首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A mesoscale atmospheric model PSU/NCAR MM5 is used to provide operational weather forecasts for a nuclear emergency response decision support system on the southeast coast of India. In this study the performance of the MM5 model with assimilation of conventional surface and upper-air observations along with satellite derived 2-d surface wind data from QuickSCAT sources is examined. Two numerical experiments with MM5 are conducted: one with static initialization using NCEP FNL data and second with dynamic initialization by assimilation of observations using four dimensional data assimilation (FDDA) analysis nudging for a pre-forecast period of 12 h. Dispersion simulations are conducted for a hypothetical source at Kalpakkam location with the HYSPLIT Lagrangian particle model using simulated wind field from the above experiments. The present paper brings out the differences in the atmospheric model predictions and the differences in dispersion model results from control and assimilation runs. An improvement is noted in the atmospheric fields from the assimilation experiment which has led to significant alteration in the trajectory positions, plume orientation and its distribution pattern. Sensitivity tests using different PBL and surface parameterizations indicated the simple first order closure schemes (Blackadar, MRF) coupled with the simple soil model have given better results for various atmospheric fields. The study illustrates the impact of the assimilation of the scatterometer wind and automated weather stations (AWS) observations on the meteorological model predictions and the dispersion results.  相似文献   

2.
3.
The sensitivity of mesoscale simulations of land and sea breeze circulation on the south east coast in the Chennai region of India to boundary layer turbulence parameterizations is studied using the community based PSU/NCAR mesoscale model MM5. High-resolution simulations are carried out with nested domains. Four widely used boundary layer turbulence parameterization schemes are selected for the study. Two of these schemes (Blackadar (BK) and medium range forecast (MRF)) are simple first-order non-local schemes and the other two (Mellor–Yamada (MY) Eta planetary boundary layer (PBL) and Gayno–Seaman (GS)) are more complex 1.5 order local schemes that include a prognostic equation for turbulence kinetic energy. The other physics used in the model are identical. The micro-meteorological tower and flux observations, GP sonde and radiosonde observations from the study region are used to compare the simulated mean variables. In spite of differences in complexity, all the schemes show similar capability in simulating the boundary layer temperature, humidity and winds. The land–sea breeze circulation and internal boundary layer formation, which are special phenomena at the coastal site, could be simulated by all the schemes. The BK, MRF schemes produced boundary layers that are more mixed than those produced with the MY and GS schemes. While all the schemes underestimated surface sensible heat fluxes during stable night conditions they are reasonably simulated during daytime by MRF and BK schemes. Among the tested schemes, the BK scheme has reasonably produced the PBL height, humidity, wind fields and proves suitable for operational forecasting. The results suggest that there is little improvement in overall accuracy of predictions with more complex turbulence parameterizations.  相似文献   

4.
Comparisons were made between three sets of meteorological fields used to support air quality predictions for the California Regional Particulate Air Quality Study (CRPAQS) winter episode from December 15, 2000 to January 6, 2001. The first set of fields was interpolated from observations using an objective analysis method. The second set of fields was generated using the WRF prognostic model without data assimilation. The third set of fields was generated using the WRF prognostic model with the four-dimensional data assimilation (FDDA) technique. The UCD/CIT air quality model was applied with each set of meteorological fields to predict the concentrations of airborne particulate matter and gaseous species in central California. The results show that the WRF model without data assimilation over-predicts surface wind speed by ~30% on average and consequently yields under-predictions for all PM and gaseous species except sulfate (S(VI)) and ozone(O3). The WRF model with FDDA improves the agreement between predicted and observed wind and temperature values and consequently yields improved predictions for all PM and gaseous species. Overall, diagnostic meteorological fields produced more accurate air quality predictions than either version of the WRF prognostic fields during this episode. Population-weighted average PM2.5 exposure is 40% higher using diagnostic meteorological fields compared to prognostic meteorological fields created without data assimilation. These results suggest diagnostic meteorological fields based on a dense measurement network are the preferred choice for air quality model studies during stagnant periods in locations with complex topography.  相似文献   

