首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The geological storage of carbon dioxide is currently being considered as a possible technology for reducing emissions to atmosphere. Although there are several operational sites where carbon dioxide is stored in this way, methods for assessing the long-term performance and safety of geological storage are at an early stage of development. In this paper the similarities and differences between this field and the geological disposal of radioactive wastes are considered. Priorities are suggested for the development of performance assessment methods for carbon dioxide storage based on areas where experience from radioactive waste disposal can be usefully applied. These include, inter alia, dealing with the various types of uncertainty, using systematic methodologies to ensure an auditable and transparent assessment process, developing whole system models and gaining confidence to model the long-term system evolution by considering information from natural systems. An important area of data shortage remains the potential impacts on humans and ecosystems.  相似文献   

2.
Carbon dioxide capture and storage (CCS) involves the capture of CO2 at a large industrial facility, such as a power plant, and its transport to a geological (or other) storage site where CO2 is sequestered. Previous work has identified pipeline transport of liquid CO2 as the most economical method of transport for large volumes of CO2. However, there is little published work on the economics of CO2 pipeline transport. The objective of this paper is to estimate total cost and the cost per tonne of transporting varying amounts of CO2 over a range of distances for different regions of the continental United States. An engineering-economic model of pipeline CO2 transport is developed for this purpose. The model incorporates a probabilistic analysis capability that can be used to quantify the sensitivity of transport cost to variability and uncertainty in the model input parameters. The results of a case study show a pipeline cost of US$ 1.16 per tonne of CO2 transported for a 100 km pipeline constructed in the Midwest handling 5 million tonnes of CO2 per year (the approximate output of an 800 MW coal-fired power plant with carbon capture). For the same set of assumptions, the cost of transport is US$ 0.39 per tonne lower in the Central US and US$ 0.20 per tonne higher in the Northeast US. Costs are sensitive to the design capacity of the pipeline and the pipeline length. For example, decreasing the design capacity of the Midwest US pipeline to 2 million tonnes per year increases the cost to US$ 2.23 per tonne of CO2 for a 100 km pipeline, and US$ 4.06 per tonne CO2 for a 200 km pipeline. An illustrative probabilistic analysis assigns uncertainty distributions to the pipeline capacity factor, pipeline inlet pressure, capital recovery factor, annual O&M cost, and escalation factors for capital cost components. The result indicates a 90% probability that the cost per tonne of CO2 is between US$ 1.03 and US$ 2.63 per tonne of CO2 transported in the Midwest US. In this case, the transport cost is shown to be most sensitive to the pipeline capacity factor and the capital recovery factor. The analytical model elaborated in this paper can be used to estimate pipeline costs for a broad range of potential CCS projects. It can also be used in conjunction with models producing more detailed estimates for specific projects, which requires substantially more information on site-specific factors affecting pipeline routing.  相似文献   

3.
A hyperspectral imaging system was used to monitor vegetation during a subsurface controlled release of carbon dioxide (CO2). From August 3 to 10, 2007, 0.3 tons CO2/day were released through a 70 m horizontal pipe located at a nominal depth of 1.8 m below the surface. Hyperspectral images of alfalfa plants were collected during the controlled release and used along with classification tree analysis to study changes in the reflectance spectra as a function of perpendicular distance from the horizontal pipe. Changes in the reflectance spectra near the red edge (650–750 nm) were observed over the course of the controlled release experiment for plants within a perpendicular distance of 1 m of the release pipe. These results indicate monitoring vegetation over a carbon sequestration site has the potential to allow monitoring of the integrity of the CO2 storage.  相似文献   

4.
Enhanced oil recovery (EOR) through CO2 flooding has been practiced on a commercial basis for the last 35 years and continues today at several sites, currently injecting in total over 30 million tons of CO2 annually. This practice is currently exclusively for economic gain, but can potentially contribute to the reduction of emissions of greenhouse gases provided it is implemented on a large scale. Optimal operations in distributing CO2 to CO2-EOR or enhanced gas recovery (EGR) projects (referred to here collectively as CO2-EHR) on a large scale and long time span imply that intermediate storage of CO2 in geological formations may be a key component. Intermediate storage is defined as the storage of CO2 in geological media for a limited time span such that the CO2 can be sufficiently reproduced for later use in CO2-EHR. This paper investigates the technical aspects, key individual parameters and possibilities of intermediate storage of CO2 in geological formations aiming at large scale implementation of carbon dioxide capture and storage (CCS) for deep emission reduction. The main parameters are thus the depth of injection and density, CO2 flow and transport processes, storage mechanisms, reservoir heterogeneity, the presence of impurities, the type of the reservoirs and the duration of intermediate storage. Structural traps with no flow of formation water combined with proper injection planning such as gas-phase injection favour intermediate storage in deep saline aquifers. In depleted oil and gas fields, high permeability, homogeneous reservoirs with structural traps (e.g. anticlinal structures) are good candidates for intermediate CO2 storage. Intuitively, depleted natural gas reservoirs can be potential candidates for intermediate storage of carbon dioxide due to similarity in storage characteristics.  相似文献   

