首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
Polycyclic aromatic hydrocarbons (PAHs) and dioxins are lipophilic organic pollutants occurring widely in the terrestrial environment. In order to study the PAHs and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) transfer in the food chain, pigs have been fed with milk mixed either with 14C-phenanthrene, with 14C-benzo[a]pyrene or with 14C-TCDD. The analysis of portal and arterial blood radioactivity showed that both PAHs and TCDD were absorbed with a maximum concentration at 4-6 h after milk ingestion. Then, the blood radioactivity decreased to reach background levels 24 h after milk ingestion. Furthermore, the portal and arterial blood radioactivities were higher for phenanthrene (even if the injected load was the lowest) than these of benzo[a]pyrene or these of TCDD, in agreement with their lipophilicity and water solubility difference. Main 14C absorption occurred during the 1-3 h time period after ingestion for 14C-phenanthrene and during the 3-6 h time period for 14C-benzo[a]pyrene and for 14C-TCDD. 14C portal absorption rate was high for 14C-phenanthrene (95%), it was close to 33% for 14C-benzo[a]pyrene and very low for 14C-TCDD (9%). These results indicate that the three studied molecules have a quite different behaviour during digestion and absorption. Phenanthrene is greatly absorbed and its absorption occurs via the blood system, whereas benzo[a]pyrene and TCDD are partly and weakly absorbed respectively. However these two molecules are mainly absorbed via the portal vein.  相似文献   

4.
Abstract

Mass balance and fate of atrazine‐ 14C and pentachlorophenol‐ 14C (PCP‐ 14C) were studied in short‐term tests in a closed aerated laboratory soil‐plant system, using two concentrations in soil and two plant species, as well as under outdoor conditions for one vegetation period. In the laboratory, for both pesticides bioaccu‐mulation factors of radiocarbon taken up by the roots into plants were low. They were higher for lower (1 ppm) than for higher soil concentrations (6 ppm for atra‐zine, 4 ppm for pentachlorophenol) and varied with the plant species. Mineralization to 14CO2 in soil was negatively related to soil concentration only for PCP‐ 14C. Conversion rates in soil including the formation of soil‐bound residues were higher for the lower concentrations of both pesticides than for the higher ones; conversion rates in plants were species‐dependent. In 14 terms of CO2 formation and of conversion rates, PCP was less persistent in soil than was atrazine. For both pesticides, laboratory data on conversion and mineralization gave a rough prediction of their persistence in soil under long‐term outdoor conditions, whereas bio‐accumulation factors in plants under long‐term outdoor conditions could not be predicted by short‐term laboratory experiments.  相似文献   

5.
An Indian sandy loam soil was initially treated with 1 kg a.i. ha(-1) of either [(14)C]-p,p'-DDT or [(14)C]-gamma-HCH during winter. DDT concentration after 30 days declined to 75.3%, which included 2.1% soil-bound residues. After 150 days, DDT levels further decreased to 42.4% with a concomitant increase in bound residues amounting to 5.9%. Identical treatment with HCH caused the residue levels to be reduced to 67.4 and 23.6%, after 30 and 150 days, respectively. During this period, the soil-bound residues of HCH increased from 5.2 to 12.8%. Repeat application to pre-treated soils in summer and subsequent field exposure for 30 days reduced the concentration of DDT to 52.1% and that of HCH to 42.4% of the total concentration following the second treatment. In parallel control experiments, which received only a single treatment, DDT levels declined to 61.3%, while HCH slumped to 45.3%, indicating a slower dissipation rate than in the corresponding repeated treatments. In repeat experiments, the soil-bound residues of DDT and HCH showed only a 1.07 to 1.08-fold increase in 30 days, as compared to three to ten-times increase in the control experiments. The results amply demonstrate that pre-treatment of tropical soils with DDT or HCH enhances their rate of dissipation and significantly reduce the formation of their soil-bound residues.  相似文献   

6.
Alkyl nitrates with chain lengths up to fourteen carbons have been detected in the remote troposphere of the South Atlantic Ocean. The concentrations of numerous iso- and n-alkyl nitrates in the range of C3-C12 have been measured. Tenax-GC analysis was applied to determine short chain alkyl nitrates (< C6), while the novel detection of long chain iso- and n-alkyl nitrates was achieved with a high volume sampling technique using silica gel. C3-C12-alkyl nitrates show the lowest concentrations in the trade wind region (3.5 pptv). Higher concentrations in the west wind belt (11.1 pptv) reveal the influence of the South American continent as the source for the alkyl nitrates after long range transport. The concentrations of alkyl nitrates increase in proximity to South America. Measurements of long chain alkyl nitrates in rural air near the city of Ulm (Germany) are given for comparison. In addition, pattern analysis of long chain alkyl nitrates reveal this complex mixture of new compounds to be useful as trace indicators to distinguish continental and marine air masses. Despite the lower photochemical formation yields of primary n-alkyl nitrates compared to secondary n-alkyl nitrates, the primary n-alkyl nitrates are relatively increased in marine air. The reason for this finding cannot be explained so far, but the correlation of secondary/primary n-alkyl nitrates shows a significant differentiation of air samples with continental or marine character.  相似文献   