5.
The Nested Grid Model (NGM) is a primitive-equation meteorological model that is routinely exercised over North America for forecasting purposes by the National Meteorological Center. While prognostic meteorological models are being increasingly used to drive air quality models, their use in conducting annual simulations requires significant resources. NGM estimates of wind fields and other meteorological variables provide an attractive alternative since they are typically archived and readily available for an entire year. Preliminary evaluation of NGM winds during the summer of 1992 for application to the region surrounding the Grand Canyon National Park showed serious shortcomings. The NGM winds along the borders between California, Arizona and Mexico tend to be northwesterly with a speed of about 6 m/sec, while the observed flow is predominantly southerly at about 2-5 m/sec. The mesoscale effect of a thermal low pressure area over the highly heated Southern California and western Arizona deserts does not appear to be represented by the NGM because of its coarse resolution and the use of sparse observations in that region. Tracer simulations and statistical evaluation against special high resolution observations of winds in the southwest United States clearly demonstrate the northwest bias in NGM winds and its adverse effect on predictions of an air quality model. The "enhanced" NGM winds, in which selected wind observations are incorporated in the NGM winds using a diagnostic meteorological model provide additional confirmation on the primary cause of the northwest bias. This study has demonstrated that in situations where limited resources prevent the use of prognostic meteorological models, previously archived coarse resolution wind fields in which additional observations are incorporated to correct known biases provide an attractive option.  相似文献   

6.
ABSTRACT

The Nested Grid Model (NGM) is a primitive-equation meteorological model that is routinely exercised over North America for forecasting purposes by the National Meteorological Center. While prognostic meteorological models are being increasingly used to drive air quality models, their use in conducting annual simulations requires significant resources. NGM estimates of wind fields and other meteorological variables provide an attractive alternative since they are typically archived and readily available for an entire year. Preliminary evaluation of NGM winds during the summer of 1992 for application to the region surrounding the Grand Canyon National Park showed serious shortcomings. The NGM winds along the borders between California, Arizona and Mexico tend to be northwesterly with a speed of about 6 m/sec, while the observed flow is predominantly southerly at about 2-5 m/sec. The mesoscale effect of a thermal low pressure area over the highly heated Southern California and western Arizona deserts does not appear to be represented by the NGM because of its coarse resolution and the use of sparse observations in that region. Tracer simulations and statistical evaluation against special high resolution observations of winds in the southwest United States clearly demonstrate the northwest bias in NGM winds and its adverse effect on predictions of an air quality model. The “enhanced” NGM winds, in which selected wind observations are incorporated in the NGM winds using a diagnostic meteorological model provide additional confirmation on the primary cause of the northwest bias. This study has demonstrated that in situations where limited resources prevent the use of prognostic meteorological models, previously archived coarse resolution wind fields in which additional observations are incorporated to correct known biases provide an attractive option.  相似文献   

7.
Urban-scale air pollutants for sulfur dioxide, nitrogen dioxide, particulate matter with aerodynamic diameter > or = 10 microm, and ozone (O3) were simulated over the Seoul metropolitan area, Korea, during the period of July 2-11, 2002, and their predicting capabilities were discussed. The Air Pollution Model (TAPM) and the highly disaggregated anthropogenic and the biogenic gridded emissions (1 km x 1 km) recently prepared by the Korean Ministry of Environment were applied. Wind fields with observational nudging in the prognostic meteorological model TAPM are optionally adopted to comparatively examine the meteorological impact on the prediction capabilities of urban-scale air pollutants. The result shows that the simulated concentrations of secondary air pollutant largely agree with observed levels with an index of agreement (IOA) of >0.6, whereas IOAs of approximately 0.4 are found for most primary pollutants in the major cities, reflecting the quality of emission data in the urban area. The observationally nudged wind fields with higher IOAs have little effect on the prediction for both primary and secondary air pollutants, implying that the detailed wind field does not consistently improve the urban air pollution model performance if emissions are not well specified. However, the robust highest concentrations are better described toward observations by imposing observational nudging, suggesting the importance of wind fields for the predictions of extreme concentrations such as robust highest concentrations, maximum levels, and >90th percentiles of concentrations for both primary and secondary urban-scale air pollutants.  相似文献   

