首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
溶解氧的测定常采用碘量法和修正法。对于未受污染的地面水,由于干扰物较少,可直接采用碘量法;若水中含有0.1毫克/升以上的亚硝酸盐氮,1毫克/升以下的亚铁离子或少于25毫克/升的高铁离子时,可采用叠氮化钠修正法;若水中含有大于1毫克/升的亚铁离子时,可采用高锰酸钾修正法。  相似文献   

2.
简介微量铀在1.5M HNO_3溶液中用三辛基氧化膦(简称TOPO)萃取,以氟化钠掩蔽锆、钍、以抗坏血酸还原高价铁、铈、钒等。然后直接吸取2毫升有机相,在70%乙醇中用5-Br-PADAP作显色剂,于72型分光光度计上用580毫微米波长,3厘米液槽比色测定铀。  相似文献   

3.
采用柱实验,以泥炭颗粒作为缓释碳源,探究不同水力停留时间(HRT)下泥炭颗粒对反硝化过程的影响。结果表明:(1)泥炭颗粒可作为有效缓释碳源,当HRT为6.67h时,脱氮效果最好,硝酸盐氮去除率能达到81.9%。(2)出水COD较低,最终为9~12mg/L,不会对水体造成二次污染;亚硝酸盐氮先升后降,最终均小于0.2mg/L,未出现积累现象,泥炭颗粒可作为生物脱氮反应器中长期运行的缓释碳源。  相似文献   

4.
采用序批式间歇反应器(SBR)处理生活污水,温度控制在(25.0±0.5)℃,研究好氧曝气与缺氧搅拌时间比(间歇曝气比)分别为30min∶30min(A模式)和40min∶20min(B模式)对亚硝酸盐氮积累、污泥性能参数、反应速率(比氨氮氧化速率、比硝酸盐氮产生速率、比亚硝酸盐氮产生速率)、氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)活性的影响。A模式下运行64个周期时,出水亚硝酸盐氮质量浓度为19.04mg/L,亚硝酸盐氮积累率高达99.21%;B模式下运行75个周期时,出水亚硝酸盐氮质量浓度为19.42mg/L,亚硝酸盐氮积累率高达95.47%;研究表明缺氧时间所占比例越大越有利于短程硝化的实现。在实现短程硝化过程中,A模式在38个周期之后AOB活性超过NOB活性;B模式在34个周期之后AOB活性超过NOB活性。  相似文献   

5.
简介单质磷用饱和溴水氧化为正磷酸盐,在0.5N硫酸介质中与钼酸铵,酒石酸锑钾生成磷钼锑萃取比色测定。在本法测定条件下,下述离子在所列的含量范围内无干拢(以毫克/升计):水溶性磷(以P计)200,砷(V)200,硅400,氟200,铬(Ⅵ)100,铁(Ⅲ)200,铜(Ⅱ)200,铅200,镍200。  相似文献   

6.
为研究亚硝酸盐型碳、氮、硫同步脱除系统的特性,采用SBBR,以亚硝酸盐、硫化物及乙酸钠为基质,探索6种进水COD/N及5种进水S/N下碳、硫混合亚硝酸盐反硝化过程铵的生成机制。结果表明:在进水COD/N高于2、S/N高于1时,NO_2~--N去除率高达99%;同时,当氧化还原电位(ORP)低于-400 mV时,会出现铵浓度明显升高现象,在此条件下,进水COD/N不变时,较高的S/N会促进铵的生成;控制进水S/N不变,COD/N为3时铵浓度升高最为明显。微生物分析结果表明,该碳、氮、硫混合体系中同时存在硫自养反硝化、异养反硝化及亚硝酸盐异化还原为铵等过程,碳、硫混合亚硝酸盐反硝化过程铵的生成机制可能是低氧化还原电位和过量电子供体存在的情况下亚硝酸盐异化还原为铵的过程。  相似文献   

7.
简介在pH 1~2时亚硝酸盐与对—氨基苯乙酮形成的重氮盐和萘乙二胺偶联生成红色染料,加β—萘磺酸,用正丁醇萃取,萃取物的最大吸收在550毫微米波长处。克分子吸光系数为4.8×10~4,检出限为0.004毫克(氮)/升。仪器分光光度计  相似文献   

