首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
W. B. Stotz 《Marine Biology》1979,50(2):181-188
Three species of sea anemones, clearly exhibiting zonation on the shore, are grouped into intertidal [Phymactis clematis (Drayton, 1846), Anthothoe chilensis (Lesson, 1830)] and infralittoral [Antholoba achates (Drayton, 1846)] forms. A series of observations revealed that intertidal forms have the ability to retain water in the coelenteron during exposure to air,/while the infralittoral form cannot do so. This different behaviour is attributed to morphological characteristics, such as the specific body shape and the structure of the sphincter and retractor muscles. These features, in combination with specific abiotic factors of the various habitats under consideration, determine the upper limits of distribution of each species, while zonation below these limits seems to be affected in addition by biological interactions.  相似文献   

3.
Intertidal rocky shores are characterized by vertical zonation that results from the interplay between environmental conditions, organism physiology, and species interactions. Metabolism of intertidal organisms is highly variable between species and it changes with vertical position along the intertidal gradient. The present study aimed to quantify the carbon metabolism of nine intertidal rocky shore gastropods, in order to clarify their respective roles in carbon production during emersion and immersion. The influences of monthly temperature variation and tidal level were tested for each species. Analyses were performed in the laboratory using the infrared gas analyzer method for measuring aerial respiration rates, and the dissolved inorganic carbon and total alkalinity technique for measuring aquatic respiration rate and calcification. Hourly carbon fluxes were calculated for the mean annual temperature of 13 °C measured in both air and underwater in the study area. Respiration rates were similar for emersion (8–25 μmol COg AFDW?1 h?1) and immersion (10–23 μmol DIC g AFDW?1 h?1). For all species, underwater respiration fluxes were more influenced by monthly temperature variation than by air fluxes, probably as an adaptation to the rapid changes occurring during emersion. Calcification was an important factor influencing annual carbon fluxes for all studied species; every species showed different calcification rates according to its size and position on the intertidal zone. Annual carbon emissions were calculated using the mean immersion/emersion time of each species. Intertidal gastropod carbon emission was primarily influenced by body biomass and their vertical position within the intertidal zone.  相似文献   

4.
Hays CG 《Ecology》2007,88(1):149-157
Populations of intertidal species span a steep environmental gradient driven by differences in emersion time. In spite of strong differential selection on traits related to this gradient, the small spatial scale over which differences occur may prevent local adaptation, and instead may favor a single intermediate phenotype, or nongenetic mechanisms of differentiation. Here I examine whether a common macroalga, Silvetia compressa, exhibits phenotypic differentiation across the intertidal gradient and evaluate how local adaptation, developmental plasticity, and maternal effects may interact to shape individual phenotypes. Reciprocal transplants of both adults and embryos showed a "home-height advantage" in two of the three populations tested. In laboratory trials, the progeny of upper-limit individuals survived exposure to air significantly better than lower-limit progeny from the same population. I compared the emersion tolerance of full-sib families generated from gametes produced in the field to those produced under common garden conditions. The relative advantage of upper-limit lineages was robust to maternal environment during gametogenesis; this pattern is consistent with genetic differentiation. The possible role of local adaptation has historically been ignored in studies of intertidal zonation. In S. compressa, phenotypic differentiation may have important consequences for vertical range, both within and among sites.  相似文献   

5.
Tolerance of high temperatures by some intertidal barnacles   总被引:1,自引:0,他引:1  
The median lethal times of survival of the barnacles Elminius modestus, Balanus crenatus and B. balanoides, when continuously submerged at high temperatures, were determined for individuals collected in the summer and winter. In E. modestus and B. crenatus there was no seasonal change in high temperature tolerance. In B. balanoides, however, the adults were more susceptible in the winter than in the summer to temperatures a little below the upper lethal temperature. Using less comprehensive data for other British species of barnacles, it is concluded that, in general, the order of tolerance to high temperatures corresponds to the order of temperatures within the geographical and the intertidal distributions of the species. From the time-temperature-survival curves, intertidal barnacles are living closer to environmental temperatures than would be supposed on the basis of the measurement of the upper lethal temperature, which has been commonly measured for many species, but is of less ecological significance.  相似文献   

