首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The nature of cumulative impacts on biotic diversity of wetland vertebrates   总被引:2,自引:0,他引:2  
There is no longer any doubt that cumulative impacts have important effects on wetland vertebrates. Interactions of species diversity and community structure produce a complex pattern in which environmental impacts can play a highly significant role. Various examples show how wetlands maintain the biotic diversity within and among vertebrate populations, and some of the ways that environmental perturbations can interact to reduce this diversity.The trophic and habitat pyramids are useful organizing concepts. Habitat fragmentation can have severe effects at all levels, reducing the usable range of the larger habitat generalists while threatening the genetic integrity of small, isolated populations. The complexity of trophic interactions, and the propensity, or necessity, of vertebrates to switch from one food source to another—something we know little about—makes using food chain support as a variable for predicting environmental impacts very questionable.Historical instances illustrate the effects of the accumulation of impacts on vertebrates. At present it is nearly impossible to predict the result of three or more different kinds of perturbations, although long-range effects can be observed. One case in point is waterfowl; while their ingestion of lead shot, harvesting by hunters during migration, and loss of habitat have caused waterfowl populations to decline, the proportional responsibility of these factors has not been determined.Further examples show multiplicative effects of similar actions, effects with long time lags, diffuse processes in the landscape that may have concentrated effects on a component subsystem, and a variety of other interactions of increasing complexity. Not only is more information needed at all levels; impacts must be assessed on a landscape or regional scale to produce informed management decisions. I conclude that a system of replicate wetland reserves that are allowed to interact naturally with the surrounding landscape will be more effective in preserving biotic diversity than isolated sanctuaries.  相似文献   

2.
Wetlands are attractive to vertebrates because of their abundant nutrient resources and habitat diversity. Because they are conspicuous, vertebrates commonly are used as indicators of changes in wetlands produced by environmental impacts. Such impacts take place at the landscape level where extensive areas are lost; at the wetland complex level where some (usually small) units of a closely spaced group of wetlands are drained or modified; or at the level of the individual wetland through modification or fragmentation that impacts its habitat value. Vertebrates utilize habitats differently according to age, sex, geographic location, and season, and habitat evaluations based on isolated observations can be biased. Current wetland evaluation systems incorporate wildlife habitat as a major feature, and the habitat evaluation procedure focuses only on habitat. Several approaches for estimating bird habitat losses are derived from population curves based on natural and experimentally induced population fluctuations. Additional research needs and experimental approaches are identified for addressing cumulative impacts on wildlife habitat values.  相似文献   

3.
/ Of the several automated wetland assessment methods currently available, none are comprehensive in considering all of the primary functions a wetland can perform. We developed a methodology particularly suited to the Northeastern United States that enumerates spatial predictors of wetland function for three primary wetland functions: flood flow alteration, surface water quality improvement, andwildlife habitat. Predictors were derived from several wetland assessment techniques and directly from the literature on wetland structure and function. The methodology was then automated using a Geographic Information System (GIS). The resulting Automated Assessment Method for Northeastern Wetlands (AMNEW) consists of a suite of eight Arc Macro Language (AML) programs that run in the ARC/INFO GRID module. Using remotely sensed land use information and digital elevation models (DEMs), AMNEW produces three separate grids of wetlands that perform each function. The method was tested on four watersheds in Vermont's Lake Champlain Basin. Results and preliminary verification indicate that the method can successfully identify those wetlands in the Northeastern region that have the potential to be functionally important.  相似文献   

4.
Wetlands are critical natural resources in developing countries where they perform a range of environmental functions and provide numerous socio-economic benefits to local communities and a wider population. In recent years, however, many wetlands throughout eastern Africa have come under extreme pressure as government policies, socio-economic change and population pressure have stimulated a need for more agriculturally productive land. Although wetland drainage and cultivation can make a key contribution to food and livelihood security in the short term, in the long term there are concerns over the sustainability of this utilization and the maintenance of wetland benefits. This article draws upon recent research carried out in western Ethiopia, which addressed the sustainability of wetland agriculture in an area of increasing food insecurity and population pressure. It discusses the impacts of drainage and cultivation on wetland hydrology and draws attention to local wetland management strategies, particularly those characterized by multiple use of wetlands, where agriculture exists alongside other wetland uses. The article suggests that where multiple wetland uses exist, a range of benefits can be sustained with little evidence of environmental degradation. Ways of promoting and empowering such sustainable wetland management systems are discussed in the context of the wider need for water security throughout the region.  相似文献   