5.
A novel process for carbon dioxide (CO2) separation, which was named a membrane flash process, was developed to realize an energy-saving technology and to substitute it for a conventional regenerator. The electric energy for CO2 recovery in a membrane flash process using aluminum oxide and diethanolamine was lower than the thermal energy of the conventional chemical absorption process. Flashing at elevated temperature by the low temperature energy significantly reduced the electric energy and required much less membrane area. This process has potentiality of low cost capture of CO2 when the low temperature energy, which is not available for other purposes, can be utilized to elevate flashing temperature.  相似文献   

6.
The effect of coupling of geochemical reactions with convective mixing of dissolved carbon dioxide during geological storage is investigated by both analytical and numerical techniques. In the limit of fast reactions, scaling arguments and stability analysis show that the time for the onset of convection could be increased by up to an order of magnitude due to consumption of the dissolved carbon dioxide in mineralization. Numerical simulations are then used to investigate the effect of general reaction rates in two contrasting mineralogies, including overall dissolution and the distribution of ion and mineral concentrations.  相似文献   

7.
Elevated levels of CO2 in the atmosphere have been linked to the rise in land and sea temperature [Climate Change, 2001. In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Xiaosu, D. (Eds.), The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, UK, p. 944]. To demonstrate geological carbon sequestration as a mitigation technique, a carbon dioxide injection experiment was conducted in East Texas. The target – Frio formation – is a highly porous, permeable and unconsolidated sandstone. The specific interval is the Frio C sand, which originally was saturated with saline formation water. At the injection location, the Frio C sand dips 18° to the south. To monitor the injected CO2 spreading in the formation, an old well from 1956 drilled into the deeper Yegua formation was selected as the observation well. The injection well was drilled at a distance of 100 ft downdip from the monitoring well. Several borehole measurement methods were available to monitor the CO2 injection, but the most suitable technology was thought to be the pulsed neutron logging. This logging is used widely in cased hole, and the measured macroscopic thermal absorption cross-section (Σ) is sensitive to CO2 saturation in high porosity saline water environments. Several log examples are given demonstrating successful the monitoring of the CO2 plume moving through the two boreholes and the resulting saturation changes.  相似文献   

8.
As monitoring is essential for the proper management of geological storage of carbon dioxide (CO2), the ability to value information from monitoring is indispensable to adequately design a monitoring program. It is necessary to judge whether the expected improvement in management is worth the cost of monitoring. The value of information (VOI) is closely related to the possible increase in expected utility gained by gathering the information, the concept of which can be applied to such judgement. Although VOI analysis has been extensively studied in the context of decision analysis, its application to the management of carbon dioxide capture and storage (CCS) operations is rare. This paper introduces and discusses the methodology of VOI analyses in the context of monitoring CO2 storage. A motivating problem with discrete probabilities is used to illustrate the concept of VOI. It is demonstrated that information is not always of value; for information to be worthwhile, monitoring under uncertainty must satisfy certain conditions. This concept is then extended to continuous probability distributions. The effects of prior uncertainty and information reliability on the VOI are examined. It is shown that an excessive improvement in information accuracy yields little value and that the optimal level of reliability can be inferred. VOI analyses provide quantitative insights into the value of information-gathering activities and therefore can be an objective means to adequately design and impartially justify a monitoring program.  相似文献   

