首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以玉米秸秆、稻壳在350~500℃制成的生物质炭作为吸附剂,研究其对溶液中Cd2+的吸附特性。通过模拟实验,考察了初始pH、生物质炭用量、吸附时间和Cd2+的起始浓度对吸附的影响。结果表明,2种生物质炭对Cd2+的吸附反应适应pH范围较宽(4.0~7.0);玉米秸秆炭和稻壳炭对Cd2+的吸附速度较快,分别在10和20 min时达到吸附平衡;玉米秸秆炭对溶液中Cd2+的吸附遵循Langmuir等温线模型,而稻壳炭对Cd2+的吸附遵循Freundlich等温线模型。在实验设定的条件下,玉米秸秆炭对溶液中Cd2+的吸附能力强于稻壳炭。  相似文献   

2.
Abstract

Cadmium (Cd) has no known essential biological function, but it is toxic to plants, animals, and humans. A promising approach to prevent Cd from entering the food chain would be to select and/or create Cd‐accumulating plants to remediate contaminated soils or to develop Cd‐excluding plants to reduce Cd flow from soils into foods. The present study was undertaken to examine the differences in Cd influx, transport, and accumulation among five plant species in relation to plant tolerance to Cd toxicity. Ryegrass (Lolium perenne L.) had the least reduction in dry matter which may be due to its lowest Cd transport rate (TR) to shoots at all Cd levels among the plant species tested. White‐clover (Trifolium repens L.) was the most sensitive species to Cd toxicity, likely because of its highest Cd influx rate (IR) and high TR when plants were grown at low Cd2+ activity (≤8 μM). The high tolerance of cabbage (Brassica oleracea var. capitata L.) to moderate Cd toxicity (≤14 μM) appeared to be mainly due to the detoxification of Cd inside plant tissue since it recorded the highest TR and relatively high IR for Cd among the tested species. At Cd2+ activities up to 28 uM, the Cd uptake ratios of shoot/root for ryegrass were, on average, about 50‐fold and 27‐fold lower than that for cabbage and maize (Zea mays L.), respectively. These results showed that Cd could be easily transported into shoots of cabbage and maize, but was mainly confined to roots of ryegrass. We suggest that influx and transport rates, especially transport rate, could be used as plant physiological parameters for screening Cd‐excluding genotypes among monocotyledonous plants.  相似文献   

3.
邓潇  周航  陈珊  陈齐  彭佩钦  廖柏寒  张平 《环境工程学报》2016,10(11):6325-6331
对玉米秸秆和花生壳炭化制备的生物炭,运用高锰酸钾进行改性,研究其对Cd2+的吸附效果。通过批次吸附实验,考察了两种改性生物炭对Cd2+吸附的初始浓度、pH值、接触时间等因素的影响。结果表明,在pH为6.0,Cd2+浓度为100 mg·L-1,温度为20℃,吸附时间为12 h,吸附剂投加量为1.0 g·L-1条件下,改性玉米秸秆炭和花生壳炭对Cd2+的去除率分别为67.03%和46.10%,与未改性的生物炭相比,吸附率分别提高了3.8倍和6.2倍。改性玉米秸秆炭和花生壳炭对溶液中Cd2+的吸附均符合Langmuir和Freundlich等温吸附模型,最大吸附量分别为68.97和55.55 mg·g-1。两种改性生物炭的吸附行为均符合准二级吸附动力学模型,说明其吸附以化学吸附为主。改性玉米秸秆炭和花生壳炭吸附Cd2+后,可用NaOH溶液进行解吸,解吸4次后,对Cd2+仍有较好的吸附效果,吸附量分别为31.40和24.10 mg·g-1。这说明,高锰酸钾改性玉米秸秆炭和花生壳炭是一种吸附性能高且能够重复利用的去除溶液中Cd2+的吸附材料。  相似文献   

4.
A pot trial was conducted to assess the efficiency of sepiolite-induced cadmium (Cd) immobilization in ultisoils. Under Cd concentrations of 1.25, 2.5, and 5 mg?kg?1, the available Cd in the soil after the application of 1–10 % sepiolite decreased by a maximum of 44.4, 23.0, and 17.0 %, respectively, compared with no sepiolite treatments. The increase in the values of soil enzyme activities and microbial number proved that a certain metabolic recovery occurred after sepiolite treatment. The dry biomass of spinach (Spinacia oleracea) increased with increasing sepiolite concentration in the soil. However, the concentration (dry weight) of Cd in the spinach shoots decreased with the increase in sepiolite dose, with maximum reduction of 92.2, 90.0, and 84.9 %, respectively, compared with that of unamended soils. Under a Cd level of 1.25 mg?kg?1, the Cd concentration in the edible parts of spinach at 1 % sepiolite amendment was lower than 0.2 mg?kg?1 fresh weight, the maximum permissible concentration (MPC) of Cd in vegetable. Even at higher Cd concentrations (2.5 and 5 mg?kg?1), safe spinach was produced when the sepiolite treatment was up to 5 %. The results showed that sepiolite-assisted remediation could potentially succeed on a field scale by decreasing Cd entry into the food chain.  相似文献   