7.
Abstract

An olive tree was treated twice in the field with 14C‐dimethoate (237.7 (μCi, 2.4 g) and 14C residues were determined in the olive fruits at harvest. The fruits were crushed and pressed to extract the crude oil, then refined by neutralization, bleaching and deodorization. The crude oil contained 14.1% of the total 14C in the olive fruits. Neutralization resulted in a reduction of 14C by about 50% of the total 14C residues in oil. Bleaching and deodorization processes further reduced the 14C residues and the refined oil contained 31.6% (which corresponds to 4.4% of I4C residues of the total 14C in olive fruits) of the total 14C in the crude oil. Industrially extracted crude oil was fortified with 14C‐dimethoate at 1.8 mg kg‐1 (0.02 μCi) level and subjected to the same refining process. A sharp decrease in the amount of 14C was observed by neutralization and the amount of 14C remaining in the refined oil was about 7.3% of the total l4C in the crude fortified oil. The data suggest that the 14C residues in the aged and the fortified oil amples were not of the same nature. The terminal 14C residue in the refined oil obtained from the field experiment did not contain dimethoate and/or its oxon.  相似文献   

8.
Shang TQ  Gordon MP 《Chemosphere》2002,47(9):957-962
Trichloroethylene (TCE) is one of the most prevalent environmental contaminants, and it poses an expensive remediation problem. Phytoremediation has been investigated as a potential tool for the removal of TCE from ground water and soil, and has shown promise in preliminary trials. However, the fate of TCE in plants is largely unknown. Radiolabel studies showed that once taken up and transformed, most of the TCE is incorporated into plant tissue as a non-volatile, un-extractable residue. We describe here an assay for TCE transformation by poplar suspension cells. Using this assay, it was shown that two different activities contribute to the fixation of TCE by poplar cells, one associated with cell walls and insoluble residues, the other associated with a high molecular weight, heat labile fraction of the cell extract. It appears that plant enzymes catalyze some of the transformations.  相似文献   

9.
《Chemosphere》1987,16(7):1521-1526
Under the influence of 2,5, or 10 μg/g atrazine, the degradation of 10 μg/g of the detergent n-dodecylbenzenesulfonate-14C to 14CO2 in an Alfisol soil is inhibited for about 12 days, then stimulated. The overall influence of atrazine after 38 days is a slight inhibition of 14CO2-formation.  相似文献   

10.
The metabolic fate of 2,4-dichlorophenol (DCP) was investigated in six macrophytes representing different life forms. Salvinia natans and Lemna minor were chosen as surface-floating plants, Glyceria maxima and Mentha aquatica as emergent species and Myriophyllum spicatum and Hippuris vulgaris as submerged aquatic plants. After uptake of a [U-phenyl-14C]-DCP solution followed by a 48 h water chase, whole plants (L. minor, S. natans) or excised shoots were harvested and aqueous extracts were analysed by high performance liquid chromatography (HPLC). Metabolites were then isolated, submitted to enzymatic or chemical hydrolyses and characterised by electrospray ionisation-mass spectrometric analyses. Whereas DCP monoglucosides or more complex monoglucoside esters, either malonyl or acetyl, were found in most species, an unusual glucosyl-pentose conjugate was identified as the DCP major metabolite in L. minor and G. maxima. Our results showed for the first time the ability of five macrophytes to uptake and metabolise DCP and the characterisation of their metabolic pathways of DCP biotransformation.  相似文献   

11.
Abstract

Residue disappearance and leaching of 14C‐allyl‐alcohol from different soils were studied in laboratory experiments. Additionally, the uptake of residues by lettuce and carrots was investigated in the greenhouse. In laboratory experiments, residue disappearance and leaching from soils was correlated negatively to the organic matter content. In greenhouse experiments with a sandy loam soil at an application rate normally used in practice, an average of 12.5 % of the applied radioactivity was recovered after an eight day interval between application and sowing. Furthermore, an average of 8 % (sum in soil and plants) of the applied radioactivity was recovered after lettuce or carrot growing. Uptake of residues was higher by carrots than by lettuce, and higher by lettuce roots than by lettuce tops. No bioaccumulation was observed. The residues in soils and plants were, to a high percentage, unextractable and, to a smaller extent, fully water‐soluble products. Unchanged allylalcohol could not be detected by the analytical methods used.  相似文献   