5.
We describe a collection of aquatic and wetland habitats in an inland landscape, and their occurrence within a terrestrial matrix, as a “freshwater ecosystem mosaic” (FEM). Aquatic and wetland habitats in any FEM can vary widely, from permanently ponded lakes, to ephemerally ponded wetlands, to groundwater‐fed springs, to flowing rivers and streams. The terrestrial matrix can also vary, including in its influence on flows of energy, materials, and organisms among ecosystems. Biota occurring in a specific region are adapted to the unique opportunities and challenges presented by spatial and temporal patterns of habitat types inherent to each FEM. To persist in any given landscape, most species move to recolonize habitats and maintain mixtures of genetic materials. Species also connect habitats through time if they possess needed morphological, physiological, or behavioral traits to persist in a habitat through periods of unfavorable environmental conditions. By examining key spatial and temporal patterns underlying FEMs, and species‐specific adaptations to these patterns, a better understanding of the structural and functional connectivity of a landscape can be obtained. Fully including aquatic, wetland, and terrestrial habitats in FEMs facilitates adoption of the next generation of individual‐based models that integrate the principles of population, community, and ecosystem ecology.  相似文献   

6.
Many New Zealand farms still have large remnant indigenous forest patches. This paper discusses constraints and opportunities for the sustainable management of these remnants. First, the paper analyses why the specific ecological situation of the New Zealand vegetation poses severe constraints for sustainable management. Second, results from a case study are presented suggesting that analysis of farmers’ attitudes to remnant ecosystems might provide valuable data for improving existing environmental legislation. Finally, the possible management implications of the new Resource Management Act 1991 and Forest Amendment Act 1993 are discussed. It is argued that these Acts may bring to an end a thousand years of wilful and accidental destruction of New Zealand's natural environment.  相似文献   

7.
Integrated management and policy models suggest that solutions to environmental issues may be linked to the socioeconomic and political characteristics of a nation. In this study, we empirically explore these suggestions by applying them to the wetland management activities of nations. Structural equation modeling was used to evaluate a model of national wetland management effort and one of national wetland protection. Using five predictor variables of social capital, economic capital, environmental and political characteristics, and land-use pressure, the multivariate models were able to explain 60% of the variation in nations' wetland protection efforts based on data from 90 nations, as defined by level of participation in the international wetland convention. Social capital had the largest direct effect on wetland protection efforts, suggesting that increased social development may eventually lead to better wetland protection. In contrast, increasing economic development had a negative linear relationship with wetland protection efforts, suggesting the need for explicit wetland protection programs as nations continue to focus on economic development. Government, environmental characteristics, and land-use pressure also had a positive direct effect on wetland protection, and mediated the effect of social capital on wetland protection. Explicit wetland protection policies, combined with a focus on social development, would lead to better wetland protection at the national level.  相似文献   

8.
城市湿地生态系统的结构特征及现存问题   总被引:1,自引:0,他引:1  
对我国城市湿地生态系统的结构特征和存在问题进行了综述。目前我国城市湿地生态系统的结构特征表现为面积小、分布不均、空间结构和营养结构简单、稳定性低、脆弱性强,同时其形态结构具有显著的景观美学特征,但受水环境因素的制约性强。目前的主要问题是:湿地面积迅速减少、空间结构脆弱性加剧、环境污染加剧、生物多样性降低、生物入侵严重、生态系统稳定性下降、水土流失与湖泊淤积严重、规划设计不当、人为干预强烈。通过综述,将增加人们对城市湿地生态系统结构的深入认识,为开展科学保护、建设、开发、利用活动和促进城市可持续发展提供依据。  相似文献   