5.
以蚕沙生物炭为原料,以KOH为活化剂,通过浸渍(KBC)和浸渍-热解(KBC400)活化工艺制备蚕沙基生物炭,用于吸附去除水体中的镉离子(Cd2+).运用一系列的表征技术分析了生物炭的形貌和性质,并通过批量实验考察了投加量、pH、共存离子、吸附时间和Cd2+浓度等因素对Cd2+吸附性能的影响.表征实验结果表明,活化的蚕...  相似文献   

6.
利用液相还原法制备得到的核壳结构的铁纳米线(Fe@Fe2O3)进行了去除水中 Cd2+的实验研究。考察了溶液初始pH、金属离子浓度、反应时间、吸附剂投加量、反应温度等因素对于吸附反应的影响。采用了X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能量弥散分析(EDS)以及X射线光电子能谱(XPS)等分析手段对材料进行了表征并分析去除机理。结果表明,Fe@Fe2O3纳米线可以有效快速去除水溶液中的Cd2+,吸附机理涉及物理吸附和化学吸附,无氧化还原反应发生。  相似文献   

7.
Ammonium ions are one of the most encountered nitrogen species in polluted water bodies. High level of ammonium ion in aqueous solution imparts unpleasant taste and odor problems, which can interfere with the life of aquatics and human population when discharged. Many chemical methods are developed and being used for removal of ammonium ion from aqueous solution. Among various techniques, adsorption was found to be the most feasible and environmentally friendly with the use of natural-activated adsorbents. Hence, in this study, coconut shell-activated carbon (CSAC) was prepared and used for the removal of ammonium ion by adsorption techniques. Ammonium chloride (analytical grade) was purchased from Merck Chemicals for adsorption studies. The CSAC was used to adsorb ammonium ions under stirring at 100 rpm, using orbital shaker in batch experiments. The concentration of ammonium ion was estimated by ammonia distillate, using a Buchi distillation unit. The influence of process parameters such as pH, temperature, and contact time was studied for adsorption of ammonium ion, and kinetic, isotherm models were validated to understand the mechanism of adsorption of ammonium ion by CSAC. Thermodynamic properties such as ?G, ?H, and ?S were determined for the ammonium adsorption, using van't Hoff equation. Further, the adsorption of ammonium ion was confirmed through instrumental analyses such as SEM, XRD, and FTIR. The optimum conditions for the effective adsorption of ammonium ion onto CSAC were found to be pH 9.0, temperature 283 K, and contact time 120 min. The experimental data was best followed by pseudosecond order equation, and the adsorption isotherm model obeyed the Freundlich isotherm. This explains the ammonium ion adsorption onto CSAC which was a multilayer adsorption with intraparticle diffusion. Negative enthalpy confirmed that this adsorption process was exothermic. The instrumental analyses confirmed the adsorption of ammonium ion onto CSAC.  相似文献   

8.
This paper reports on the effect of aqueous and nano-particulated Pb on oxidative stress (lipid peroxidation), cytoxicity, and cell mortality. As determined by the Thiobarbituric Acid Reactive Substances (TBARS) method, only 6 h after incubation aqueous suspensions bearing nano-sized PbO2, soluble Pb(II), and brain-homogenate only suspensions, were determined to contain as much as ca. 7, 5, and 1 nmol TBARS mg protein−1, respectively. Exposure of human cells (central nervous system, prostate, leukemia, colon, breast, lung cells) to nano-PbO2 led to cell-growth inhibition values (%) ca. ≤18.7%. Finally, as estimated by the Artemia salina test, cell mortality values were found to show high-survival larvae rates. Microscopic observations revealed that Pb particles were swallowed, but caused no mortality, however.  相似文献   