9.
The Kyoto Protocol provides for the involvement of developing countries in an atmospheric greenhouse gas reduction regime under its Clean Development Mechanism (CDM). Carbon credits are gained from reforestation and afforestation activities in developing countries. Bangladesh, a densely populated tropical country in South Asia, has a huge degraded forestland which can be reforested by CDM projects. To realize the potential of the forestry sector in developing countries for full-scale emission mitigation, the carbon sequestration potential of different species in different types of plantations should be integrated with the carbon trading system under the CDM of the Kyoto Protocol. This paper discusses the prospects and problems of carbon trading in Bangladesh, in relation to the CDM, in the context of global warming and the potential associated consequences. The paper analyzes the effects of reforestation projects on carbon sequestration in Bangladesh, in general, and in the hilly Chittagong region, in particular, and concludes by demonstrating the carbon trading opportunities. Results showed that tree tissue in the forests of Bangladesh stored 92tons of carbon per hectare (tC/ha), on average. The results also revealed a gross stock of 190tC/ha in the plantations of 13 tree species, ranging in age from 6 to 23 years. The paper confirms the huge atmospheric CO(2) offset by the forests if the degraded forestlands are reforested by CDM projects, indicating the potential of Bangladesh to participate in carbon trading for both its economic and environmental benefit. Within the forestry sector itself, some constraints are identified; nevertheless, the results of the study can expedite policy decisions regarding Bangladesh's participation in carbon trading through the CDM.  相似文献   

10.
In this study, the absorption of carbon dioxide using an absorbent composed of 2-amino-2-methyl-L-propanol (AMP) + monoethanolamine (MEA) + piperazine (PZ) in asymmetric and symmetric polytetrafluoroethylene (PTFE) membrane contactors was investigated. Experiments were conducted using various gas flow rates, liquid flow rates, and absorbent blends. CO(2) recovery increased with increasing liquid flow rates. The mean pore size of PTFE membrane reduced via heating treatment. An asymmetric membrane had a better CO(2) recovery than a symmetric membrane. For the asymmetric membrane, placing the smaller pore-size side of the membrane in contact with the liquid phase, reduced the level of wetting of the membrane. The membrane mass transfer coefficient and durability of the PTFE membrane were enhanced by asymmetrically heating.  相似文献   

11.
Carbon dioxide (CO2) injection into saline aquifers is one of the promising options to sequester large amounts of CO2 in geological formations. During as well as after injection of CO2 into an aquifer, CO2 migrates towards the top of the formation due to density differences between the formation brine and the injected CO2. The time scales of CO2 migration towards the top of an aquifer and the fraction of CO2 that is trapped as residual gas depends strongly on the driving forces that are acting on the injected CO2.When CO2 migrates to the top of an aquifer, brine may be displaced downwards in a counter-current flow setting particularly during the injection period. A majority of the published work on counter-current flow settings have reported significant reductions in the associated relative permeability functions as compared to co-current measurements. However, this phenomenon has not yet been considered in the simulation of CO2 storage into saline aquifers.In this paper we study the impact of changes in mobility for the two-phase brine/CO2 system as a result of transitions between co- and counter-current flow settings. We have included this effect in a simulator and studied the impact of the related mobility reduction on the saturation distribution and residual saturation of CO2 in aquifers over relevant time scales. We demonstrate that the reduction in relative permeability in the vertical direction changes the plume migration pattern and has an impact on the amount of gas that is trapped as a function of time. This is to our best knowledge the first attempt to integrate counter-current relative permeability into the simulation of injection and subsequent migration of CO2 in aquifers. The results and analysis presented in this paper are directly relevant to all ongoing activities related to the design of large-scale CO2 storage in saline aquifers.  相似文献   

12.
The deployment of CCS (carbon capture and storage) at industrial scale implies the development of effective monitoring tools. Noble gases are tracers usually proposed to track CO2. This methodology, combined with the geochemistry of carbon isotopes, has been tested on available analogues.At first, gases from natural analogues were sampled in the Colorado Plateau and in the French carbogaseous provinces, in both well-confined and leaking-sites. Second, we performed a 2-years tracing experience on an underground natural gas storage, sampling gas each month during injection and withdrawal periods.In natural analogues, the geochemical fingerprints are dependent on the containment criterion and on the geological context, giving tools to detect a leakage of deep-CO2 toward surface. This study also provides information on the origin of CO2, as well as residence time of fluids within the crust and clues on the physico-chemical processes occurring during the geological story.The study on the industrial analogue demonstrates the feasibility of using noble gases as tracers of CO2. Withdrawn gases follow geochemical trends coherent with mixing processes between injected gas end-members. Physico-chemical processes revealed by the tracing occur at transient state.These two complementary studies proved the interest of geochemical monitoring to survey the CO2 behaviour, and gave information on its use.  相似文献   