8.
Ⅰ水中钴的测定(一) 简介钴试剂4-[(5-氯-2-吡啶)偶氮]-1,3-二氨基苯(简称5-Cl-PADAB)作为测定钴的分光光度法试剂,具有很高的灵敏度和很好的选择性。在pH5的磷酸盐缓冲溶液中的钴离子以2∶1结合生成稳定的红色络合物。该络合物能被TBP 3-甲基-1-丁醇混合萃取剂定量萃取。再用磷酸—盐酸混合酸反萃取于水相中,在570毫微米波长处测吸光度。此法可消除铁(Ⅲ),铬(Ⅵ)等的干扰。方法简便、快速。最低检出限为0.13微克/升。  相似文献   

9.
简介用二硫化碳为萃取剂富集水中的硝基苯、硝基甲苯和硝基氯苯,以氢焰离子化检测器的气相色谱法进行测定。定量方法采用外标峰高法。本方法的最低检测浓度为:硝基苯,3微克/升;邻(间)硝基甲苯,3微克/升;对硝基甲苯,4微克/升;间硝基氯苯,8微克/升;氯苯,10微克/升。  相似文献   

10.
本综述介绍了自然界水中有机氮、氨氮、亚硝酸盐氮及硝酸盐氮分析方法的近况,并特别注意到了各种浓度水平时方法的精密度。氨氮根据所要求的精密度和所适用的浓度,氨氮的分析方法以可分为三个范围。为得到20微克/升以上氨氮的大概值,可采用不经予处理的直接纳氏试剂法。此法可适用于饮用水或色度、浑浊度小的较洁净废水等。在STANDARD METHOD(1971)(Standard Methods for the Examination 0f water and Wastewater,1971) (美国公共卫生协会法)中,将直接纳氏试剂法用于废水分析,一般认为可望使分析误差达到1~2毫克/升以内。直接纳氏试剂法由于干扰因素多,因而在US EPA METHOD  相似文献   

11.
简介用锌粉处理镉盐稀溶液所得到的新生海绵状镉,可将硝酸根定量还原成亚硝酸根。在有大量氯化铵存在下,可抑制副反应,用氨基苯磺酸—萘乙二胺法测定出生成的亚硝酸根后,即可得到硝酸根的量。仪器 72型分光光度计 pHS—2型酸度计试剂 1)无亚硝酸盐水:同亚硝酸盐氮的测定。 2)硝酸盐贮备液:准确称取721.8毫克已烘干的无水硝酸钾,用无亚硝酸盐水溶解,并释到100毫升。此溶液浓度为1.00毫升=1.00毫克N.使用时适当稀释配成工作液。  相似文献   

12.
以厌氧/缺氧/好氧和生物接触氧化反应器(AAO-BCO)组成的双污泥系统为研究对象,研究了三级串联式生物接触氧化反应器(N1、N2、N3)中有机物浓度对比耗氧速率(SOUR)的影响,同时对比了各级处理单元的硝化特性。实验结果表明,N1、N2、N3分别在有机物浓度低于40、60和40 mg·L~(-1)时,比耗氧速率随有机物浓度的升高而升高。根据比耗氧速率粗略估计了氨氧化细菌和亚硝酸盐氧化菌在各级中的百分比,其中氨氧化细菌的百分比分别为43.47%、54.94%和63.83%,而亚硝酸盐氧化菌的百分比分别为11.65%、21.87%和18.23%。由比耗氧速率计算得到氨氮比氧化速率和亚硝酸盐氮比氧化速率,其最高值分别为实际污水处理厂的1.9倍和1.2倍,生物接触氧化反应器中氨氧化细菌、亚硝酸盐氧化菌菌群更密集,硝化性能更优,且存在明显的亚硝酸盐累积现象(亚硝酸盐浓度为1.52~3.65 mg·L~(-1),亚硝态氮积累率最高可达25%)。  相似文献   

