首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We aimed to: (1) evaluate the change in mutagenicity of a fenitrothion-containing solution during photolysis and (2) elucidate mutagenic compounds that were possible major contributors to mutagenicity. A batch test involving irradiation by natural sunlight was conducted on the solution, and then HPLC fractionation, mutagenicity testing, and gas chromatography-mass spectrometry (GC-MS) analysis were performed on the irradiated solution. During the 15-day photolysis, fenitrothion was almost completely decomposed, and 34 transformed products (TPs) were generated. Photolysis decreased the mutagenicity of the fenitrothion-containing solution for base-pair-substitution-detecting tester strains (YG1026 and YG1029) but increased mutagenicity for frameshift-detecting tester strains (YG1021 and YG1024). One TP was identified as a potential source of the increased mutagenicity; its molecular formula was estimated to be (CH(3)O)(2)PS-O-C(8)H(6)NO.  相似文献   

2.
Direct photolysis of flumequine (FLU, 20 mg L−1) in different types of water (demineralised water (DW) and synthetic seawater (SW)), was conducted in a Suntest CPS + solar simulator to evaluate its persistence and toxicity, and to identify the major phototransformation products (PTPs) generated during photolysis in DW. It was observed that FLU is susceptible to transformation when subjected to direct solar radiation. The composition of the water affects the FLU degradation kinetics, which is slower in SW. Photolytic transformation products generated during direct photolysis were identified by liquid chromatography-time of flight-mass spectrometry (LC-TOF-MS). Fourteen PTPs generated in DW were identified. The transformation of FLU begins with the opening of the heterocyclic ring by oxidation of the double bond. Loss of the fluorine atom and the hydroxylation of the aromatic ring also appear as the majority, especially in the early stages. Comparative acute toxicity evaluation by Vibrio fischeri and Daphnia magna bioassays was performed for the first and last irradiated solutions in both matrices studied. These bioassays demonstrated that in the SW matrix, the most persistent PTPs are highly toxic to D. magna but less so to V. fischeri.  相似文献   

3.
The aqueous photodegradation of fluopyram was investigated under UV light (λ?≥?200 nm) and simulated sunlight irradiation (λ?≥?290 nm). The effect of solution pH, fulvic acids (FA), nitrate (NO3 ?), Fe (III) ions, and titanium dioxide (TiO2) on direct photolysis of fluopyram was explored. The results showed that fluopyram photodegradation was faster in neutral solution than that in acidic and alkaline solutions. The presence of FA, NO3 ?, Fe (III), and TiO2 slightly affected the photodegradation of fluopyram under UV irradiation, whereas the photodegradation rates of fluopyram with 5 mg L?1 Fe (III) and 500 mg L?1 TiO2 were about 7-fold and 13-fold faster than that without Fe (III) and TiO2 under simulated sunlight irradiation, respectively. Three typical products for direct photolysis of fluopyram have been isolated and characterized by liquid chromatography tandem mass spectrometry. These products resulted from the intramolecular elimination of HCl, hydroxyl-substitution, and hydrogen extraction. Based on the identified transformation products and evolution profile, a plausible degradation pathway for the direct photolysis of fluopyram in aqueous solution was proposed. In addition, acute toxicity assays using the Vibrio fischeri bacteria test indicated that the transformation products were more toxic than the parent compound.  相似文献   

4.
The decomposition of highly toxic chemical warfare agent, sulfur mustard (bis(2-chloroethyl) sulfide or HD), has been studied by homogeneous photolysis and heterogeneous photocatalytic degradation on titania nanoparticles. Direct photolysis degradation of HD with irradiation system was investigated. The photocatalytic degradation of HD was investigated in the presence of TiO2 nanoparticles and polyoxometalates embedded in titania nanoparticles in liquid phase at room temperature (33?±?2 °C). Degradation products during the treatment were identified by gas chromatography–mass spectrometry. Whereas apparent first-order kinetics of ultraviolet (UV) photolysis were slow (0.0091 min?1), the highest degradation rate is obtained in the presence of TiO2 nanoparticles as nanophotocatalyst. Simultaneous photolysis and photocatalysis under the full UV radiation leads to HD complete destruction in 3 h. No degradation products observed in the presence of nanophotocatalyst without irradiation in 3 h. It was found that up to 90 % of agent was decomposed under of UV irradiation without TiO2, in 6 h. The decontamination mechanisms are often quite complex and multiple mechanisms can be operable such as hydrolysis, oxidation, and elimination. By simultaneously carrying out photolysis and photocatalysis in hexane, we have succeeded in achieving faster HD decontamination after 90 min with low catalyst loading. TiO2 nanoparticles proved to be a superior photocatalyst under UV irradiation for HD decontamination.  相似文献   