12.
Natural phenolic monomers are ubiquitous in the environment and are involved in the stabilization of atmospheric carbon and the transformation of xenobiotics. Investigations on the stabilization of phenolic carbons and their environmental fate are hampered by the unavailability of commercial [13C]- and [14C]-labeled phenols. Here we report the complete chemical synthesis of the lignin and humus structural monomers p-coumaric, ferulic, and caffeic acids, p-hydroxybenzaldehyde, protocatechualdehyde, vanillin, catechol, and guaiacol, uniformly [13C]- or [14C]-labeled in the aromatic ring, starting from commercially available [U-ring-13C]- or [U-ring-14C]-labeled phenol. The synthesis of these compounds involved selective ortho-hydroxylation of the aromatic ring, Friedel-Crafts alkylation, and Knoevenagel condensation. [U-ring-13C]- or [U-ring-14C]-p-coumaric acid was synthesized via p-hydroxybenzaldehyde with a 75% yield with respect to phenol. Synthesis of [U-ring-13C]- or [U-ring-14C]-ferulic acid, consisting of six single steps via guaiacol and vanillin, had an overall yield of up to 45%. Uniformly ring-labeled caffeic acid was synthesized either via catechol and protocatechualdehyde in five single steps, yielding [U-ring-14C]-caffeic acid with a 37% yield, or via guaiacol, vanillin, and ferulic acid in seven steps, yielding [U-ring-13C]-caffeic acid with an 18% yield. Ferulic acid, [14C]-labeled at beta-C of the propenoic side chain, was synthesized from [2-14C]-malonic acid under Knoevenagel conditions with a 67% yield with respect to malonic acid. Demethylation of the [beta-14C]-ferulic acid with BBr3 in CH3CN resulted in [beta-14C]-caffeic acid with a 62% yield. All [U-ring-13C]-labeled phenolic products were analyzed by 13C nuclear magnetic resonance (13C-NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS).  相似文献   

13.
Abstract

Potato tubers were applied with radiolabelled lindane (U‐14C γ‐ 1,2,3,4,5,6 hexachlorocyclohexane) at three dose levels 30, 150, and 300 ppm and stored for 30, 60 and 90 days at room temperature. The data revealed that lindane penetrated into the pulp tissues through the epidermal layer. The amounts recovered in the peel were found to increase with a greater storage period up to 60 days followed by a drop at 90 days. On the other hand, there was a slight increase in radioactivity in the pulp tissue from 30 to 60 days followed by significant increase after 90 days. The incorporation of the compound in the tubers was dose independent. Methanol extraction showed binding of about 8.1% and 5.8% ofthe applied dose in peel and pulp tissues, respectively. The insecticide was found to be bioavailable when rats health hazard. It is therefore, desirable to demonstrate that the quantity of the terminal residues may be safe for the consumer. In the present investigation an attempt was made to determine the fate and bioavailability of lindane when applied to stored potato tubers.  相似文献   

14.
The preparation of 14C-labelled biphenyl, 2,5-dichlorobiphenyl, 2,4′,5-trichlorobiphenyl, 2,2′,4,5′-tetrachlorobiphenyl, 2′,3,4,4′,5-pentachlorobiphenyl, 2,2′,3,4,4′-pentachlorobiphenyl, 2,3,3′,4′,6-pentachlorobiphenyl and 2,2′,3,3′,6-pentachlorobiphenyl is described [14C]Aniline hydrogen sulfate used as a starting material was acetylated, chlorinated and deacetylated followed by coupling to benzene or an appropriate chlorobenzene to give the biphenyls labelled in the phenyl nuclei having chlorine atoms at the 4-, 2,4- or 2,3,6-positions, respectively. The structures of the labelled compounds were established by comparison with authentic samples among which 2′,3,4,4′,5- and 2,2′,3,4,4′-pentachlorobiphenyl were not earlier described.A simple method for the preparation of 2,3,6-trichloroacetanilide, unlabelled and labelled, was worked out. 2,6-Dichloroacetanilide in concentrated hydrochloric acid gave the meta substituted product when treated with chlorine.An improved thin layer chromatographic technique utilizing plates impregnated with certain tetraalkylammonium salts was used for separation of some of the labelled compounds prepared.  相似文献   