9.
Remote Sensing of Landscape-Level Coastal Environmental Indicators   总被引:5,自引:1,他引:4  
Advances in technology and decreases in cost are making remote sensing (RS) and geographic information systems (GIS) practical and attractive for use in coastal resource management. They are also allowing researchers and managers to take a broader view of ecological patterns and processes. Landscape-level environmental indicators that can be detected by Landsat Thematic Mapper (TM) and other remote sensors are available to provide quantitative estimates of coastal and estuarine habitat conditions and trends. Such indicators include watershed land cover, riparian buffers, shoreline and wetland changes, among others. With the launch of Landsat 7, the cost of TM imagery has dropped by nearly a factor of 10, decreasing the cost of monitoring large coastal areas and estuaries. New satellites, carrying sensors with much finer spatial (1-5 m) and spectral (200 narrow bands) resolutions are being launched, providing a capability to more accurately detect changes in coastal habitat and wetland health. Advances in the application of GIS help incorporate ancillary data layers to improve the accuracy of satellite land-cover classification. When these techniques for generating, organizing, storing, and analyzing spatial information are combined with mathematical models, coastal planners and managers have a means for assessing the impacts of alternative management practices.  相似文献   

10.
Animal body size is driven by habitat quality, food availability, and nutrition. Adult size can relate to birth weight, to length of the ontogenetic growth period, and/or to the rate of growth. Data requirements are high for studying these growth mechanisms, but large datasets exist for some game species. In North America, large harvest datasets exist for white-tailed deer (Odocoileus virginianus), but such data are collected under a variety of conditions and are generally dismissed for ecological research beyond local population and habitat management. We contend that such data are useful for studying the ecology of white-tailed deer growth and body size when analyzed at ordinal scale. In this paper, we test the response of growth rate to food availability by fitting a logarithmic equation that estimates growth rate only to harvest data from Fort Hood, Texas, and track changes in growth rate over time. Results of this ordinal scale model are compared to previously published models that include additional parameters, such as birth weight and adult weight. It is shown that body size responds to food availability by variation in growth rate. Models that estimate multiple parameters may not work with harvest data because they are prone to error, which renders estimates from complex models too variable to detect interannual changes in growth rate that this ordinal scale model captures. This model can be applied to harvest data, from which inferences about factors that influence animal growth and body size (e.g., habitat quality and nutritional availability) can be drawn.  相似文献   

11.
Assessment of cumulative impacts on wetlands can benefit by recognizing three fundamental wetland categories: basin, riverine, and fringe. The geomorphological settings of these categories have relevance for water quality.Basin, or depressional, wetlands are located in headwater areas, and capture runoff from small areas. Thus, they are normally sources of water with low elemental concentration. Although basin wetlands normally possess a high capacity for assimilating nutrients, there may be little opportunity for this to happen if the catchment area is small and little water flows through them.Riverine wetlands, in contrast, interface extensively with uplands. It has been demonstrated that both the capacity and the opportunity for altering water quality are high in riverine wetlands.Fringe wetlands are very small in comparison with the large bodies of water that flush them. Biogeochemical influences tend to be local, rather than having a measurable effect on the larger body of water. Consequently, the function of these wetlands for critical habitat may warrant protection from high nutrient levels and toxins, rather than expecting them to assume an assimilatory role.The relative proportion of these wetland types within a watershed, and their status relative to past impacts can be used to develop strategies for wetland protection. Past impacts on wetlands, however, are not likely to be clearly revealed in water quality records from monitoring studies, either because records are too short or because too many variables other than wetland impacts affect water quality. It is suggested that hydrologic records be used to reconstruct historical hydroperiods in wetlands for comparison with current, altered conditions. Changes in hydroperiod imply changes in wetland function, especially for biogeochemical processes in sediments. Hydroperiod is potentially a more sensitive index of wetland function than surface areas obtained from aerial photographs. Identification of forested wetlands through photointerpretation relies on vegetation that may remain intact for decades after drainage. Finally, the depositional environment of wetlands is a landscape characteristic that has not been carefully evaluated nor fully appreciated. Impacts that reverse depositional tendencies also may accelerate rates of change, causing wetlands to be large net exporters rather than modest net importers. Increases in rates as well as direction can cause stocks of materials, accumulated over centuries in wetland sediments, to be lost within decades, resulting in nutrient loading to downstream aquatic ecosystems.  相似文献   

