首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
This paper presents a method of spatial sampling based on stratification by Local Moran’s I i calculated using auxiliary information. The sampling technique is compared to other design-based approaches including simple random sampling, systematic sampling on a regular grid, conditional Latin Hypercube sampling and stratified sampling based on auxiliary information, and is illustrated using two different spatial data sets. Each of the samples for the two data sets is interpolated using regression kriging to form a geostatistical map for their respective areas. The proposed technique is shown to be competitive in reproducing specific areas of interest with high accuracy.  相似文献   

3.
O. Defeo  M. Rueda 《Marine Biology》2002,140(6):1215-1225
We discuss methodological aspects directed to quantify the across-shore population structure and abundance of sandy beach macroinfauna. The reliability of estimates derived from design-based (stratified random sampling) and model-based (geostatistics, kriging) approaches is discussed. Our analysis also addresses potential biases arising from environmentally driven designs that consider a priori fixed strata for sampling macroinfauna, as opposed to species-driven sampling designs, in which the entire range of across-shore distribution is covered. Model-based approaches showed, spatially, highly autocorrelated and persistent structures in two intertidal populations of the Uruguayan coast: the isopod Excirolana armata and the yellow clam Mesodesma mactroides. Both populations presented zonation patterns that ranged from the base of the dunes to upper levels of the subtidal. The Gaussian model consistently explained the spatial distribution of species and population components (clam recruits and adults), with a minor contribution (Е%) of unresolved, small-scale variability. The consistent structure of spatial dependence in annual data strongly suggests an across-shore-structured process covering close to 35 m. Kriging predictions through cross-validation corroborated the appropriateness of the models fitted through variographic analysis, and the derived abundance estimates were very similar (maximum difference=7%) to those obtained from linear interpolation. Monthly analysis of E. armata data showed marked variations in its zonation and an unstable spatial structure according to the Gaussian model. The clear spatial structure resulting from species-driven sampling was not observed when data was truncated to simulate an environmentally driven sampling design. In this case, the linear semivariogram indicated a spatial gradient, suggesting that sampling was not performed at the appropriate spatial scale. Further, the cross-validation procedure was not significant, and both density and total abundance were underestimated. We conclude that: (1) geostatistics provides useful additional information about population structure and aids in direct abundance estimation; thus we suggest it as a powerful tool for further applications in the study of sandy beach macroinfauna; and that (2) environmentally driven sampling strategies fail to provide conclusive results about population structure and abundance, and should be avoided in studies of sandy beach populations. This is especially true for microtidal beaches, where unpredictable swash strength precludes a priori stratification through environmental reference points. The need to use adaptive sampling designs and avoid snapshot sampling is also stressed. Methodological implications for the detection of macroecological patterns in sandy beach macroinfauna are also discussed.  相似文献   

4.
This paper develops statistical inference for population mean and total using stratified judgment post-stratified (SJPS) samples. The SJPS design selects a judgment post-stratified sample from each stratum. Hence, in addition to stratum structure, it induces additional ranking structure within stratum samples. SJPS is constructed from a finite population using either a with or without replacement sampling design. Inference is constructed under both randomization theory and a super population model. In both approaches, the paper shows that the estimators of population mean and total are unbiased. The paper also constructs unbiased estimators for the variance (mean square prediction error) of the sample mean (predictor of population mean), and develops confidence and prediction intervals for the population mean. The empirical evidence shows that the proposed estimators perform better than their competitors in the literature.  相似文献   

5.
When sample observations are expensive or difficult to obtain, ranked set sampling is known to be an efficient method for estimating the population mean, and in particular to improve on the sample mean estimator. Using best linear unbiased estimators, this paper considers the simple linear regression model with replicated observations. Use of a form of ranked set sampling is shown to be markedly more efficient for normal data when compared with the traditional simple linear regression estimators.  相似文献   

6.
In this study a conceptual framework for assessing the statistical properties of a non-stochastic spatial interpolator is developed through the use of design-based finite population inference tools. By considering the observed locations as the result of a probabilistic sampling design, we propose a standardized weighted predictor for spatial data starting from a deterministic interpolator that usually does not provide uncertainty measures. The information regarding the coordinates of the spatial locations is known at the population level and is directly used in constructing the weighting system. Our procedure captures the spatial pattern by means of the Euclidean distances between locations, which are fixed and do not require any further assessment after the sample has been drawn. The predictor for any individual value turns in a ratio of design-based random quantities. We illustrate the predictor design-based statistical properties, i.e. asymptotically p-unbiasedness and p-consistency, for simple random sampling without replacement. An application to a couple of environmental datasets is presented, for assessing predictor performances in correspondence of different population characteristics. A comparison with the equivalent non-spatial predictor is presented.  相似文献   

7.