13.
In this work, the rate of absorption of carbon dioxide by aqueous ammonia solvent has been studied by applying a newly built wetted wall column. The absorption rate in aqueous ammonia was measured at temperatures from 279 to 304 K for 1 to 10 wt% aqueous ammonia with loadings varying from 0 to 0.8 mol CO2/mol NH3. The absorption rate in 30 wt% aqueous mono-ethanolamine (MEA) was measured at 294 and 314 K with loadings varying from 0 to 0.4 as comparison.It was found that at 304 K, the rate of absorption of carbon dioxide by 10 wt% NH3 solvent was comparable to the rates for 30 wt% MEA at 294 and 314 K (a typical absorption temperature for this process). The absorption rate using ammonia was however significantly lower at temperatures of 294 K and lower as applied in the Chilled Ammonia Process. However, at these low temperatures, the rate of absorption in ammonia has only a small temperature dependency.The rate of absorption decreases strongly with decreasing ammonia concentrations and increasing CO2 loadings.The rate of absorption of carbon dioxide by aqueous ammonia solvent was modeled using the measurements of the unloaded solutions and the zwitter-ion mechanism. The model could successfully predict the experimental measurements of the absorption rate of CO2 in loaded ammonia solutions.  相似文献   

14.
Acid gas geological disposal is a promising process to reduce CO2 atmospheric emissions and an environment-friendly and economic alternative to the transformation of H2S into sulphur by the Claus process. Acid gas confinement in geological formations is to a large extent controlled by the capillary properties of the water/acid–gas/caprock system, because a significant fraction of the injected gas rises buoyantly and accumulates beneath the caprock. These properties include the water/acid gas interfacial tension (IFT), to which the so-called capillary entry pressure of the gas in the water-saturated caprock is proportional. In this paper we present the first ever systematic water/acid gas IFT measurements carried out by the pendant drop technique under geological storage conditions. We performed IFT measurements for water/H2S systems over a large range of pressure (up to P = 15 MPa) and temperature (up to T = 120 °C). Water/H2S IFT decreases with increasing P and levels off at around 9–10 mN/m at high T (≥70 °C) and P (>12 MPa). The latter values are around 30–40% of water/CO2 IFTs, and around 20% of water/CH4 IFTs at similar T and P conditions. The IFT between water and a CO2 + H2S mixture at T = 77 °C and P > 7.5 MPa is observed to be approximately equal to the molar average IFT of the water/CO2 and water/H2S binary mixtures. Thus, when the H2S content in the stored acid gas increases the capillary entry pressure decreases, together with the maximum height of acid gas column and potential storage capacity of a given geological formation. Hence, considerable attention should be exercised when refilling with a H2S-rich acid gas a depleted gas reservoir, or a depleted oil reservoir with a gas cap: in the case of hydrocarbon reservoirs that were initially (i.e., at the time of their discovery) close to capillary leakage, acid gas leakage through the caprock will inevitably occur if the refilling pressure approaches the initial reservoir pressure.  相似文献   

15.
This experimental research addresses the effectiveness of communication about complex environmental issues, depending on whether the same information is provided by multiple collaborating or by individual organizations (i.e., stakeholders). The information provided pertains to carbon dioxide capture and storage (CCS) technology, as an example of a complex environmental issue. In Studies 1 (N = 75) and 2 (N = 66) we found that participants perceived factual information from collaborating stakeholders to be of higher quality than when the same information was provided by individual stakeholders. As predicted, the expectation of diverse perspectives being represented in the collaborative information mediated this effect. In addition, in Study 3 (N = 79) the perceived dissimilarity of collaborating stakeholders was shown to be an important precondition for the collaboration effect observed in Studies 1 and 2. Finally, these studies indicate that occasional collaboration between different stakeholders does not necessarily harm the perceived credibility of each individual stakeholder.  相似文献   

16.
Data on the mass density and carbon content of tree organs, and in particular stem wood, are essential for accurate assessments of forest carbon sequestration. However most available data, including that for East Asia, has neglected the volatile C fraction. Wood samples were collected and assayed for C content from 14 native tree species in Jilin Province, NE China. C content showed statistically significant variation among species, ranging from 48.4% to 51.0%. The volatile C fraction was non-negligible, averaging 2.2%, and showed high variation among species. As found in prior studies, wood C content was appreciably higher in conifer than hardwood (angiosperm) species (50.8+/-0.1% vs. 49.5+/-0.2%, respectively). Wood carbon density (gC/cm(3)) showed very high inter-specific variation, due mainly to differences in wood specific gravity. Our analyses, in conjunction with recently published data from North America, indicate a global mean value of 47.5+/-0.5% wood C content exclusive of volatile C; the widely used 50% figure corresponds more closely to total wood C inclusive of the volatile fraction. Failure to include volatile C or to use species- or higher-taxon-specific C content values in forest C assessments is likely to introduce biases on the order approximately 4-6%. In addition, the stocks and flows of the volatile C fraction in wood are in themselves an important and sorely neglected aspect of forest C processes likely to be strongly impacted by harvests and other management practices.  相似文献   