6.
The seasonal photosynthetic responses and daily carbon gain of upper intertidal, low intertidal and subtidal (3 to 4 m depth) populations ofColpomenia peregrina were examined over a 2 yr period (1986–1988) in Santa Catalina Island, California, USA. The populations showed significant differences in their photosynthetic responses, daily carbon balance and carbon-specific growth rates when normalized to tissue area or to chlorophyll content. The substantial plasticity with respect to photosynthetic responses shown byC. peregrina is considered to be an important factor in facilitating the colonization of both intertidal and subtidal habitats. This species appears to have a cellular carbon metabolism influenced by responses to season and tidal elevation. Highest net daily carbon balance, predicted carbonspecific growth rates and net growth efficiency were achieved in upper intertidal habitats during summer. These parameters decreased in winter and progressively declined with increasing depth as plants become increasingly exposed to low-light regimes. The diminishing net daily carbon balance and predicted carbon-specific field growth rates found during winter suggest that standing stock and lower subtidal limits of distribution ofC. peregrina are at least partly controlled by these two factors.  相似文献   

7.
Biotic and abiotic conditions can separately and synergistically influence the abundance and distribution of species and create vertical zonation patterns in marine systems. In Corpus Christi Bay, TX, USA, eastern oysters (Crassostrea virginica) are limited to intertidal habitats, while in adjacent estuaries, oysters not only grow subtidally, but thrive in these areas to the extent they are a viable commercial fishery. The purpose of this study was to assess how predators and abiotic conditions affect oyster mortality and growth at different tidal elevations. Anecdotal evidence suggests that abiotic conditions, primarily hypoxia and salinity, as well as oyster disease, limits oysters to intertidal areas. Yet, in Corpus Christi Bay, oysters are absent from subtidal areas where hypoxia is not known to occur. Infection by Perkinsus marinus (Dermo) is common in the study area, but previous work suggests that infection rates do not increase when oysters are transplanted subtidally. We investigated oyster tidal distributions by transplanting newly settled oysters into intertidal and subtidal areas. Predation on oysters was significantly greater in subtidal as compared to intertidal habitats. When protected from predators using cages, oyster survival significantly increased. Further, oysters in subtidal areas allocated significantly more resources to shell growth than did those in intertidal areas, and oysters are known to grow heavier shells in response to predators. Oyster settlement was not statistically different between inter and subtidal areas, and abiotic conditions measured during the study did not exceed known tolerance limits for oysters. Previous studies have shown that abiotic conditions influence oyster mortality and the success of restored oyster reefs. Our findings indicate that predators can also affect oyster distribution, and their effects should be evaluated when developing plans for oyster management and restoration.  相似文献   

8.
We studied how the growth, reproduction, and survival of a common intertidal rockweed (Fucus distichus) varied across its tidal elevation at 14 sites around San Juan Island, Washington, USA in spring–summer and fall-winter seasons. We also measured a suite of environmental factors including temperature, light, emersion time, slope, fetch, and herbivory. To interpret the response of Fucus we included measurements of phlorotannins and carbon storage compounds (mannitol, laminarin). Growth and reproduction exhibited parallel patterns across tidal zones and sites. Tidal zone was a significant source of variation for many Fucus response variables, whereas variation between sites was high but not generally a significant factor explaining Fucus growth and physiology. Unexpectedly, the tidal zone in which Fucus achieved its highest growth and reproduction switched between seasons. High zone thalli grew and reproduced better than Mid zone thalli in fall but not in spring. This result can be explained by different combinations of factors influencing Fucus in each season. In spring, longer emersion times due to daytime low tides resulted in lower growth rates higher on the shore, likely due to carbon limitation. In fall during nighttime low tides, emersion and carbon limitation stresses were minimal. Overall, fall growth was lower than spring growth, but low fall light was not responsible. Instead, warmer average fall temperatures in the High zone apparently favored growth and reproduction relative to the Mid zone. In contrast, Mid zone thalli were subjected to more intense herbivory and hydrodynamic stress associated with wave exposure and steep substrata during the fall. At least for some seaweeds, living in the presumably more stressful high zone can actually confer higher integrated performance.  相似文献   