13.
为揭示污水生物脱氮工艺中污泥菌群间的群体感应作用,建立了柱前衍生-固相萃取-高效液相色谱荧光检测法(HPLC-FLD)定量检测介导细菌种间群体感应信号分子AI-2的方法。取反应器的泥水混合液,经0.45μm滤膜过滤后,用氨基磺酸掩蔽亚硝酸盐干扰,并与2,3-二氨基萘(DAN)发生衍生化反应,衍生化产物用C18固相萃取柱进行固相萃取,经氮吹浓缩后上机分析。采用C18色谱柱(4.6 mm×250 mm,5μm)进行分离,乙腈与水(含0.1%甲酸)作为流动相进行梯度洗脱,使用荧光检测器(激发和发射波长分别为271 nm和503 nm)进行检测。结果表明,该检测方法在1~200 ng·mL~(-1)范围内呈现出了良好的线性关系,检出限为1 ng·mL~(-1),回收率为55.08%~59.25%,相对标准误差为2.98%~10.41%。该方法适用于杂质干扰多的痕量信号分子AI-2定量分析,可为生物脱氮工艺中信号分子AI-2介导群体感应研究提供有效的分析方法。  相似文献   

14.
扑草净(prometryne),化学名称:2-甲硫基-4,6-双异丙胺基均三氮苯。纯品为白色结晶,易溶于有机溶剂,20℃时在水中溶解度为48ppm。工业原粉为浅灰色粉末,是一种高效低毒的内吸型除草剂。国内未见有工业废水中扑草净最高容许排放浓度标准利分析方法,苏联工业废水排放标准为5.0毫克/升,美国环保局推荐用电解电导率检测器或氮特效热离子检测器的气相色谱  相似文献   

15.
在序批式反应器(SBR)中添加ZH组合填料构成序批式生物膜反应器(SBBR),并以SBR为对比,研究了2种工艺对污染河水中硝酸盐氮的去除效果。结果表明,(1)进水硝酸盐氮浓度分别为15、20和30 mg/L时,2种工艺对COD的去除率均大于90%,对COD的去除能力均较强,进水硝酸盐氮的增加对COD的去除效果影响不大;第1个缺氧段是COD的主要去除段,此阶段COD的去除率达到80%以上。(2)随进水硝酸盐氮浓度的增加,SBBR中NO-3-N和TN的去除率分别从99.73%和99.24%降至79.75%和65.56%;SBR中NO-3-N和TN的去除率分别从99.91%和99.51%降至55.57%和41.73%。(3)随进水硝酸盐氮浓度的提高,两反应器内亚硝酸盐氮的积累量增大;进水硝酸盐氮浓度为15、20和30 mg/L时,SBBR中的亚硝酸盐氮最大积累浓度分别为2.90、6.82和10.72 mg/L;SBR中亚硝酸盐氮最大积累浓度分别为4.35、9.47和11.89 mg/L。SBBR中亚硝酸盐氮的积累明显低于SBR。  相似文献   

16.
简介本法系以1,2-环已二胺四乙酸,氟化钠和磺基水杨酸作掩蔽剂,在pH 7.85时用醋酸丁酯萃取(Ⅵ)5-Br-PAPAP络合物,然后测定其吸光度。测定下限为0.5微克/升。仪器:分光光度计。试剂 1.铀标准溶液:准确称取1.179克U_3O_8(经850℃灼烧),用10毫升浓盐酸和3毫升过氧化氢加热溶解,在水浴上蒸去剩余盐酸,用水溶解并稀释至1000毫升,配得1毫克铀/毫升的贮备液,然后用0.1M盐酸溶液分别配成10微克/毫升和2微克/毫升的铀标准溶液。  相似文献   

17.
为有效控制深埋地热水中三氮污染,并为合理开发地热水资源提供理论依据,基于开封市城区44眼地热井(埋深为600~1 800m)的理化指标,绘制了三氮在各含水层中的浓度等值线图,研究了开封市地热水中三氮空间分布规律及其影响因素。研究结果表明:以《地下水质量标准》(GB/T 14848—93)的Ⅲ类水质要求为评价标准,开封市埋深为600~1 800m的地热水中,三氮污染以亚硝酸盐氮为主,硝酸盐氮与氨氮污染较轻;亚硝酸盐氮超标区主要分布在开封市火车站附近,其分布规律是发生不同程度硝化/反硝化作用的结果;除个别取样点外,各含水层中硝酸盐氮和氨氮的浓度均较低。相关分析结果表明,亚硝酸盐氮与硝酸盐氮显著相关,氨氮与pH显著相关,进一步证实了三氮浓度分布与硝化/反硝化作用有关。  相似文献   

