首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
采用十六烷基三甲基氯化铵(CTAC)改性粉末活性炭(PAC),来提高活性炭电极的电化学性能和电极对砷离子的吸附能力.以质量浓度为1 mmol·L~(-1)的CTAC改性粉末活性炭(PAC)12 h,并以此活性炭制备电极,电极的比电容为67 F·g~(-1),相比未改性PAC电极提升45%,电极扩散电阻稍有增加.通过优化电极制备成分配比,以CB∶PVDF∶CTAC-PAC=15∶5∶80比例制备的CTAC-PAC电极的比电容为112 F·g~(-1),相比未改性PAC电极提升143%,扩散电阻稍有增加.在100μg·L~(-1)砷溶液吸附实验中,优化制备条件后的CTAC-PAC电极,对砷离子吸附量相比未改性PAC电极提升32%,出水砷浓度为8μg·L~(-1).  相似文献   

2.
本文利用榴莲壳和氯化高铁水热法制备具有磁性的榴莲碳,利用XRD、FTIR和SEM对榴莲碳进行结构表征,并研究榴莲碳对水体中四环素的吸附性能,以及水热反应温度、溶液p H和盐浓度等对榴莲碳吸附去除四环素性能的影响.结果表明,在水热温度170℃加热10 h条件下制备的榴莲碳D170具有明显的纳米片状和颗粒状结构,随着温度的升高,制备的榴莲碳XRD衍射峰增强,形成的结晶更好.吸附实验表明,随着水热制备温度的升高,制备的榴莲碳对四环素的吸附去除率呈降低趋势.榴莲碳对四环素的吸附热力学模型拟合表明:D170、D180和D200对水体中四环素的最大吸附容量分别为153.97 mg·g~(-1)、80.26 mg·g~(-1)和34.14 mg·g~(-1),其中D170对四环素的吸附效果最好,最佳吸附溶液p H值约为6.0,吸附热力学过程符合Freundich模型,吸附动力学过程符合假二级动力学模型.溶液中添加Na Cl能促进榴莲碳对四环素的吸附作用,当Na Cl浓度高于0.1 mol·L~(-1),榴莲碳对四环素的去除率达到100%;而添加Ca(NO_3)_2可降低榴莲碳对四环素的吸附能力,当Ca(NO_3)_2浓度从0.1 mol·L~(-1)增加到1.0 mol·L~(-1)时,水溶液中四环素的去除率从93%降低到78%.  相似文献   

3.
粘土改性条件的研究Ⅰ.膨润土的改性   总被引:12,自引:2,他引:12  
考察了改性膨润土的致孔剂加入量、溴化十六烷基三甲胺 (CTMAB)加入量、CTMAB溶液浓度和吸附时间对CTMAB吸附量的影响 .测得加工后的膨润土对CTMAB的饱和吸附容量为 34 0 0± 30 0mg·1 0 0g- 1膨润土 .膨润土对CTMAB的吸附表现出Lang muir吸附特征 .6 0℃ ,当CTMAB的加入量为膨润土饱和吸附容量的 1 3— 1 5倍 ,CTMAB溶液浓度≥ 2mg·ml- 1,吸附时间超过 2 0h时 ,膨润土基本达到饱和吸附 .并考察了有机膨润土对于水中苯、甲苯、乙苯、邻二甲苯 (BTEX)的去除效果 .  相似文献   

4.
李桥  余沛霖  欧红香  贡晨霞 《环境化学》2020,39(6):1617-1625
研究以UiO-66为稳定粒子,阿莫西林(AMOX)为模板分子通过皮克林乳液法制备分子印迹中空微球(MIHM),并用于分离富集溶液中的阿莫西林.通过SEM、FT-IR和XRD等方法和静态吸附实验对MIHM的理化性质和吸附性能进行研究.结果表明,UiO-66纳米粒子能够稳定皮克林乳液,粒子分布于中空MIHM胶囊表面,胶囊粒径约为20—60μm.吸附实验结果表明,MIHM对AMOX有较大的吸附容量,吸附容量在318 K,100 mg·L~(-1)的AMOX溶液中达到0.1376 mmol·g~(-1),在选择性吸附实验中对AMOX具有选择性识别性能.经过3次循环回用后材料吸附容量降低12.71%,有良好的再生性.  相似文献   