12.
Wetlands are a vital resource, particularly in Africa where livelihoods are closely linked to natural capital. In recent years, extensive drainage has occurred to make way for agriculture. To gain insight into whether drainage is justified, we review the value of African wetlands dominated by Cyperus papyrus in relation to use, conservation and conversion. Evidence suggests that the value derived from low-intensity, multifunctional wetland use far exceeds the value derived from swamp reclamation and generally exceeds that of conservation. At a local level, the main driver of wetland misuse appear to be a breakdown in collaborative management regimes and the main constraint on wetland use, the value of labor and selling-times. Local drivers are linked to regional factors such as the lack of coordinated wetland policies and difficulties in ensuring that legislation is absorbed by all sectors of society. We highlight opportunities for ensuring more effective collaborative management and legislation communication, which capitalize on existing governance structures. In contrast to predictions by Hardin’s Tragedy of the Commons model, we argue that effective wetland management is best achieved by preventing privatization and promoting common property management regimes. We also argue that poverty and income inequity are more important drivers of unsustainable resource use than environmental managers commonly acknowledge.  相似文献   

13.
Habitat change in coastal Louisiana from 1955/6 to 1978 was analyzed to determine the influence of geological and man-made changes on landscape patterns within 7.5 min quadrangle maps. Three quantitative analyses were used: principal components anlaysis, multiple regression analysis, and cluster analysis.Regional differences in land loss rates reflect variations in geology and the deltaic growth/decay cycles, man-induced chages in hydrology (principally canal dredging and spoil banking), and land-use changes (principally urbanization and agricultural expansion). The coastal zone is not homogeneous with respect to these variables and the interaction between causal factors leading to wetland loss is therefore locally variable and complex.The relationship between wetland loss, hydrologic changes, and geology can be described with statistically meaningful results, even though these data are insufficient to precisely quantify the relationship. However, these data support the hypothesis that the indirect impacts of man-induced changes (hydrologic and land use) may be as influential as the direct impacts resulting in converting wetlands to open water (canals) or modified (impounded) habitat.Three regions within the Louisiana coastal zone can be defined, based on the potential causal factors used in the analyses. The moderate (mean = 22%) wetland loss rates in region 1 are a result of relatively high canal density and developed area in marshes which overlie sediments of moderate age and depth; local geology acts, in this case, to lessen indirect impacts. On the other hand, wetland loss rates in region 2 are high (mean = 36%), despite fewer man-induced impacts; the potential for increased wetland loss due to both direct and indirect effects of man's activity in these areas is high. Conversely, wetland loss (mean = 20%) in region 3 is apparently least influenced by man's activity in the coastal zone because of sedimentary geology (old, thin sediments), even though these areas have already experienced significant direct habitat alteration and wetland loss.  相似文献   

14.
A detailed evaluation of past wetland restoration projects in San Francisco Bay was undertaken to determine their present status and degree of success. Many of the projects never reached the level of success purported and others have been plagued by serious problems. On the basis of these findings, it is debatable whether any sites in San Francisco Bay can be described as completed, active, or successful restoration projects at present. In spite of these limited accomplishments, wetland creation and restoration have been adopted in the coastal permit process as mitigation to offset environmental damage or loss of habitat. However, because the technology is still largely experimental, there is no guarantee that man-made wetlands will persist as permanent substitutes for sacrificed natural habitats. Existing permit policies should be reanalyzed to insure that they actually succeed in safeguarding diminishing wetlands resources rather than bartering them away for questionable habitat substitutes. Coastal managers must be more specific about project requirements and goals before approval is granted. Continued research on a regional basis is needed to advance marsh establishment techniques into a proven technology. In the meantime, policies encouraging or allowing quid pro quo exchanges of natural wetlands with man-made replacements should proceed with caution. The technology and management policies used at present are many steps ahead of the needed supporting documentation.  相似文献   