8.
The evaluation of the high percentiles of concentration distributions is required by most national air quality guidelines, as well as the EU directives. However, it is problematic to compute such high percentiles in stable, low wind speed or calm conditions. This study utilizes the results of a previous measurement campaign near a major road at Elimäki in southern Finland in 1995, a campaign specifically designed for model evaluation purposes. In this study, numerical simulations were performed with a Gaussian finite line source dispersion model CAR-FMI and a Lagrangian dispersion model GRAL, and model predictions were compared with the field measurements. In comparison with corresponding results presented previously in the literature, the agreement of measured and predicted data sets was good for both models considered, as measured using various statistical parameters. For instance, considering all NOx data (N=587), the so-called index of agreement values varied from 0.76 to 0.87 and from 0.81 to 1.00 for the CAR-FMI and GRAL models, respectively. The CAR-FMI model tends to slightly overestimate the NOx concentrations (fractional bias FB=+14%), while the GRAL model has a tendency to underestimate NOx concentrations (FB=−16%). The GRAL model provides special treatment to account for enhanced horizontal dispersion in low wind speed conditions; while such adjustments have not been included in the CAR-FMI model. This type of Lagrangian model therefore predicts lower concentrations, in conditions of low wind speeds and stable stratification, in comparison with a standard Lagrangian model. In low wind speed conditions the meandering of the flow can be quite significant, leading to enhanced horizontal dispersion. We also analyzed the difference between the model predictions and measured data in terms of the wind speed and direction. The performance of the CAR-FMI model deteriorated as the wind direction approached a direction parallel to the road, and for the lowest wind speeds. However, the performance of the GRAL model varied less with wind speed and direction; the model simulated better the cases of low wind speed and those with the wind nearly parallel to the road.  相似文献   

9.
Accurately predicting the rise of a buoyant exhaust plume is difficult when there are large vertical variations in atmospheric stability or wind velocity. Such conditions are particularly common near shoreline power plants. Simple plume rise formulas, which employ only a mean temperature gradient and a mean wind speed, cannot be expected to adequately treat an atmosphere whose lapse rate and wind velocity vary markedly with height. This paper tests the accuracy of a plume rise model which is capable of treating complex atmospheric structure because it integrates along the plume trajectory. The model consists of a set of ordinary differential equations, derived from the fluid equations of motion, with an entralnment parameterization to specify the mixing of ambient air into the plume. Comparing model predictions of final plume rise to field observations yields a root mean square difference of 24 m, which is 9 % of the average plume rise of 267 m. These predictions are more accurate than predictions given by three simpler models which utilize variants of a standard plume rise formula, the most accurate of the simpler models having a 12% error.  相似文献   

10.
Assimilating concentration data into an atmospheric transport and dispersion model can provide information to improve downwind concentration forecasts. The forecast model is typically a one-way coupled set of equations: the meteorological equations impact the concentration, but the concentration does not generally affect the meteorological field. Thus, indirect methods of using concentration data to influence the meteorological variables are required. The problem studied here involves a simple wind field forcing Gaussian dispersion. Two methods of assimilating concentration data to infer the wind direction are demonstrated. The first method is Lagrangian in nature and treats the puff as an entity using feature extraction coupled with nudging. The second method is an Eulerian field approach akin to traditional variational approaches, but minimizes the error by using a genetic algorithm (GA) to directly optimize the match between observations and predictions. Both methods show success at inferring the wind field. The GA-variational method, however, is more accurate but requires more computational time. Dynamic assimilation of a continuous release modeled by a Gaussian plume is also demonstrated using the genetic algorithm approach.  相似文献   