5.
The photooxidation of methylhydroperoxide (MHP) and ethylhydroperoxide (EHP) was studied in the aqueous phase under simulated cloud droplet conditions. The kinetics and the reaction products of direct photolysis and OH-oxidation were studied for both compounds. The photolysis frequencies obtained were JMHP=4.5 (±1.0)×10−5 s−1 and JEHP=3.8 (±1.0)×10−5 s−1 for MHP and EHP respectively at 6 °C. The rate constants of OH-oxidation of MHP at 6 °C were 6.3 (±2.6)×108 M−1 s−1 and 5.8 (±1.9)×108 M−1 s−1 relative to ethanol and 2-propanol respectively, and the rate constant of OH-oxidation of EHP was 2.1 (±0.6)×109 M−1 s−1 relative to 2-propanol at 6 °C. The reaction products obtained were not only the corresponding aldehydes, but also the corresponding acids, and hydroxyhydroperoxides as primary reaction products. The yields for these products were sensitive to the pH value. The carbon balance was higher than 85% for all experiments, showing that most reaction products were detected. A chemical mechanism was proposed for each reaction, and the atmospheric implications were discussed.  相似文献   

6.

Purpose

Ciprofloxacin (CIP), a broad-spectrum, second-generation fluoroquinolone, has frequently been found in hospital wastewaters and effluents of sewage treatment plants. CIP is scarcely biodegradable, has toxic effects on microorganisms and is photosensitive. The aim of this study was to assess the genotoxic potential of CIP in human HepG2 liver cells during photolysis.

Methods

Photolysis of CIP was performed in aqueous solution by irradiation with an Hg lamp, and transformation products were monitored by HPLC-MS/MS and by the determination of dissolved organic carbon (DOC). The cytotoxicity and genotoxicity of CIP and of the irradiated samples were determined after 24?h of exposure using the WST-1 assay and the in vitro micronucleus (MN) test in HepG2 cells.

Results

The concentration of CIP decreased during photolysis, whereas the content of DOC remained unchanged. CIP and its transformation products were not cytotoxic towards HepG2 cells. A concentration-dependent increase of MN frequencies was observed for the parent compound CIP (lowest observed effect level, 1.2???mol?L?1). Furthermore, CIP and the irradiated samples were found to be genotoxic with a significant increase relative to the parent compound after 32?min (P?P?Conclusions Photolytic decomposition of aqueous CIP leads to genotoxic transformation products. This proves that irradiated samples of CIP are able to exert heritable genotoxic effects on human liver cells in vitro. Therefore, photolysis as a technique for wastewater treatment needs to be evaluated in detail in further studies, not only for CIP but in general.  相似文献   

7.
Secondary aerosols from the reaction of α-pinene with ozone were generated in a 190 m3 outdoor Teflon chamber, and products of these aerosols were characterized. Products were separated by gas chromatography and detected with electron-impact mass spectrometry, chemical-impact mass spectrometry, and Fourier transform infrared spectrometry. Because products from the reaction of α-pinene with ozone contain oxidized functional groups such as carboxylic acids and carbonyls, these products are poorly resolved by standard gas chromatography. To use standard chromatographic techniques, derivatization of oxidized functional groups was necessary. Carbonyl products were derivatized with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride and carboxylic acids with pentafluorobenzyl bromide. The major identified products were nor-pinonic acid, pinonic acid, 2,2-dimethylcyclobutane-1,3-dicarboxylic acid, pinic acid, and pinonaldehyde. Dicarboxylic acids have lower vapor pressures than either their corresponding di-aldehydes or mono-acids, and have only recently been identified in α-pinene–ozone aerosols. Given their comparatively low vapor pressures, diacids contribute significantly to the aerosol formation process from the reaction of α-pinene with ozone. The composition of these secondary aerosols is strongly influenced by temperature. During the summer experiments, the aerosol composition is dominated by diacids. During the cooler winter experiments, the di-carbonyl and carbonyl-acid products also contributed to the aerosol composition.  相似文献   