5.
酸性pH及铝对鲤鱼(Cyprinus carpio)吸收^45Ca的影响   总被引:5,自引:0,他引:5  
本文用放射性核素~(45)Ca作为示踪剂,研究在酸性pH及加铝的条件下,鲤鱼(Cyprinus carpio)对钙离子的吸收分布情况.结果表明,在pH值为7.10时,~(45)Ca在鲤鱼体内各器官的96h放射仕比度为鳃13886 cpm·g~(-1),骨骼10811 cpm·g~(-1),肝脏3276cpm·g~(-2)·肌肉2865cpm·g~(-1);在酸性pH(4.30)条件下,鲤鱼对钙离子的吸收和积累受到明显抑制;加铝后,鲤鱼体内各器官~(45)Ca放射性比度与未加铝的对照组相比,下降百分比分别为鳃42、4%.骨骼18 5%,肝脏44、2% 并讨论了酸雨危害鱼体钙代谢的可能影响.  相似文献   

6.
粘土改性条件的研究Ⅱ.沸石的改性   总被引:9,自引:1,他引:8  
考察了改性沸石的CTMAB加入量、CTMAB溶液浓度和吸附时间对CTMAB吸附量的影响 .测得沸石对CTMAB的饱和吸附容量为 6 5 0 0± 1 0 0mg·1 0 0g- 1沸石 ,明显高于改性膨润土的饱和吸附量 ,吸附符合Langmuir吸附特征 . 2 5℃时 ,当CTMAB的加入量为沸石饱和吸附容量的 1 1— 1 2倍 ,CTMAB溶液浓度≥ 1 6mg·ml- 1,吸附时间超过 6h时 ,沸石基本达到饱和吸附 .考察了有机沸石对于水中BTEX的去除效果 .并对沸石和膨润土的性质进行了比较 .  相似文献   

7.
北京地区3种污灌土壤镉最大吸附容量的推求   总被引:2,自引:0,他引:2  
土壤对重金属的吸附容量是土壤重金属污染风险评价的一项重要指标,研究土壤对重金属的最大吸附容量对加强土壤环境的科学管理具有重要意义.采用阳离子交换量、平衡吸附方程和实验实测法推求了北京地区3种污灌土壤对重金属镉的最大吸附容量.由阳离子交换量(CEC)推求的北野厂、衙门口和永乐店3种污灌土壤对镉的最大吸附容量分别为:4822、4148和4721mg·kg-1;由单表面Langmuir方程推求的3种污灌土壤对镉的最大吸附容量均为5000mg·kg-1,由传统双表面Langmuir方程推求的3种土壤对镉的最大吸附容量分别为7040、6950和6994mg·kg-1,由双表面Langmuir方程的Sposito方法推求的3种污灌土壤对镉的最大吸附容量均为6200mg·kg-1;恒温25℃条件下,上述3种污灌土壤对镉的单分子层最大吸附容量实测值分别为5700、5600和5600mg·kg-1,多分子层最大吸附容量实测值分别为9000、8000和8120mg·kg-1.比较而言,双表面Langmuir方程是目前推求污灌土壤对镉最大吸附容量的较好方法.  相似文献   