15.
Few techniques exist to measure the biodegradation of recalcitrant organic compounds such as chlorinated hydrocarbons (CHC) in situ, yet predictions of biodegradation rates are needed for assessing monitored natural attenuation. Traditional techniques measuring O2, CO2, or chemical concentrations (in situ respiration, metabolite and soil air monitoring) may not be sufficiently sensitive to estimate biodegradation rates for these compounds. This study combined isotopic measurements (14C and delta13C of CO2 and delta13C of CHCs) in conjunction with traditional methods to assess in situ biodegradation of perchloroethylene (PCE) and its metabolites in PCE-contaminated vadose zone sediments. CHC, ethene, ethane, methane, O2, and CO2 concentrations were measured over 56 days using gas chromatography (GC). delta13C of PCE, trichloroethylene (TCE) and cis-1,2-dichloroethylene (DCE), delta13C and 14C of vadose zone CO2 and sediment organic matter, and delta13C, 14C, and deltaD of methane were measured using a GC-isotope ratio mass spectrometer or accelerator mass spectrometer. PCE metabolites accounted for 0.2% to 18% of CHC concentration suggesting limited reductive dechlorination. Metabolites TCE and DCE were significantly enriched in (13)C with respect to PCE indicating metabolite biodegradation. Average delta13C-CO2 in source area wells (-23.5 per thousand) was significantly lower compared to background wells (-18.4 per thousand) indicating CHC mineralization. Calculated CHC mineralization rates were 0.003 to 0.01 mg DCE/kg soil/day based on lower 14C values of CO2 in the contaminated wells (63% to 107% modern carbon (pMC)) relative to the control well (117 pMC). Approximately 74% of the methane was calculated to be derived from in situ CHC biodegradation based on the 14C measurement of methane (29 pMC). 14C-CO2 analyses was a sensitive measurement for quantifying in situ recalcitrant organic compound mineralization in vadose zone sediments for which limited methodological tools exist.  相似文献   

16.
Abstract

A simple method was developed to produce 14C‐labeled aflatoxin B1 by using the yeastlike phase of Aspergillus parasiticus NRRL 2999. Yeastlike cultures resulted from absence of manganese in a synthetic medium. Sodium acetate‐1‐14C had a 0.22% average incorporation; sodium acetate‐1,2‐14C, 0.70%. The average yield of labeled B1 was 10 mg/500 ml medium with an average specific activity of either 63.3 mCi/mole (C‐l label) or 194.3 mCi/mole (C‐1, 2 label).  相似文献   

17.
Stored wheat treated with radiolabelled pirimiphos-methyl (0-2-diethyl-amino-6-methyl-pyrimidin-4-yl 0,0-dimethyl phosphorothioate) formed bound (nonextractable) 14C residues. Supercritical fluid extraction, gas chromatography and mass spectrometric techniques were used to identify and quantitate the 14C bound residues in wheat grains. The amount of bound 14C residues present after 28 weeks of storage was about 9.9% of the applied radioactivity. Pirimiphos-methyl accounted for 80% of the bound residue. Grain-bound residues were fed to rats for 5 days. After a total period of 8 days a substantially large percentage of the administered bound 14C residues (72.9%) was eliminated in urine while feces contained only 17.9%. Bound pirimiphos-methyl in wheat grain was metabolized in rats by processes involving hydrolysis, N-dealkylation and 0-demethylation. The results indicate that wheat-bound residues of pirimiphos-methyl are highly bioavailable to the rat and may possess a toxicological potential as manifested by a significant reduction in body weight gain.  相似文献   

18.
The Baltic Sea is a species-poor, semi-enclosed, brackish sea, whose sediments contain a wide range of contaminants, including sediment-associated metals and radionuclides. In this study, we have examined and compared bioaccumulation kinetics and assimilation efficiencies of sediment-associated (51)Cr, (63)Ni and (14)C in three key benthic invertebrates (the deposit-feeding Monoporeia affinis, the facultative deposit-feeding Macoma baltica, and the omnivorous Halicryptus spinulosus). Our results demonstrate that (i) all radionuclides were accumulated, (ii) the different radionuclides were accumulated to various extents, (iii) small changes in organic carbon concentration can influence the accumulation, and (iv) the degree of accumulation differed only slightly between species. These processes, together with sediment resuspension and bioturbation, may remobilise trace metals from the sediment to the water and to higher trophic levels, and therefore should be taken into account in exposure models and ERAs.  相似文献   

19.
beta-Hexachlorocyclohexane-14C (1.5 ppm) was administered in the diet to rats for one week. During the elimination phase three therapeutic agents were fed to enhance the clearance. Renal and fecal excreted radioactive products were collected for 8 weeks and extracted. Although significant differences in the total excreted amount of radioactivity were registered between controls and treated rats, there were no quantitative differences in the extractability of the excreta and no differences in the chemical nature of metabolites found. Radioactivity in urine consisted to 100% of conversion products, about 30% of which were unextractable residues. In the organic soluble fraction the 2,4,6-trichlorophenol was the major metabolite in urine and the only metabolite detected in feces. Minor conversion products of beta-HCH in urine were a trichlorohydroxyme-thoxybenzene, a dichlorophenol and a trace of a tetrachlorocyclohexane-isomer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号