured as a function of visible plume opacity during conditioning operations. Reduced-pass sweeping showed the potential for reducing PM emissions, but results were confounded because of differences in orchard maturity and irrigation methods. Fuel consumption and sweeping time per unit area were reduced when comparing a reduced-pass sweeper to a conventional sweeper. Reducing the separation fan speed from 1080 to 930 rpm led to reductions in PM emissions. In general, foreign matter levels within harvested product were nominally affected by separation fan speed in the south (less mature) orchard; however, in samples conditioned using the lower fan speed from the north (more mature) orchard, these levels were unacceptable.  相似文献   

17.
The aims of this study were to determine the particulate matter with aerodynamic diameters > or = 2.5 microm (PM2.5) and 2.5-10 microm (PM10-2.5) exposure levels of drivers and to analyze the proportion of elemental carbon (EC) and organic carbon (OC) in PM2.5 in Bangkok, Thailand. Four bus routes were selected. Measurements were conducted over 10 days in August (rainy season) 2008 and 8 days in January (dry season) 2009. The mean PM2.5 exposure level of the Tuk-tuk drivers was 86 microg/m3 in August and 198 microg/m3 in January. The mean for the non-air-conditioned bus drivers was 63 microg/m3 in August and 125 microg/m3 in January. The PM2.5 and PM10-2.5 exposure levels of the drivers in January were approximately twice as high as those in August. The proportion of total carbon (TC) in PM2.5 to the PM2.5 level in August (0.97 +/- 0.28 microg/m3) was higher than in January (0.65 +/- 0.13 microg/m3). The proportion of OC in the TC of the PM2.5 in August (0.51 +/- 0.08 microg/m3) was similar to that in January (0.65 +/- 0.07 microg/m3). The TC exposure by PM25 in January (81 +/- 30 microg/m3) remained higher than in August (56-21 microg/m3). The mean level of OC in the PM2.5 was 29 +/- 13 microg/m3 in August and 50 +/- 24 microg/m3 in January. In conclusion, the PM exposure level in Bangkok drivers was higher than that in the general environment, which was already high, and it varied with the seasons and vehicle type. This study also demonstrated that the major component of the PM was carbon, likely derived from vehicles.  相似文献   

18.
A microanalytical method suitable for the quantitative determination of the sugar anhydride levoglucosan in low-volume samples of atmospheric fine particulate matter (PM) has been developed and validated. The method incorporates two sugar anhydrides as quality control standards. The recovery standard sedoheptulosan (2,7-anhydro-beta-D-altro-heptulopyranose) in 20 microL solvent is added onto samples of the atmospheric fine PM and aged for 1 hr before ultrasonic extraction with ethylacetate/ triethylamine. The extract is reduced in volume, an internal standard is added (1,5-anhydro-D-mannitol), and a portion of the extract is derivatized with 10% by volume N-trimethylsilylimidazole. The derivatized extract is analyzed by gas chromatography/mass spectrometry (GC/MS). The recovery of levoglucosan using this procedure was 69 +/- 6% from five filters amended with 2 microg levoglucosan, and the reproducibility of the assay is 9%. The limit of detection is approximately 0.1 microg/mL, which is equivalent to approximately 3.5 ng/m3 for a 10 L/min sampler or approximately 8.7 ng/m3 for a 4 L/min personal sampler (assuming 24-hr integrated samples). We demonstrated that levoglucosan concentrations in collocated samples (expressed as ng/m3) were identical irrespective of whether samples were collected by PM with aerodynamic diameter < or = 2.5 microm or PM with aerodynamic diameter < or = 10 microm impactors. It was also demonstrated that X-ray fluorescence analysis of samples of atmospheric PM, before levoglucosan determinations, did not alter the levels of levoglucosan.  相似文献   

19.
Environmental Science and Pollution Research - Air pollution is an important cause of non-communicable diseases globally with particulate matter (PM) as one of the main air pollutants. PM is...  相似文献   

20.
Speciated fine particulate matter (PM2.5) data collected as part of the Speciation Trends Network at four sites in the Midwest (Detroit, MI; Cincinnati, OH; Indianapolis, IN; and Northbrook, IL) and as part of the Interagency Monitoring of Protected Visual Environments program at the rural Bondville, IL, site were analyzed to understand sources contributing to organic carbon (OC) and PM2.5 mass. Positive matrix factorization (PMF) was applied to available data collected from January 2002 through March 2005, and seven to nine factors were identified at each site. Common factors at all of the sites included mobile (gasoline)/secondary organic aerosols with high OC, diesel with a high elemental carbon/OC ratio (only at the urban sites), secondary sulfate, secondary nitrate, soil, and biomass burning. Identified industrial factors included copper smelting (Northbrook, Indianapolis, and Bondville), steel/manufacturing with iron (Northbrook), industrial zinc (Northbrook, Cincinnati, Indianapolis, and Detroit), metal plating with chromium and nickel (Detroit, Indianapolis, and Bondville), mixed industrial with copper and iron (Cincinnati), and limestone with calcium and iron (Bondville). PMF results, on average, accounted for 96% of the measured PM2.5 mass at each site; residuals were consistently within tolerance (+/-3), and goodness-of-fit (Q) was acceptable. Potential source contribution function analysis helped identify regional and local impacts of the identified source types. Secondary sulfate and soil factors showed regional characteristics at each site, whereas industrial sources typically appeared to be locally influenced. These regional factors contributed approximately one third of the total PM2.5 mass, on average, whereas local mobile and industrial sources contributed to the remaining mass. Mobile sources were a major contributor (55-76% at the urban sites) to OC mass, generally with at least twice as much mass from nondiesel sources as from diesel. Regional OC associated with secondary sulfate and soil was generally low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号