9.
Temperature tolerance in the reef coral Montipora verrucosa (Lamarck) is affected by salinity and light. Low salinity reduces ability of the coral to survive shortterm exposure to elevated temperature. High natural light intensity aggravates damage sustained by corals at high temperature. In long-term growth experiments, high light intensity caused substantial loss of zooxanthellar pigment, higher mortality rates, reduced carbon fixation and lowered growth rate at both upper and lower sublethal temperatures Effects of light at optimal temperature were less dramatic. Interactions between physical environmental factors appear to be most important near the limits of tolerance for a given factor. Acclimation capability was indicated, and was influenced by both thermal history and pigmentation state of stressed corals.Contribution No. 543 of the Hawaii Institute of Marine Biology.  相似文献   

10.
Non-motile organisms of intertidal shores such as seaweeds have to cope with a great variability of environmental factors. In this survey, we studied whether different morphotypes of the intertidal seaweed Fucus spiralis L. are also reflected in a characteristic performance. Desiccation and recovery of this Phaeophyceae were investigated in field experiments near Aljezur, Portugal. Fucus spiralis is exposed to serious desiccation during periods of falling tide, resulting in a tissue water loss of about 90%. Due to large semidiurnal tidal ranges in this area, two morphotypes can be distinguished: F. spiralis growing in the lower intertidal (LZ) is thicker and fleshier compared with plants in the upper intertidal (HZ), and this is reflected in a significant difference in fresh and dry mass. During sunny days and at low tide, effective quantum yields (ΦPSII) decreased significantly after 2 h desiccation. This continued until re-submersion. The photosynthetic performances of HZ and LZ plants also differed significantly after LZ plants were already submerged and photosynthetisizing, but the HZ specimens still exposed to air. Recovery experiments after desiccation treatments showed fast recovery within 6 min after re-submersion in both morphotypes. HZ specimens showed a slower recovery, which indicates a protection measure to the adverse conditions in the upper intertidal. In 24 h desiccation treatments, however, HZ specimens expressed a significantly higher maximum fluorescence yield F v /F m recovery. Simulated rainfalls during low tides caused photosynthetic activity to drop to 50% of initial F v /F m , independent of the length of the rain period. Treated plants also fully recovered after 6 min re-submersion in seawater. A comparison of single fronds and tufts clearly indicated advantages of the tuft growth strategy: tufts showed higher ΦPSII at prolonged emersion times. Our study indicated a clear relationship between size and drought resistance, which was primarily due to the smaller and hardy HZ plants that withstand longer desiccation times without damage.  相似文献   

11.
D. Hicks  R. McMahon 《Marine Biology》2002,140(6):1167-1179
Acute and chronic upper and lower thermal limits and freeze resistance were investigated in the nonindigenous brown mussel, Perna perna, from the Texas Gulf of Mexico coast in order to assess its potential distribution in North American coastal waters. This species' long-term, incipient lower and upper thermal limits were 7.5°C and 30°C, congruent with the seasonal ambient water temperature range of 10-30°C reported for other populations worldwide. Effects of temperature acclimation and individual size on survival time were most pronounced on chronic exposures to lethal temperatures approaching incipient lower or upper thermal limits. When exposed to temperature increasing at 0.1°C min-1, the acute upper lethal limit was 44°C regardless of acclimation temperature or individual size. P. perna had a limited freeze resistance, being intolerant of emersion at -2.5°C. This species' narrow incipient thermal limits, limited capacity for temperature acclimation and poor freeze resistance may account for its restriction to subtidal and lower eulittoral zones of cooler subtropical rocky shores. Near extinction of P. perna from Texas Gulf of Mexico waters occurred in the summer of 1997 when mean surface-water temperatures approached its incipient upper limit of 30°C.  相似文献   