11.
12.
When considering the modelling of small particle dispersion in the lower part of the Atmospheric Boundary Layer (ABL) using Reynolds Averaged Navier Stokes simulations, the particle paths depend on the velocity profile and on the turbulence kinetic energy, from which the fluctuating velocity components are derived to predict turbulent dispersion. It is therefore important to correctly reproduce the ABL, both for the velocity profile and the turbulence kinetic energy profile.For RANS simulations with the standard kε model, Richards and Hoxey (1993. Appropriate boundary conditions for computational wind engineering models using the k–ε turbulence model. Journal of Wind Engineering and Industrial Aerodynamics 46–47, 145–153.) proposed a set of boundary conditions which result in horizontally homogeneous profiles. The drawback of this method is that it assumes a constant profile of turbulence kinetic energy, which is not always consistent with field or wind tunnel measurements. Therefore, a method was developed which allows the modelling of a horizontally homogeneous turbulence kinetic energy profile that is varying with height.By comparing simulations performed with the proposed method to simulations performed with the boundary conditions described by Richards and Hoxey (1993. Appropriate boundary conditions for computational wind engineering models using the k–ε turbulence model. Journal of Wind Engineering and Industrial Aerodynamics 46–47, 145–153.), the influence of the turbulence kinetic energy on the dispersion of small particles over flat terrain is quantified.  相似文献   

13.
A methodology is developed to include wind flow effects in land use regression (LUR) models for predicting nitrogen dioxide (NO2) concentrations for health exposure studies. NO2 is widely used in health studies as an indicator of traffic-generated air pollution in urban areas. Incorporation of high-resolution interpolated observed wind direction from a network of 38 weather stations in a LUR model improved NO2 concentration estimates in densely populated, high traffic and industrial/business areas in Toronto-Hamilton urban airshed (THUA) of Ontario, Canada. These small-area variations in air pollution concentrations that are probably more important for health exposure studies may not be detected by sparse continuous air pollution monitoring network or conventional interpolation methods. Observed wind fields were also compared with wind fields generated by Global Environmental Multiscale-High resolution Model Application Project (GEM-HiMAP) to explore the feasibility of using regional weather forecasting model simulated wind fields in LUR models when observed data are either sparse or not available. While GEM-HiMAP predicted wind fields well at large scales, it was unable to resolve wind flow patterns at smaller scales. These results suggest caution and careful evaluation of regional weather forecasting model simulated wind fields before incorporating into human exposure models for health studies. This study has demonstrated that wind fields may be integrated into the land use regression framework. Such integration has a discernable influence on both the overall model prediction and perhaps more importantly for health effects assessment on the relative spatial distribution of traffic pollution throughout the THUA. Methodology developed in this study may be applied in other large urban areas across the world.  相似文献   

14.
The high ozone episode in the greater Seoul area (GSA) for the period of 27 July–1 August 1997 was modeled by the California Institute of Technology (CIT) three-dimensional photochemical model. During the period, ozone concentrations around 140 ppb were observed for 2 days. Two sets of diagnostic wind fields were constructed by using observations from the weather stations operated by the Korea Meteorological Administration. One set of wind fields utilized only observations from the surface weather stations (SWS) and the other set also utilized observations from the automatic weather stations (AWS) that were more densely distributed than the SWS. The results showed that utilizing observations from the AWS could represent fine variations in the wind field such as those caused by topography. A better wind field gave a more reasonable spatial distribution of ozone concentrations. The model performance of ozone prediction was also improved to some extent, but only marginally acceptable owing to large day-to-day variations. Overshoots of primary pollutants particularly for NO2 were observed as pollutants were accumulated where low wind speeds were maintained. More precise information on diurnal and daily variations in emissions was warranted in order to better model the photochemical phenomena over the GSA.  相似文献   