9.
Heterogeneous photocatalytic degradation of three-selected herbicide derivatives: (1) picloram (4-Amino-3,5,6-trichloropyridine-2-carboxylic acid, (2) dicamba (2-Methoxy-3,6-dichlorobenzoic acid, and (3) floumeturon (N,N-Dimethyl-N-[3-(trifluoromethyl)phenyl]-urea) has been investigated in aqueous suspensions of titanium dioxide under a variety of conditions. The degradation was studied by monitoring the change in substrate concentration employing UV spectroscopic technique and decrease in total organic carbon (TOC) content as a function of irradiation time under a variety of conditions. The degradation of the herbicide was studied under different conditions such as pH, catalyst concentration, substrate concentration, different types of TiO2, and in the presence of electron acceptors such as hydrogen peroxide (H2O2), potassium bromate (KBrO3), and ammonium persulphate (NH4)2S2O8 besides molecular oxygen. The degradation rates were found to be strongly influenced by all the above parameters. The photocatalyst Degussa P25 was found to be more efficient as compared with other photocatalysts in the case of dicamba (2) and floumeturon (3), whereas Hombikat UV100 was found to be better for the degradation of picloram (1). The herbicide picloram (1) was found to degrade faster as compared to dicamba (2) and floumeturon (3). The degradation products were analyzed by gas chromatography-mass spectrometry (GC/MS) technique, and plausible mechanisms for the formation of products have been proposed.  相似文献   

10.
Bioaccumulation of Hg, Cd and Pb by eight ecophysiologically distinct earthworm species was studied in 27 polluted and uncontaminated forest soils. Lowest tissue concentrations of Hg and Cd occurred in epigeic Lumbricus rubellus and highest in endogeic Octolasion cyaneum. Soils dominated by Dendrodrilus rubidus possess a high potential of risk of Pb biomagnification for secondary predators. Bioconcentration factors (soil-earthworm) followed the sequence ranked Cd > Hg > Pb. Ordination plots of redundancy analysis were used to compare HM concentrations in earthworm tissues with soil, leaf litter and root concentrations and with soil pH and CEC. Different ecological categories of earthworms are exposed to Hg, Cd and Pb in the topsoil by atmospheric deposition and accumulate them in their bodies. Species differences in HM concentrations largely reflect differences in food selectivity and niche separation.  相似文献   

11.
Fe3O4/SDS磁性纳米颗粒吸附水体中的Cd2+和Zn2+   总被引:2,自引:1,他引:2  
黄文  周梅芳 《环境工程学报》2012,6(4):1251-1256
一种新型纳米固相萃取吸附剂,由阴离子表面活性剂十二烷基磺酸钠(SDS)包裹在Fe3O4磁性纳米颗粒表面形成,用于吸附水溶液中的重金属离子。研究了吸附过程的主要影响因素(如SDS浓度、溶液pH等)以及解吸过程的最佳条件,并对其机理进行了初步的探讨。研究结果表明,共沉淀法制备的Fe3O4颗粒粒径分布均匀,平均粒径约为54 nm;SDS浓度为300 mg/L时,Fe3O4/SDS磁性纳米颗粒吸附Cd2+和Zn2+的能力最强;在一定浓度范围内,Fe3O4/SDS体系对Cd2+和Zn2+的吸附平衡数据符合Langmuir吸附等温方程,饱和吸附量分别为22.42 mg/g和13.95 mg/g。最终结果表明,Fe3O4/SDS磁性纳米颗粒具有较强磁分离能力和较好的吸附效果。  相似文献   

12.
以粉煤灰为吸附剂去除溶液中的磷,考察了其吸附除P动力学特征、热力学特征以及溶液初始pH和粉煤灰投加量对吸附除P效果的影响,并对其吸附除P机理做了初步探讨。结果表明,在给定实验条件下,粉煤灰对P具有较好的去除效果,随着初始P浓度从10 mg/L升高到80 mg/L,平衡吸附量为0.46~2.44 mg P/g粉煤灰,吸附效率从92.2%降低至61.1%;对不同浓度的含P溶液,粉煤灰最适用量为0.6~1.5 g粉煤灰/mg P;相同反应条件下,当温度由25℃升高到45℃时,P初始吸附速率提高了3倍;粉煤灰对P的吸附过程能够较好地拟合Langmuir、Freundlich及D-R吸附等温模型,相关系数均在0.98以上。通过对吸附饱和的粉煤灰进行解析实验发现,初始P浓度较低(<50 mg/L)时,以化学吸附为主,而在初始P浓度较高(>80 mg/L)时,则以物理吸附为主。  相似文献   