8.
The delta-Eddington radiation transfer model is used to calculate actinic fluxes and photolysis rates within the snow pack during the ALERT 2000 field campaign. Actinic fluxes are enhanced within the snow pack due to the high albedo of snow and conversion of direct light to diffuse light. The conversion of direct to diffuse light is highly dependent on the solar zenith angle, as demonstrated by model calculations. The optical properties of Alert snow are modeled as 100 μm radius ice spheres with impurity added to increase the absorption coefficient over that of pure water ice. Using these optical properties, the model achieves good agreement with observations of irradiance within the snow pack. The model is used to calculate the total actinic flux as a function of solar zenith angle and depth for either clear sky or cloudy conditions. The actinic flux is then used to calculate photochemical production of nitrogen oxides from nitrate photolysis assuming that nitrate in snow has the same absorption cross section and quantum yield in snow as in aqueous solution. Assuming all photo-produced nitrogen oxides are released to the gas phase, we derive a maximal flux of nitrogen oxides (NOx+HONO and possibly other products) from the snow pack. The value of this maximal flux depends critically on the assumed quantum yield for production of NO2, which is unknown in ice. Depending on the assumed quantum yield, the calculated maximal flux varies between values four times smaller than the observed NOx+HONO flux to five times larger than the NOx+HONO flux. Therefore, it appears that the calculated flux is in approximate agreement with the observations with a great need for improved understanding of nitrogen photochemistry in snow.  相似文献   

9.
n-Alkanes were present in the northern Wisconsin atmosphere in both the particulate and vapor state. Partitioning was operationally defined by a high-volume sampling methodology which used a glass fiber filter to separate particles and vapor. Concentrations, distributions and vapor/particle partitioning were seasonally dependent. Total n-alkane (C11-C32) concentrations in the vapor phase ranged from 25 to 75 ng m−3. Vapor concentrations of n-alkanes within the range C11-C17 were greatest during winter. Total n-alkane (C11-C32) concentrations in the particulate phase varied from 5.1 to 35 ng m−3 while those of the odd-numbered n-alkanes within the range C25-C31 ranged from 3.1 to 31 ng m−3. Highest concentrations of these n-alkanes were observed during spring and early summer. The CPI (20–32) of particulate n-alkanes was highest during spring (13.0) and early fall (8.0). The highest total n-alkane concentration and CPI (20–32) occurred in spring during a period of pine pollen disposal. A high-boiling unresolved complex mixture (UCM) was prominent in particles collected during winter, while a low-boiling UCM was typical of vapor collected during summer.  相似文献   

10.
Dimer formation was observed during ultraviolet (UV) photolysis of the anti-inflammatory drug diclofenac, and confirmed with mass spectrometry, NMR and fluorescence analysis. The dimers were combinations of the two parent molecules or of the parent and the product of photolysis, and had visible color. Radical formation during UV exposure and dissolved oxygen photosensitized reactions played a role in dimer formation. Singlet oxygen formed via photosensitization by photolysis products of diclofenac. It reacted with diclofenac to form an epoxide which is an intermediate in some dimer formation pathways. Quantum yield of photolysis for diclofenac was 0.21 ± 0.02 and 0.19 ± 0.02 for UV irradiation from medium pressure and low pressure mercury vapor lamps, respectively. Band pass filter experiments revealed that the quantum yield is constant at wavelengths >200 nm. The same dimers formed in laboratory grade water when either of the two UV sources was used. Dimers did not form in wastewater effluent matrix, and diclofenac epoxide molecules may have formed bonds with organic matter rather than each other Implications for the importance of dimer formation in NOM are discussed.  相似文献   

11.
The photolysis of Meobal (3,4,xylyl-N-methyl carbamate) and of Mesurol (4-methylthio-N-methyl carbamate) has been examined in aerated and degassed ethanol and cyclohexane solutions. The exciting wavelength for Mesurol photolysis was > 300nm. Most Meobal photolyses were carried out at 265nm, with a few at 313nm. The major products in the photolysis of Meobal are 3,4 dimethylphenol, 2-hydroxy-4, 5-dimethyl-N-methylbenzamide, 2-hydroxy-5,6-dimethyl-N-methylbenzamide and ortho-xylene. The photolysis of Mesurol yields only one major product 4-methylthio-3,5-dimethyl phenol.  相似文献   