8.
采用硅铝比(SiO_2与Al_2O_3的物质的量之比)为31.66和190.73的两种β沸石分子筛,吸附氯化1,3-二甲基咪唑([DMIM]Cl)、氯化1-丁基-3-甲基咪唑([BMIM]Cl)及氯化1-辛基-3-甲基咪唑([OMIM]Cl)等3种不同分子量大小的咪唑类离子液体,研究不同硅铝比的β沸石对分子大小不同的离子液体的吸附差异.实验结果表明,β沸石对离子液体的吸附等温线符合Freundlich吸附模式,[DMIM]Cl、[BMIM]Cl和[OMIM]Cl在β_1沸石上的吸附容量分别为0.62 mmol·g~(-1)、0.67 mmol·g~(-1)和0.73 mmol·g~(-1),在β_2沸石上的吸附容量分别为0.23 mmol·g~(-1)、0.38 mmol·g~(-1)和0.55 mmol·g~(-1).β_1沸石的吸附效果比β_2沸石要好,且随着离子液体阳离子上烷基侧链碳原子数目增加,针对同一种吸附质,β_1和β_2沸石吸附容量之间的差异逐渐减小.吸附动力学显示[DMIM]Cl、[OMIM]Cl在β沸石上的吸附符合二级动力学,β_1沸石吸附速率高于β_2沸石,且吸附平衡所需时间更短.[DMIM]Cl和[OMIM]Cl在β_1沸石上的吸附速率常数分别为0.0248 g·mg~(-1)·min~(-1)和0.0109 g·mg~(-1)·min~(-1),在β_2沸石上的吸附速率常数分别为0.0171 g·mg~(-1)·min~(-1)和0.0033 g·mg~(-1)·min~(-1).β沸石对离子液体[BMIM]Cl及[OMIM]Cl的吸附容量比目前已报道文献中的活性炭的更高,是去除水体中离子液体的一种潜在优质吸附剂.  相似文献   

9.
张辉  马东升 《环境化学》1997,16(5):429-434
本文通过对比取样和重金属形态实验研究,对长江现代沉积物中重金属含量在平面上和剖面上的分布特征以及存在的形态进行了分析讨论.结果表明,长江南京段现代沉积物中Cu,Pb,Co,Ni已形成轻—中等程度污染,并且重金属元素随沉积物由老到新正以增加的趋势叠加沉积,叠加速率Cu为0.083μg·g~(-1)·cm~(-1),Pb为0.067μg·g~(-1)·cm~(-1),Co为0.05μg·g~(-1)·cm~(-1),Cr为0.217μg·g~(-1)·cm~(-1),Ni为0.067μg·g~(-1)·cm~(-1).叠加量主要为有效态部分.重金属在其有效态中的聚集能力如下:可交换态中:Pb>Co>Cu>Ni,Cr;碳酸盐态中:Cu>Cr>Pb,Co,Ni;Fe-Mn氧化物态中:Co>Pb>Cu>Ni>Cr;有机态中:Cu>Cr>Pb,Co,Ni.  相似文献   

10.
以蚕丝丝胶(SS)为基材,通过接枝2,5-二硫二脲制备了改性丝胶生物吸附剂(SO),探讨了影响生物吸附的因素,并对比研究了不同体系中生物吸附剂对Ag~+的吸附行为.结果表明,在p H 1.0—6.0范围,吸附率随着p H升高而增大.相同条件下,SO吸附容量和吸附率明显优于SS,在单组分Ag~+溶液中,p H5.0时,SO和SS对Ag~+的吸附率分别为96.2%和57.8%,吸附容量分别为20.8 mg·g~(-1)和12.5 mg·g~(-1).在三组分(Ag~+-Cu~(2+)-Zn~(2+))及五组分(Ag~+-Cu~(2+)-Zn~(2+)-Ni~(2+)-Pb~(2+))溶液中,SO对Ag~+显示出良好的吸附选择性.p H5.0时,SO对其它金属离子很少吸附,而对Ag~+的吸附率分别高达95.8%和93.7%;SS尽管对其它贱金属离子吸附率也较低,但其对Ag~+的吸附率仅为25.4%和23.7%.吸附动力学表明,吸附剂对Ag~+的吸附符合准二级动力学模型,吸附过程为化学吸附,吸附过程活化能Ea(SO)=43.23 k J·mol~(-1),Ea(SS)=59.32 k J·mol~(-1).吸附热力学表明吸附过程为放热的自发过程.25℃吸附平衡时,Ag~+在固液两相的分配系数为K_D~Θ(SO)=5111.K_D~Θ(SS)=273.SO对Ag~+吸附机理主要为配位作用,粒子内扩散为吸附过程的速控步骤.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号