13.
Rai V  Khatoon S  Bisht SS  Mehrotra S 《Chemosphere》2005,61(11):909-1650
The pollution is increasing in the environment by different kinds of human activities, which results in the accumulation of heavy metals including cadmium in the soil and water and it causes different types of problems to living beings. As the plants are utilized by human being as food and medicine, therefore, it is mandatory to see the effect of metals on plants. In this context, efforts have been made to observe the effect of different concentration of Cadmium (Cd) on Phyllanthus amarus Schum. and Thonn., because Cd is the widespread metal and the plants response to low and high level of exposure is a complex phenomenon. P. amarus is mostly grown as weed in agricultural and waste lands. It is a reputed plant used in Indian indigenous systems of medicine with hepatoprotective, diuretic, stomachic properties and is recently being used for the treatment of hepatitis B. The study revealed that Cd causes significant decrease in fresh and dry weight, length of root and shoot, protein, chlorophyll, carotenoids and sugar and increase in starch content. It is interesting to note that the therapeutically active compounds—phyllanthin and hypophyllanthin, enhanced at certain levels of Cd due to abiotic stress. Besides, the ultramorpholical changes were also observed in stomatal opening and wax deposition on both the surfaces of leaves.  相似文献   

14.

Background

The adsorption characteristics of Pb2+ ions from aqueous solutions onto calix[4]naphthalene have been investigated.

Method

Calix[4]naphthalene was prepared by the condensation of 1-naphthol and formaldehyde (1:2) in presence of hydrochloric acid at 80°C. The effect of various operation parameters, such as solution pH, initial metal ion concentration, contact time, and temperature, on the adsorption capacity of calix[4]naphthalene for Pb2+ have been investigated.

Result

Experimental results showed that the adsorption of Pb2+ ions increased with the increase in solution pH and temperature. Langmuir and Freundlich isotherms models were used to describe the adsorption behavior of Pb2+ by calix[4]naphthalene. Equilibrium data fitted well with the Langmuir isotherm model and the maximum adsorption capacity of calix[4]naphthalene for Pb2+ at 30°C was found to be 29.15 mg g?1. Kinetic studies indicated that the adsorption followed pseudo-second order model and the thermodynamic studies revealed that the adsorption process was spontaneous and endothermic in nature. The obtained results demonstrated that calix[4]naphthalene can be used as an effective adsorbent for Pb2+ ions removal from water.  相似文献   

15.
Heterogeneous photocatalysed reaction of three selected pesticide derivatives such as propham (1), propachlor (2) and tebuthiuron (3) has been investigated in aqueous suspensions of titanium dioxide by monitoring the change in substrate concentration employing UV Spectroscopic analysis and depletion in Total Organic Carbon (TOC) content as a function of irradiation time. The degradation kinetics was studied under different conditions such as pH, catalyst concentration, substrate concentration, different types of TiO(2) and in the presence of electron acceptors such as hydrogen peroxide (H(2)O(2)), potassium bromate (KBrO(3)) and ammonium persulphate (NH(4))(2)S(2)O(8) besides molecular oxygen. The degradation rates were found to be strongly influenced by all the above parameters. The photocatalyst Degussa P25 was found to be more efficient as compared with other photocatalysts. The pesticide derivative propham (1) was found to degrade faster as compared to propachlor (2) and tebuthiuron (3). An attempt has also been made to identify the products formed during the photooxidation process through GC/MS analysis technique. All the model pollutants showed the formation of several intermediate products, which were identified on the basis of molecular ion and mass spectrometric fragmentation pattern. A probable mechanism for the formation of the products has been proposed.  相似文献   

16.
针对生物炭除磷领域中缺乏兼具经济性和实用性的Mg改性生物炭的问题,以海水为廉价Mg源,制备了海水改性生物炭颗粒(SBC-g),探究了其物理化学特性和吸附磷酸盐机理,考察了柱高、流量和初始质量浓度对SBC-g动态吸附磷酸盐的影响及对含磷养殖尾水的处理效果,并对SBC-g进行了经济性分析。结果表明,改性后SBC-g表面负载的Mg(OH)2纳米片可增加吸附的活性位点,增大了介孔的孔径和孔容,改变了表面电荷性质,从而提高了其对磷酸盐的吸附容量。在一定范围内,柱高的增加或流量和初始质量浓度的降低均可延长穿透时间。Thomas模型对穿透曲线拟合良好(R2 > 0.919),可以较为准确地反映动态吸附过程。SBC-g吸附柱对养殖尾水具有良好的除磷效果,在最佳条件下吸附柱的穿透时间为589 min,磷饱和吸附量为1 051 mg·kg−1。SBC-g的生产成本约为2.65 元·kg−1,和其他除磷吸附剂相比具有较大的价格优势,兼具经济性和实用性。该研究结果可为Mg改性生物炭的制备及其在水体磷污染治理领域的实际应用提供参考。  相似文献   