12.
The products and mechanism of secondary organic aerosol (SOA) formation from the OH radical-initiated reactions of linear alkenes in the presence of NOx were investigated in an environmental chamber. The SOA consisted primarily of products formed through reactions initiated by OH radical addition to the CC double bond, including β-hydroxynitrates and dihydroxynitrates, as well as cyclic hemiacetals, dihydrofurans, and dimers formed from particle-phase reactions of dihydroxycarbonyls. 1,4-Hydroxynitrates formed through reactions initiated by H-atom abstraction also appeared to contribute. Product yields and OH radical and alkoxy radical rate constants taken from the literature or calculated using structure–reactivity methods were used to develop a quantitative chemical mechanism for these reactions. SOA yields were then calculated using this mechanism with gas-particle partitioning theory and estimated product vapor pressures for comparison with measured values. Calculated and measured SOA yields agreed very well at high carbon numbers when semi-volatile products were primarily in the particle phase, but diverged with decreasing carbon number to a degree that depended on the model treatment of dihydroxycarbonyls, which appeared to undergo reversible reactions in the particle phase. The results indicate that the chemical mechanism developed here provides an accurate representation of the gas-phase chemistry, but the utility of the SOA model depends on the partitioning regime. The results also demonstrate some of the advantages of studying simple aerosol-forming reactions in which the majority of products can be identified and quantified, in this case leading to insights into both gas- and particle-phase chemistry.  相似文献   

13.
Ji Y  Zeng C  Ferronato C  Chovelon JM  Yang X 《Chemosphere》2012,88(5):644-649
The extensive utilization of β-blockers worldwide led to frequent detection in natural water. In this study the photolysis behavior of atenolol (ATL) and toxicity of its photodegradation products were investigated in the presence of nitrate ions. The results showed that ATL photodegradation followed pseudo-first-order kinetics upon simulated solar irradiation. The photodegradation was found to be dependent on nitrate concentration and increasing the nitrate from 0.5 mM L−1 to 10 mM L−1 led to the enhancement of rate constant from 0.00101 min−1 to 0.00716 min−1. Hydroxyl radical was determined to play a key role in the photolysis process by using isopropanol as molecular probe. Increasing the solution pH from 4.8 to 10.4, the photodegradation rate slightly decreased from 0.00246 min−1 to 0.00195 min−1, probably due to pH-dependent effect of nitrate-induced OH formation. Bicarbonate decreased the photodegradation of ATL in the presence of nitrate ions mainly through pH effect, while humic substance inhibited the photodegradation via both attenuating light and competing radicals. Upon irradiation for 240 min, only 10% reduction of total organic carbon (TOC) can be achieved in spite of 72% transformation rate of ATL, implying a majority of ATL transformed into intermediate products rather than complete mineralization. The main photoproducts of ATL were identified by using solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC-MS) techniques and possible nitrate-induced photodegradation pathways were proposed. The toxicity of the phototransformation products was evaluated using aquatic species Daphnia magna, and the results revealed that photodegradation was an effective mechanism for ATL toxicity reduction in natural waters.  相似文献   

14.
The gas phase atmospheric degradation of diazinon has been investigated at the large outdoor European Photoreactor (EUPHORE) in Valencia, Spain. The rate constant for reaction of diazinon with OH radicals was measured using a conventional relative rate method with di-n-buthylether as reference compound being k = (3.5 ± 1.2) × 10−11 cm3 molecule−1 s−1 at 302 ± 10 K and atmospheric pressure. The available evidence indicates that tropospheric degradation of diazinon is mainly controlled by reaction with OH radicals, and that the tropospheric lifetime with respect to the OH reaction is estimated to be around 4 h whereas its lifetime with respect to the photolysis is higher than 1 d under our conditions. Significant aerosol formation was observed following the reaction of diazinon with OH radicals, and the main carbon-containing products detected in the particle phase were hydroxydiazinon, hydroxydiazoxon and 2-isopropyl-6-methyl-pyrimidinyl-4-ol.  相似文献   

15.
The solar photodegradation of 16 polycyclic aromatic hydrocarbons (PAHs), sorbed on surfaces of pine [Pinua thunbergii] needles was investigated. The PAHs were produced by combustion of polystyrene and exposed onto the surfaces of pine needles. The disappearance of PAHs sorbed on the pine needle surfaces is mainly caused by volatilization and photolysis, with photolysis playing a major role. The volatilization rates correlate with PAH molecular weight significantly. The photolysis of the 16 PAHs follows first-order kinetics and their photolysis half-lives (t1/2,P) range from 12.9 h for naphthalene to 65.4 h for fluorene. The PAHs have similar half-lives whether they are sorbed on spruce or pine needles. Compared with water, the cuticular waxes of pine needles can stabilize photolysis of PAHs and facilitate accumulation of PAHs. t1/2,P for selected PAHs correlate with semi-empirically calculated energy of the highest occupied orbital (EHOMO). Photochemical behaviors of PAHs are dependent not only on their molecular structures but also the physical–chemical properties of the substrate on which they are adsorbed.  相似文献   