15.
ABSTRACT: A major contaminant monitoring and modeling study is underway for Green Bay, Lake Michigan. Monitoring programs in support of contaminant modeling of large waterbodies, such as for Green Bay, are expensive and their extent is often limited by budget limitations, laboratory capacity, and logistic constraints. Therefore, it is imperative that available resources be used in the most efficient manner possible. This use, or allocation of resources, may be aided through the application of readily available models in the planning stages of projects. To aid in the planning effort for the Green Bay project, a workshop was held and studies designed to aid in the allocation of resources for a year-long intensive field study. Physical/chemical and food chain models were applied using historical data to aid in project planning by identifying processes having the greatest impact on the predictive capability of mass balance models. Studies were also conducted to estimate errors in computed tributary loadings and in-Bay concentrations and contaminant mass associated with different sampling strategies. The studies contributed to the overall project design, which was a collaborative effort with many participants involved in budgeting, field data collection, analysis, processing of data, quality assurance, data management and modeling activities.  相似文献   

16.
We studied the effects of spatial and temporal timber harvesting constraints on competing objectives of sustaining wildlife habitat supply and meeting timber harvest objectives in a boreal mixedwood forest. A hierarchical modeling approach was taken, where strategic and tactical level models were used to project blocking and scheduling of harvest blocks. Harvest block size and proximity, together with short- and long-term temporal constraints, were adjusted in a factorial manner to allow creation of response-surface models. A new measure of the habitat mosaic was defined to describe the emergent pattern of habitat across the landscape. These models, together with multiple linear regression, were used to provide insight on convergence or divergence between spatial objectives. For example, green-up delay (defined as time required before a harvest block adjacent to a previously logged block can be scheduled for harvest) had an adverse effect on the amount of annual harvest area that could be allocated and blocked spatially, and habitat supply responded in an opposite direction to that of wood supply, where caribou, moose wintering, and marten habitat supply increased when harvest blocks were further apart, maximum block size smaller, and both a green-up delay and mesoscale stratification were applied. Although there was no "solution space" free of conflicts, the analysis suggests that application of the mesoscale stratification, together with a diversity of harvest block sizes and a between-harvest block proximity of 250 m, will perform relatively well with respect to wood supply objectives, and at the same time create a less fragmented landscape that better reflects natural forest patterns.  相似文献   

17.
This article compares four Dutch environmental certification schemes for agricultural food crops, analysing their methodology and the completeness of their criteria on five aspects: pesticide use, nutrient use, water management, energy and materials consumption, and habitat management. The least stringent of the labels, the MBT ('Environmentally Aware Cultivation') certificate, serves mainly to increase farmers' awareness of nutrient and pesticide use. With regard to both administrative obligations and actual management practices, the MBT label largely mirrors the terms of standing Dutch legislation. The CC ('Controlled Cultivation') and AMK ('Agro-Environmental') labels comprise more and more stringent criteria. With their restrictions on nutrient and pesticide use, these two labels serve as the two principal labels in the field of integrated agriculture. There is little difference between the two and it is recommended that they be merged, on the basis of a standardised definition of integrated agriculture. The EKO ('Organic Agriculture') label proceeds from different principles, but as a minimum should also comply with Dutch legislation without exception. For both integrated and organic agriculture, in addition to criteria on pesticide and nutrient use, criteria should also be developed for water management, energy and materials use and habitat management. The relationship between the criteria and their respective thresholds and Dutch legislation is also addressed. Existing criteria are frequently specified in such a way that the environmental benefits cannot be ascertained. This is a serious drawback for the parties further down the chain: auctioneers, retailers and consumers. It is recommended to develop qualitative guidelines for an Agricultural Stewardship Council at international level, like the Forest Stewardship Council, and a separate label for integrated agriculture per country comprising quantitative criteria for all relevant aspects of farming operations.  相似文献   