For many clustered populations, the prior information on an initial stratification exists but the exact pattern of the population concentration may not be predicted. Under this situation, the stratified adaptive cluster sampling (SACS) may provide more efficient estimates than the other conventional sampling designs for the estimation of rare and clustered population parameters. For practical interest, we propose a generalized ratio estimator with the single auxiliary variable under the SACS design. The expressions of approximate bias and mean squared error (MSE) for the proposed estimator are derived. Numerical studies are carried out to compare the performances of the proposed generalized estimator over the usual mean and combined ratio estimators under the conventional stratified random sampling (StRS) using a real population of redwood trees in California and generating an artificial population by the Poisson cluster process. Simulation results show that the proposed class of estimators may provide more efficient results than the other estimators considered in this article for the estimation of highly clumped population.

  相似文献   

8.
Estimation of population size has traditionally been viewed from a finite population sampling perspective. Typically, the objective is to obtain an estimate of the total population count of individuals within some region. Often, some stratification scheme is used to estimate counts on subregions, whereby the total count is obtained by aggregation with weights, say, proportional to the areas of the subregions. We offer an alternative to the finite population sampling approach for estimating population size. The method does not require that the subregions on which counts are available form a complete partition of the region of interest. In fact, we envision counts coming from areal units that are small relative to the entire study region and that the total area sampled is a very small proportion of the total study area. In extrapolating to the entire region, we might benefit from assuming that there is spatial structure to the counts. We implement this by modeling the intensity surface as a realization from a spatially correlated random process. In the case of multiple population or species counts, we use the linear model of coregionalization to specify a multivariate process which provides associated intensity surfaces hence association between counts within and across areal units. We illustrate the method of population size estimation with simulated data and with tree counts from a Southwestern pinyon-juniper woodland data set.  相似文献   

9.
Rank-based sampling designs are powerful alternatives to simple random sampling (SRS) and often provide large improvements in the precision of estimators. In many environmental, ecological, agricultural, industrial and/or medical applications the interest lies in sampling designs that are cheaper than SRS and provide comparable estimates. In this paper, we propose a new variation of ranked set sampling (RSS) for estimating the population mean based on the random selection technique to measure a smaller number of observations than RSS design. We study the properties of the population mean estimator using the proposed design and provide conditions under which the mean estimator performs better than SRS and some existing rank-based sampling designs. Theoretical results are augmented with some numerical studies and a real-life example, where we also study the performance of our proposed design under perfect and imperfect ranking situations.  相似文献   

10.
Engen S  Lande R  Saether BE 《Ecology》2008,89(9):2612-2622
Taylor's spatial scaling law concerns the relation between the variance and the mean population counts within areas of a given size. For a range of area sizes, the log of the variance often is an approximately linear function of the mean with a slope between 1 and 2, depending on the range of areas considered. In this paper, we investigate this relationship theoretically for random quadrat samples within a large area. The model makes a distinction between the local point process determining the position of each individual and the population density described by a spatial covariance function. The local point process and the spatial covariance of population density both contribute to the general relationship between the mean and the variance in which the slope may begin at 1, increase to 2, and decrease to 1 again. It is demonstrated by an example that the slope theoretically may exceed 2 by a small amount for very regular patterns that generate spatial covariance functions that increase in certain intervals. We also show how properties of population dynamics in space and time determine this relationship.  相似文献   