17.
Sorption of three pesticides (chlorpyrifos, metalaxyl and penconazole) has been measured on a commercial clay montmorillonite and on the same mineral modified with either of two cationic-surfactant micelles. Both micelle–clay complexes, commercial names Cloisite 20A and Cloisite 30B, showed a good capacity to sorb all three pesticides from water, whereas their sorption on the natural montmorillonite was not described by an isotherm. Modelling sorption on both micelle–clay complexes showed that the Freundlich sorption constant (K F) was higher for chlorpyrifos on Cloisite 20A (K F = 7.76) than on Cloisite 30B (K F = 5.91), whereas the sorption of metalaxyl was stronger on Cloisite 30B (K F = 1.07) than on Cloisite 20A (K F = 0.57). Moreover the micelle–clay complex Cloisite 20A also showed a good affinity for penconazole, the maximum quantity adsorbed (q m) of 6.33 mg g?1 being 45% more than that on Cloisite 30B. Single-batch adsorption of each pesticide onto both micelle–clay complexes was studied using the Freundlich isotherm for chlorpyrifos and metalaxyl and the Langmuir isotherm for penconazole. The Cloisite 20A micelle–clay complex was predicted to require 23% less adsorbent to treat certain volumes of wastewater containing 30 mg L?1 chlorpyrifos, 43% more to treat metalaxyl similarly and 57% less to treat penconazole compared with Cloisite 30B.  相似文献   

18.
选择菜籽饼作为有机物料,模拟水田条件,研究菜籽饼施用后重金属污染土壤中镉-铜的赋存形态的变化及其有效性的影响。结果表明,菜籽饼施加后,土壤pH波动在0.5内,变化较小。但在一定程度促进土壤中镉、铜由弱酸提取态向可还原态转化,残渣态占比变化均较小。经培养一定时间,植物有效态DTPA-Cd由1.26±0.03下降至0.69±0.03,下降幅度约为45.2%,DTPA-Cu由82.9±0.09下降至48.7±0.09,最大下降幅度约为41.3%,下降较为明显。同时,土壤溶液中可溶性碳(DOC)和可溶性氮(DON)的含量显著增加,分别增加约4.14倍和6.48倍,因此,菜籽饼应用于重金属污染水稻土改良,可以间接降低水稻中重金属的含量。  相似文献   

19.
Spent coffee grounds (SCG) have been used for the production of activated carbon (AC) by impregnation with different ratios of phosphoric acid at 600?°C, Xp (H3PO4/coffee): 3:130%, 4:130%, 3:150% and 4:150%. The obtained AC was characterized by BET, FTIR and SEM. BET surface area corresponds to 803.422 m2 g?1. The influences of the main parameters such as contact time, the pesticides initial concentration, adsorbent dose, pH and temperature on the efficiency of separation process were investigated during the batch operational mode. Results were modeled by adsorption isotherms: Langmuir, Freundlich and Temkin isotherms, which gave satisfactory correlation coefficients. The maximum adsorption capacities calculated from the Langmuir isotherms were 11.918?mg g?1 for carbendazim and 5.834?mg g?1 for linuron at room temperature. Adsorption kinetics of carbendazim and linuron have been studied by the pseudo-first-order, the pseudo-second-order and the intraparticle diffusion model. The results of adsorption kinetics have been fitted the best by pseudo-second-order model. The resulted data from FTIR characterization pointed to the presence of many functional groups on the AC surface. SCG adsorbent, as an eco-friendly and low-cost material, showed high potential for the removal of carbendazim and linuron from aqueous solutions.  相似文献   

20.
In the present study, the effects of biosorbent Aspergillus niger dosage, initial solution pH and initial Ni(II) concentration on the uptake of Ni(II) by NaOH pretreated biomass of A. niger from aqueous solution were investigated. Batch experiments were carried out in order to model and optimize the biosorption process. The influence of three parameters on the uptake of Ni(II) was described using a response surface methodology (RSM) as well as Langmuir and Freundlich isotherm models. Optimum Ni(II) uptake of 4.82 mg Ni(II) g−1 biomass (70.30%) was achieved at pH 6.25, biomass dosage of 2.98 g L−1 and initial Ni(II) concentration of 30.00 mg L−1 Ni(II). Langmuir and Freundlich were able to describe the biosorption isotherm fairly well. However, prediction of Ni(II) biosorption using Langmuir and Freundlich isotherms was relatively poor in comparison with RSM approaches. The biosorption mechanism was also investigated by using Fourier transfer infrared (FT-IR) analysis of untreated, NaOH pretreated, and Ni(II) loaded A. niger biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号