18.
针对富氧水中硝酸盐氮(NO-3-N),采用零价铁(ZVI)和甲醇支持的生物-化学联合法开展了批实验研究,探讨了ZVI类型、CH3OH∶N比、初始溶解氧(DO)浓度、初始NO-3-N浓度和水温等5个因素对联合法除氧脱氮效果的影响。结果表明,ZVI的除氧能力由高至低依次为:ZVI-C(0.124 d)>ZVI-A(0.141 d)>ZVI-B(0.179 d)。ZVI支持的联合法NO-3-N去除率由高至低依次为:ZVI-A(99.6%)>ZVI-C(95.3%)>ZVI-B(92.2%)。CH3OH∶N≤3.5∶1时,联合法去除<52.0%的NO-3-N;CH3OH∶N=10∶1时,去除100%的NO-3-N;CH3OH∶N=200∶1时,去除70.2%的NO-3-N。当初始DO浓度介于3.6~5.3 mg/L之间时,联合法的NO-3-N去除率介于98.8%~99.6%之间。在任意时刻,低底物浓度(5.2 mg/L)时的NO-3-N去除率低于高浓度(21.1 mg/L)时的去除率;低底物浓度下完全脱氮所需时间比高浓度下长2 d。15.0℃时联合法需要7 d可以达到完全脱氮,然而在27.5℃时则需要5 d。低温时亚硝酸盐氮浓度最大值(4.4 mg/L)显著高于高温时的最大值(1.1 mg/L)。ZVI类型、CH3OH∶N、初始NO-3-N浓度和水温显著影响联合法的脱氮效果,而初始DO浓度对联合法的影响不大。  相似文献   

19.
从受氮污染的浅层地下水含水层介质中分离、纯化得到一株具有好氧反硝化能力的细菌PJ21,经过形态、生理生化特性及分子生物学鉴定为假单胞菌属门多萨菌(Pseudomonas mendocina)。菌株PJ21能在好氧(DO=6.9~7.8mg/L)条件下快速脱氮,最大硝酸盐氮脱氮速率可达27.98mg/(L·h),平均脱氮速率为4.41mg/(L·h),60h的总氮和硝酸盐氮脱氮率分别可达65.42%、95.55%。菌株PJ21的最佳碳源为柠檬酸三钠,适宜生长温度为25~35℃,最适温度为30℃,适宜生长的初始pH为6.0~8.0,最佳为7.0。培养期间菌株PJ21快速脱氮的同时未出现明显的亚硝酸盐氮累积现象,最大比生长速率、Monod生长半饱和系数分别为4.30×10~(-4)s~(-1)、142.99mg/L,衰亡速率系数为7.90×10~(-5)s~(-1),硝酸盐降解过程的产率系数为1.26。该菌株在浅层地下水氮污染修复方面具有潜在工程应用价值。  相似文献   

20.
以红薯浸泡液为碳源的生物反硝化   总被引:3,自引:1,他引:2  
梅翔  占晶  沙昊  谢玥  朱瑾 《环境工程学报》2010,4(5):1032-1036
为选择低碳氮比污水生物脱氮中合适的碳源,以搅拌罐浸泡淀粉类物质释放碳源,在确定利用红薯浸泡液为碳源后,以浸没式生物滤池为反应器进行生物反硝化实验。实验结果表明:20 g红薯置于2 L自来水中,采用250 r/m in的搅拌速度,搅拌频率为每搅拌3 h停1 h,2 d后得到的浸泡液COD浓度平均为5 921 mg/L,最高可超过7 000 mg/L;将此红薯浸泡液和污水以1∶50的流量比例,采用分别投加的方式进入反应器,污水中总氮、硝酸盐氮、亚硝酸盐氮及氨氮的平均去除率分别为88.6%、91.6%、88.2%和54.8%,出水COD平均在30 mg/L以下;在红薯浸泡液COD浓度为5 700 mg/L左右时,进水中亚硝酸盐氮浓度与硝酸盐氮浓度比为3∶2时总氮去除率为95.3%,当该比例为2∶3时总氮去除率为88.2%。研究表明,红薯浸泡液是一种经济合适的碳源,采用红薯浸泡液作为低碳氮比污水生物处理中反硝化的碳源是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号