11.
Rarefaction estimates how many species are expected in a random sample of individuals from a larger collection and allows meaningful comparisons among collections of different sizes. It assumes random spatial dispersion. However, two common dispersion patterns, within-species clumping and segregation among species, can cause rarefaction to overestimate the species richness of a smaller continuous area. We use field studies and computer simulations to determine (1) how robust rarefaction is to nonrandom spatial dispersion and (2) whether simple measures of spatial autocorrelation can predict the bias in rarefaction estimates. Rarefaction does not estimate species richness accurately for many communities, especially at small sample sizes. Measures of spatial autocorrelation of the more abundant species do not reliably predict amount of bias. Survey sites should be standardized to equal-sized areas before sampling. When sites are of equal area but differ in number of individuals sampled, rarefaction can standardize collections. When communities are sampled from different-sized areas, the mean and confidence intervals of species accumulation curves allow more meaningful comparisons among sites. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Daniel SimberloffEmail:
  相似文献   

12.
We present a robust sampling methodology to estimate population size using line transect and capture-recapture procedures for aerial surveys. Aerial surveys usually underestimate population density due to animals being missed. A combination of capture-recapture and line transect sampling methods with multiple observers allows violation of the assumption that all animals on the centreline are sighted from the air. We illustrate our method with an example of inanimate objects which shows evidence of failure of the assumption that all objects on the centreline have probability 1 of being detected. A simulation study is implemented to evaluate the performance of three variations of the Lincoln-Petersen estimator: the overall estimator, the stratified estimator, and the general stratified estimator based on the combined likelihood proposed in this paper. The stratified Lincoln-Petersen estimator based on the combined likelihood is found to be generally superior to the other estimators.  相似文献   

13.
Adjusted two-stage adaptive cluster sampling   总被引:1,自引:0,他引:1  
An adjusted two-stage sampling procedure is discussed for adaptive cluster sampling where some networks are large and others are small. A two-stage sample is drawn from the large networks and a single-stage sample is drawn from the rest. The simple random sampling (SRS) procedure without replacement is used at the initial stage. An estimator for the population mean along with its properties is discussed.  相似文献   

14.
This paper presents a simple least squares procedure for estimating the spatial covariance and compares it with the numerically more difficult restricted maximum likelihood procedure. Thereafter, it compares design-based and kriging techniques for the estimation of spatial averages in the context of double sampling, as used in forest inventory, where terrestrial sample plots are combined with auxiliary information based on aerial photographs. A case study illustrates the theory.  相似文献   

15.
Geostatistics is a set of statistical techniques that is increasingly used to characterize spatial dependence in spatially referenced ecological data. A common feature of geostatistics is predicting values at unsampled locations from nearby samples using the kriging algorithm. Modeling spatial dependence in sampled data is necessary before kriging and is usually accomplished with the variogram and its traditional estimator. Other types of estimators, known as non-ergodic estimators, have been used in ecological applications. Non-ergodic estimators were originally suggested as a method of choice when sampled data are preferentially located and exhibit a skewed frequency distribution. Preferentially located samples can occur, for example, when areas with high values are sampled more intensely than other areas. In earlier studies the visual appearance of variograms from traditional and non-ergodic estimators were compared. Here we evaluate the estimators' relative performance in prediction. We also show algebraically that a non-ergodic version of the variogram is equivalent to the traditional variogram estimator. Simulations, designed to investigate the effects of data skewness and preferential sampling on variogram estimation and kriging, showed the traditional variogram estimator outperforms the non-ergodic estimators under these conditions. We also analyzed data on carabid beetle abundance, which exhibited large-scale spatial variability (trend) and a skewed frequency distribution. Detrending data followed by robust estimation of the residual variogram is demonstrated to be a successful alternative to the non-ergodic approach.  相似文献   

16.
Iwao's quadratic regression or Taylor's Power Law (TPL) are commonly used to model the variance as a function of the mean for sample counts of insect populations which exhibit spatial aggregation. The modeled variance and distribution of the mean are typically used in pest management programs to decide if the population is above the action threshold in any management unit (MU) (e.g., orchard, forest compartment). For nested or multi-level sampling the usual two-stage modeling procedure first obtains the sample variance for each MU and sampling level using ANOVA and then fits a regression of variance on the mean for each level using either Iwao or TPL variance models. Here this approach is compared to the single-stage procedure of fitting a generalized linear mixed model (GLMM) directly to the count data with both approaches demonstrated using 2-level sampling. GLMMs and additive GLMMs (AGLMMs) with conditional Poisson variance function as well as the extension to the negative binomial are described. Generalization to more than two sampling levels is outlined. Formulae for calculating optimal relative sample sizes (ORSS) and the operating characteristic curve for the control decision are given for each model. The ORSS are independent of the mean in the case of the AGLMMs. The application described is estimation of the variance of the mean number of leaves per shoot occupied by immature stages of a defoliator of eucalypts, the Tasmanian Eucalyptus leaf beetle, based on a sample of trees within plots from each forest compartment. Historical population monitoring data were fitted using the above approaches.  相似文献   