12.
Mortality factors most likely to constitute substantial selective pressures for early juvenile gastropods on temperate rocky shores were identified by examining the vulnerability of hatchlings of an intertidal snail, Nucella emarginata, to heat stress, desiccation, and predation in 1992 and 1993. The highest temperature of substrata measured at tidal heights colonized by N. emarginata in Barkley Sound, British Columbia, Canada, was 28.5°C. This temperature was not lethal to hatchlings in laboratory tests. In laboratory and field desiccation experiments, all hatchlings died within 6 h of emersion. Early juveniles could not survive direct exposure to even moderate drying conditions for the duration of a low tide. Hence, intertidal microhabitats which dry up even for short periods during low tides would prove lethal. Of 45 intertidal animal species to which hatchlings were exposed in the laboratory, small decapod crustaceans were the only organisms to cause substantial hatchling mortality. Of these, Pagurus hirsutiusculus and Hemigrapsus nudus were by far the most abundant in the field, and are probably the only important predators of early juvenile N. emarginata at most sites. Total predator densities in the field were as high as 438 individuals m–2, suggesting that predation pressure may be intense. Desiccation and predation by decapod crustanceans appear to be the most significant threats to early juvenile N. emarginata. These factors commonly occur on most temperate rocky shores and undoubtedly constitute major selective agent influencing population parameters and shaping life-history strategies and early juvenile traits of intertidal invertebrates.  相似文献   

13.
14.
Uplifting of a portion of an intertidal rock bench by the Milrow underground nuclear test at Amchitka Island, Alaska affected algal abundance, species composition, and zonation. Parts of the populations of 8 species died off, primarily in the Hedophyllum sessile zone, and mostly within the first 6 months after the disturbance. The center of abundance of these species shifted seaward. Fucus distichus, a species of the upper intertidal, appeared in the area and recolonized a portion of the H. sessile zone. The observations indicate that intertidal algal communities at Amchitka Island are very sensitive to positive elevation changes.Contribution No. 376 of the College of Fisheries, University of Washinton, USA. This publication is based on work performed under U.S. Atomic Energy Commission Contract AT(26-1)-171 for Battelle Memorial Institute, Columbus Laboratories.  相似文献   

15.
Desiccation as a factor in the intertidal zonation of barnacles   总被引:2,自引:0,他引:2  
Four species of balanomorph barnacles, Balanus crenatus Brugière, B. balanoides (L.), Elminius modestus Darwin and Chthamalus stellatus (Poli), were studied to assess the susceptibility of intertidal barnacle species to desiccation. Known sized samples of barnacles were exposed to controlled desiccating conditions and subsequent survival and water loss were determined. It is clear that the ability to live high on the shore is dependent on a reduction of the overall permeability to water loss. Because of greater surface area to volume ratios, small stages are particularly prone to desiccation. In normal intertidal emersion periods, small stages of B. crenatus particularly, and also of B. balanoides and E. modestus which are similar in their desiccation resistance, would be susceptible to desiccation at normal temperatures and low humidities. Large barnacles would be more prone to death from high temperatures when the tide is out. The spat of C. stellatus, although surviving much longer than spat of larger dimensions of the other species, must also be prone to prolonged emersion conditions at high shore levels.  相似文献   