16.
A radiative transfer model and photochemical box model are used to examine the effects of clouds and aerosols on actinic flux and photolysis rates, and the impacts of changes in photolysis rates on ozone production and destruction rates in a polluted urban environment like Houston, Texas. During the TexAQS-II Radical and Aerosol Measurement Project the combined cloud and aerosol effects reduced j(NO2) photolysis frequencies by nominally 17%, while aerosols reduced j(NO2) by 3% on six clear sky days. Reductions in actinic flux due to attenuation by clouds and aerosols correspond to reduced net ozone formation rates with a nearly one-to-one relationship. The overall reduction in the net ozone production rate due to reductions in photolysis rates by clouds and aerosols was approximately 8 ppbv h?1.  相似文献   

17.
Abstract

The effect of two sublethal fenitrothion concentrations (0.02 and 0.04 mg/L) on the energy metabolism of the european eel Anguilla anguilla and its recovery from intoxication was investigated. Analysis of various parameters such as glycogen, proteins and total lipids was made on liver and muscle eel tissues after 2, 8, 12, 24, 32, 48, 56, 72 and 96 hr of fenitrothion (0,0‐dimethyl 0–3‐methyl‐4‐nitrophenyl phosphorothioate) exposure. Subsequently, the fish were allowed recovery periods of 8, 12, 24, 48, 72, 96, 144 and 192 hr in clean water, and the same parameters were again evaluated. The results obtained during the exposure to the pesticide as well as during the recovery phase were used to calculate the caloric content in both tissues of A. anguilla. A reduction in energy reserves in the selected tissues was observed after exposure to both fenitrothion concentrations and the caloric content in those animals was lower than in the controls. Most of the metabolic disorders did not persist after allowing recovery in clean water during a week.  相似文献   

18.
Photochemical advanced oxidation processes have been considered for the treatment of water and wastewater containing the herbicide atrazine (ATZ), a possible human carcinogen and endocrine disruptor. In this study, we investigated the effects of the photon emission rate and initial concentration on ATZ photolysis at 254 nm, an issue not usually detailed in literature. Moreover, the role of reactive oxygen species (ROS) is discussed. Photon emission rates in the range 0.87?×?1018–3.6?×?1018 photons L?1 s?1 and [ATZ]0?=?5 and 20 mg L?1 were used. The results showed more than 65 % of ATZ removal after 30 min. ATZ photolysis followed apparent first-order kinetics with k values and percent removals decreasing with increasing herbicide initial concentration. A fivefold linear increase in specific degradation rate constants with photon emission rate was observed. Also, regardless the presence of persistent degradation products, toxicity was efficiently removed after 60-min exposure to UV radiation. Experiments confirmed a noticeable contribution of singlet oxygen and radical species to atrazine degradation during photolysis. These results may help understand the behavior of atrazine in different UV-driven photochemical degradation treatment processes.  相似文献   

19.
Abstract

Wine and Arak, the national alcoholic drink in Lebanon, were prepared from grape juice fortified with fenitrothion to a concentration of 20ppm. Samples of the 11 fractions produced by the fermentation and distillation steps were analyzed for fenitrothion residues using gas chromatography (GC) and enzyme‐linked immunosorbent assay (ELISA). Results of residue analyses showed that the two techniques were highly correlated (r = 0.978) and indicated that fenitrothion was stable during the fermentation steps but not during distillation. The clarified wine 35 days later contained about 85% (15.3 ppm) of the fenitrothion concentration found in the juice as determined by GC analysis. Arak was prepared by a two‐steps distillation of the clarified wine. The alcohol distillate and undistilled fraction from the first distillation contained 2.5 ppm and 5.8 ppm of fenitrothion, respectively. No fenitrothion residues were detected by both techniques in the four fractions collected from the second distillation step.  相似文献   

20.
This work aimed to investigate the effectiveness of ultraviolet (UV) radiation on the degradation of the antimicrobial triclocarban (TCC). We investigated the effects of several operational parameters, including solution pH, initial TCC concentration, photocatalyst TiO2 loading, presence of natural organic matter, and most common anions in surface waters (e.g., bicarbonate, nitrate, and sulfate). The results showed that UV radiation was very effective for TCC photodegradation and that the photolysis followed pseudo-first-order kinetics. The TCC photolysis rate was pH dependent and favored at high pH. A higher TCC photolysis rate was observed by direct photolysis than TiO2 photocatalysis. The presence of the inorganic ions bicarbonate, nitrate, and sulfate hindered TCC photolysis. Negative effects on TCC photolysis were also observed by the addition of humic acid due to competitive UV absorbance. The main degradation products of TCC were tentatively identified by gas chromatograph with mass spectrometer, and a possible degradation pathway of TCC was also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号