17.
Ecological patterns vary in space and time. Therefore, when using dynamic models in ecology, the spatial aspect should not be neglected prematurely since it could possibly change the model outcomes to a considerable extent. In view of this problem, we describe here a method how to construct a non-spatial version from a spatially explicit simulation model. The principle idea is to suppress the spatial correlations of cells in a grid in time by continuously re-assigning a random neighbourhood for each cell on the grid. Since this procedure actually eliminates the spatial dimensions, it allows to quantify the unadulterated impact of spatial processes on the model results. To illustrate an important application of this approach in the context of forest management we use a grid-based model that simulates succession of Norway spruce (Picea abies (L.) Karst.) at mountainous sites after blowdown events. The output of this model is compared with the results of the deduced non-spatial version of this model regarding the predicted amount of re-growing trees. The non-spatial version dramatically overestimates the number of spruce trees on different microsites. Thus, the uncritical use of the non-spatial model might give reason to wrong management decisions that are based on too optimistic predictions. In practice, this may lead to dangerous situations, especially in mountain forests serving as protection against avalanches and landslides. This example demonstrates the successful applicability of our approach. Our method can be interpreted as a contribution to an extended sensitivity analysis: it analyses the sensitivity of the results due to structural changes of the model. This sensitivity allows one to estimate the redundancy or the necessity of spatially explicit processes in a model with regard to the parsimony principle of modelling. Since our approach is not dependent on special features of the simulation model used here, it is assumed to be applicable for other spatial models, too, and can thus be considered of general interest for a diligent model analysis.  相似文献   

18.
Properly sampling soils and mapping soil contamination in urban environments requires that impacts of spatial autocorrelation be taken into account. As spatial autocorrelation increases in an urban landscape, the amount of duplicate information contained in georeferenced data also increases, whether an entire population or some type of random sample drawn from that population is being analyzed, resulting in conventional power and sample size calculation formulae yielding incorrect sample size numbers vis-à-vis model-based inference. Griffith (in Annals, Association of American Geographers, 95, 740–760, 2005) exploits spatial statistical model specifications to formulate equations for estimating the necessary sample size needed to obtain some predetermined level of precision for an analysis of georeferenced data when implementing a tessellation stratified random sampling design, labeling this approach model-informed, since a model of latent spatial autocorrelation is required. This paper addresses issues of efficiency associated with these model-based results. It summarizes findings from a data collection exercise (soil samples collected from across Syracuse, NY), as well as from a set of resampling and from a set of simulation experiments following experimental design principles spelled out by Overton and Stehman (in Communications in Statistics: Theory and Methods, 22, 2641–2660). Guidelines are suggested concerning appropriate sample size (i.e., how many) and sampling network (i.e., where).
Daniel A. GriffithEmail:
  相似文献   

19.
The mean of a balanced ranked set sample is more efficient than the mean of a simple random sample of equal size and the precision of ranked set sampling may be increased by using an unbalanced allocation when the population distribution is highly skewed. The aim of this paper is to show the practical benefits of the unequal allocation in estimating simultaneously the means of more skewed variables through real data. In particular, the allocation rule suggested in the literature for a single skewed distribution may be easily applied when more than one skewed variable are of interest and an auxiliary variable correlated with them is available. This method can lead to substantial gains in precision for all the study variables with respect to the simple random sampling, and to the balanced ranked set sampling too.  相似文献   

20.
We consider the spatial sampling design problem for a random field X. This random field is in general assumed not to be directly observable, but sample information from a related variable Y is available. Our purpose in this paper is to present a state-space model approach to network design based on Shannon's definition of entropy, and describe its main points with regard to some of the most common practical problems in spatial sampling design. For applications, an adaptation of Ko et al.'s (1995) algorithm for maximum entropy sampling in this context is provided. We illustrate the methodology using piezometric data from the Velez aquifer (Malaga, Spain). © Rapid Science 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号