18.
The incongruity between the regional and national scales at which wetland losses are occurring, and the project-specific scale at which wetlands are regulated and studied, has become obvious. This article presents a synthesis of recent efforts by the US Environmental Protection Agency and the Ecosystems Research Center at Cornell University to bring wetland science and regulation into alignment with the reality of the cumulative effects of wetland loss and degradation on entire landscapes and regions. The synthesis is drawn from the other articles in this volume, the workshop that initiated them, and the scientific literature. It summarizes the status of our present scientific understanding, discusses means by which to actualize the existing potential for matching the scales of research and regulation with the scales at which effects are observed, and provides guidelines for building a stronger scientific base for landscape-level assessments of cumulative effects. It also provides the outlines for a synoptic and qualitative approach to cumulative effects assessment based on a reexamination of the generic assessment framework we proposed elsewhere in this volume.The primary conclusion to be drawn from the articles and the workshop is that a sound scientific basis for regulation will not come merely from acquiring more information on more variables. It will come from recognizing that a perceptual shift to larger temporal, spatial, and organizational scales is overdue. The shift in scale will dictate different—not necessarily more—variables to be measured in future wetland research and considered in wetland regulation.  相似文献   

19.
Landscape connectivity: A conservation application of graph theory   总被引:5,自引:0,他引:5  
We use focal-species analysis to apply a graph-theoretic approach to landscape connectivity in the Coastal Plain of North Carolina. In doing so we demonstrate the utility of a mathematical graph as an ecological construct with respect to habitat connectivity. Graph theory is a well established mainstay of information technology and is concerned with highly efficient network flow. It employs fast algorithms and compact data structures that are easily adapted to landscape-level focal species analysis. American mink (Mustela vison) and prothonotary warblers (Protonotaria citrea) share the same habitat but have different dispersal capabilities, and therefore provide interesting comparisons on connections in the landscape. We built graphs using GIS coverages to define habitat patches and determined the functional distance between the patches with least-cost path modeling. Using graph operations concerned with edge and node removal we found that the landscape is fundamentally connected for mink and fundamentally unconnected for prothonotary warblers. The advantage of a graph-theoretic approach over other modeling techniques is that it is a heuristic framework which can be applied with very little data and improved from the initial results. We demonstrate the use of graph theory in a metapopulation context, and suggest that graph theory as applied to conservation biology can provide leverage on applications concerned with landscape connectivity.  相似文献   

20.
/ An integrated management plan to create favorable nesting habitat for the world-endangered Dalmatian pelicans, was tested at Kerkini irrigation reservoir, a Ramsar wetland. The lake is the major wintering site of Dalmatian pelicans in Europe, where the species lives year-round without breeding. The rise of water level at the reservoir during spring (exceeding 5 m) has an impact on the whole system, including several birds, which lose their nesting habitat. Although the integrity of the wetland demands ecological restoration with changes in its hydrologic regime, local socioeconomic conditions allow only habitat level interventions. During the planning phase of the management plan, both the ecological and social context of the interventions were considered. Monitoring of all pelican habitats and populations provided the scientific basis, while a socioecological survey on knowledge/attitudes of local fishermen toward wetland identified conflicts with specific resources and planned management. To gain public support, a broad information/education program was implemented. The education program for fishermen was based on the findings of the socioecological survey. The in situ management involved experimental construction of floating rafts, platforms over water, dredged-spoil islands, and platforms at various sites of the wetland. Monitoring of the managed habitats showed that most waterbirds used them for resting and roosting. Common terns nested on the rafts, cormorants on the platforms, and Dalmatian pelicans on the man-made island. Under the prevailing hydrologic and weather conditions, islands seem to be the most suitable habitat for pelican nesting. It is concluded that wildlife habitat management should integrate the ecological component, related to the needs of the species and ecosystem, with the social one, expressed by cooperation and involvement of the local community.KEY WORDS: Integrated management; Pelican; Nesting habitat; Habitat management; Reservoir-wetland; Public participation, Greece  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号