17.
Greenhouse gas (GHG) mitigation options in the Russian forest sector include: afforestation and reforestation of unforested/degraded land area; enhanced forest productivity; incorporation of nondestructive methods of wood harvesting in the forest industry; establishment of land protective forest stands; increase in stand age of final harvest in the European part of Russia; increased fire control; increased disease and pest control; and preservation of old growth forests in the Russian Far-East, which are presently threatened. Considering the implementation of all of the options presented, the GHG mitigation potential within the forest and agroforestry sectors of Russia is approximately 0.6–0.7 Pg C/yr or one half of the industrial carbon emissions of the United States. The difference between the GHG mitigation potential and the actual level of GHGs mitigated in the Russian forest sector will depend to a great degree on external financing that may be available. One possibility for external financing is through joint implementation (JI). However, under the JI process, each project will be evaluated by considering a number of criteria including also the difference between the carbon emissions or sequestration for the baseline (or reference) and the project case, the permanence of the project, and leakage. Consequently, a project level assessment must appreciate the near-term constraints that will face practitioners who attempt to realize the GHG mitigation potential in the forest and agroforestry sectors of their countries.  相似文献   

18.
The purpose of this article is to study the energy and carbon dioxide intensities of Thailand's steel industry and to propose greenhouse gas emission trends from the year 2011 to 2050 under plausible scenarios. The amount of CO2 emission from iron and steel production was calculated using the 2006 Intergovernmental Panel on Climate Change (IPCC) guidelines in the boundary of production process (gate to gate). The results showed that energy intensity of semi-finished steel product was 2.84 GJ/t semi-finished steel and CO2 intensity was 0.37 tCO2eq/t semi-finished steel. Energy intensity of steel finishing process was 1.86 GJ/t finished steel and CO2 intensity was 0.16 tCO2eq/t finished steel. Using three plausible scenarios from Thailand's steel industry, S1: without integrated steel plant (baseline scenario), S2: with a traditional integrated BF–BOF route and S3: with an alternative integrated DR-EAF route; the Greenhouse Gas emissions from the year 2011 to 2050 were projected. In 2050, the CO2 emission from S1 (baseline scenario) was 4.84 million tonnes, S2 was 21.96 million tonnes increasing 4.54 times from baseline scenario. The CO2 emission from S3 was 7.12 million tonnes increasing 1.47 times from baseline scenario.  相似文献   

19.
Numerous innovative approaches to mitigate effects of excessive emission of greenhouse gases (GHGs) on global climate change are being proposed and formulated. Sequestering carbon to terrestrial ecosystems represents one of the important clean development mechanisms. Reforestation through converting various non-forest lands to forests is undoubtedly an important dimension of carbon sequestration. Using Liping County in Guizhou Province as a case region, this study examines the perceived change in social and economic livelihoods of peasants and the factors responsible for the variations in the changes. The results of the study reveal that socio-economic changes associated with the government-financed project are multifaceted and profound. Because of the financial subsidies provided by the central government, this environmental action in many aspects can be regarded as a poverty reduction measure in the underdeveloped area where rural poverty is widespread. A majority of peasant households have benefited from project participation. The land conversion project with continued financial support also contributes to the social transformations of traditional rural society in remote areas to a more mobile, less subsistence agriculture-based, and open society.  相似文献   

20.
In the Heihe River Basin in the arid inland area of northwest China, the distribution of water resources in vegetation landscape zones controls the ecosystems. The carbon sequestration capacity of vegetation is analyzed in relation to water resources and vegetation growing conditions. During the last 20 years, the vegetation ecosystems have degenerated in the Heihe River Basin. Simulation using the C-FIX model indicates that, at present, the total amount of NPP of vegetation accounts for about 18.16 TgC, and the average value is 106 gC/m(2)/yr over the whole basin. NPP has generally the highest value in the upperstream mountain area, middlestream artificial oases area, downstream river bank area, alluvial fan and the terminal lake depression where vegetation grows relatively well. The lowest value is found in the vast downstream desert and Gobi area. Protection of vegetation ecosystems and enhancement of carbon sequestration require such inland river basins as the Heihe River Basin to be brought under management in a comprehensive way, taking water as a key, to carry out a rational and efficient allocation and utilization of water resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号