16.
Acclimated metabolism-temperature curves have been constructed for 4 populations of the intertidal onuphid Diopatra cuprea, and for the 2 offshore species Hyalinoecia tubicola and H. artifex. The intertidal species shows greater temperature sensitivity than its offshore relative, despite its presumed adaptation to thermally unstable habitats. Temperature changes considerably in excess of natural fluctuations do not greatly alter metabolic rates in Hyalinoecia. However, the range of thermal tolerance in these two species is considerably reduced.  相似文献   

17.
Animals in the intertidal, both mobile and sessile, generally exhibit some zonation pattern, in which each species shows a preference for, or is confined to, some height levels. The study of zonation patterns is, however, almost exclusively based on surveys made during low tide, when many animals are relatively inactive. We studied zonation patterns of amphipods and isopods on rocky shores in southwestern Iceland, both by traditional sampling at low tide as well as by sampling during high tide. The distributional patterns seen at high tide differed significantly from that at low tide. One amphipod, Anonyx sarsi, was common around baits at all levels at high tide but absent from the intertidal at low tide. Several other species were either relatively more common or tended to be recorded higher, or in one instance, lower on the shore when the tide was in than at low tide. There was also evidence of some species changing habitats within the intertidal with the tidal cycle. Many species, however, moved little away from their respective zones occupied at low tide, and for some species, including some capable of rapid swimming, very limited mobility was indicated. We conclude that low-tide surveys of the intertidal give an incomplete picture of the community structure, and even key species may be missed in such surveys.Communicated by L. Hagermann, Helsingør  相似文献   

18.
Features of the intertidal zonation on the rocky shores of the Galapagos Islands are described and discussed in relation to environmental factors, in particular temperature — which varies with regional hydrology and climatology. Owing to the thermal properties of the coastal waters and to the nature of the substrate (mainly basalt), intertidal organisms are exposed to a wide range of temperatures, which fluctuate with tide, day, and season. As a result, life is mostly restricted to the lowest levels of the shore; the middle- and upper-level populations are sparse. Local variations (biofacies) resulting from water agitation are described. Biota consist of tropical, subtropical, and warm-temperate components. Tropical species dominate in sheltered areas and in middle and upper shores.

Contribution No. 164, the Charles Darwin Foundation.  相似文献   

19.
The resistance to high and low temperatures, starvation and desiccation effects in the sand dwelling amphipods Bathyporeia pilosa Lindström and B. pelagica (Bate) have been tested. B. pilosa was the more tolerant species in all experiments. Gravid females showed a greater resistance to high temperatures than adult males in both species, and starvation tolerance was in the order gravid females>juvenile males> adult males. Time-temperature relationships, however, would seem to be of greater ecological significance than upper or lower lethal temperatures, and desiccation effects become obvious well within any limits set by starvation. Exposure would appear to be an important concept limiting the intertidal distribution of sand dwelling animals, particularly those confined to the surface layers of sediment. The amplitude, rate and degree of environmental change and its effect on feeding and reproduction offer severe limitations to the distribution of the two Bathyporeia species studied.  相似文献   

20.
The upper temperature tolerances of three European species of Cardium [C. (Cerastoderma) glaucum Bruguière, C. tuberculatum L., C. (Cerastoderma) edule L.] are compared by means of median lethal temperature (LT50) and median burial temperature (BT50) determinations for periods of exposure up to 96 h. The influence of previous acclimation temperatures on these determinations is also considered. C. glaucum from shallow water (0.5 to 1 m), lagoonal, habitats in the Mediterranean Sea shows a greater thermal tolerance than C. tuberculatum from deeper water (4 to 5 m) in the Mediterranean. The thermal tolerance of C. edule from the intertidal zone, but at higher latitudes, is intermediate. Young C. glaucum show a greater resistance to short exposures to high temperatures than adults, but for longer exposures their tolerance is the same. All 3 species exhibit a significant effect of previous acclimation temperature on the burrowing response, and C. glaucum and C. tuberculatum a significant but lesser effect on LT50. LT50 determinations with C. edule showed secondary mortality effects which may have obscured any effect of acclimation temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号