15.
Abstract

Urban-scale air pollutants for sulfur dioxide, nitrogen dioxide, particulate matter with aerodynamic diameter >10 μm, and ozone (O3) were simulated over the Seoul metropolitan area, Korea, during the period of July 2-11, 2002, and their predicting capabilities were discussed. The Air Pollution Model (TAPM) and the highly disaggregated anthropogenic and the biogenic gridded emissions (1 km × 1 km) recently prepared by the Korean Ministry of Environment were applied. Wind fields with observational nudging in the prognostic meteorological model TAPM are optionally adopted to comparatively examine the meteorological impact on the prediction capabilities of urban-scale air pollutants. The result shows that the simulated concentrations of secondary air pollutant largely agree with observed levels with an index of agreement (IOA) of >0.6, whereas IOAs of ~0.4 are found for most primary pollutants in the major cities, reflecting the quality of emission data in the urban area. The observationally nudged wind fields with higher IOAs have little effect on the prediction for both primary and secondary air pollutants, implying that the detailed wind field does not consistently improve the urban air pollution model performance if emissions are not well specified. However, the robust highest concentrations are better described toward observations by imposing observational nudging, suggesting the importance of wind fields for the predictions of extreme concentrations such as robust highest concentrations, maximum levels, and >90th percentiles of concentrations for both primary and secondary urban-scale air pollutants.  相似文献   

16.
Under the 11th Five Year Plan (FYP, 2006–2010) for national environmental protection by the Chinese government, the overarching goal for sulfur dioxide (SO2) controls is to achieve a total national emissions level of SO2 in 2010 10% lower than the level in 2005. A similar nitrogen oxides (NOx) emissions control plan is currently under development and could be enforced during the 12th FYP (2011–2015). In this study, the U.S. Environmental Protection Agency (U.S.EPA)’s Community Multi-Scale Air Quality (Models-3/CMAQ) modeling system was applied to assess the air quality improvement that would result from the targeted SO2 and NOx emission controls in China. Four emission scenarios — the base year 2005, the 2010 Business-As-Usual (BAU) scenario, the 2010 SO2 control scenario, and the 2010 NOx control scenario—were constructed and simulated to assess the air quality change from the national control plan. The Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) was applied to generate the meteorological fields for the CMAQ simulations. In this Part I paper, the model performance for the simulated meteorology was evaluated against observations for the base case in terms of temperature, wind speed, wind direction, and precipitation. It is shown that MM5 model gives an overall good performance for these meteorological variables. The generated meteorological fields are acceptable for using in the CMAQ modeling.  相似文献   

17.
In this paper, the Gaussian Atmospheric Dispersion Modeling System (ADMS4) was coupled with field observations of surface meteorology and concentrations of several air quality indicators (nitrogen oxides (NOx), carbon monoxide (CO), fine particulate matter (PM10) and sulfur dioxide (SO2)) to test the applicability of source emission factors set by the European Environment Agency (EEA) and the United States Environmental Protection Agency (USEPA) at an industrial complex. Best emission factors and data groupings based on receptor location, type of terrain and wind speed, were relied upon to examine model performance using statistical analyses of simulated and observed data. The model performance was deemed satisfactory for several scenarios when receptors were located at downwind sites with index of agreement 'd' values reaching 0.58, fractional bias 'FB' and geometric mean bias 'MG' values approaching 0 and 1, respectively, and normalized mean square error 'NMSE' values as low as 2.17. However, median ratios of predicted to observed concentrations 'Cp/Co' at variable downstream distances were 0.01, 0.36, 0.76 and 0.19 for NOx, CO, PM10 and SO2, respectively, and the fraction of predictions within a factor of two of observations 'FAC2' values were lower than 0.5, indicating that the model could not adequately replicate all observed variations in emittant concentrations. Also, the model was found to be significantly sensitive to the input emission factor bringing into light the deficiency in regulatory compliance modeling which often uses internationally reported emission factors without testing their applicability.  相似文献   

18.
In this study, numerical modelling of the flow and concentration fields has been undertaken for a deep street canyon in Naples (Italy), having aspect ratio (i.e. ratio of the building height H to the street width W) H/W = 5.7. Two different modelling techniques have been employed: computational fluid dynamics (CFD) and operational dispersion modelling. The CFD simulations have been carried out by using the RNG k? turbulence model included in the commercial suite FLUENT, while operational modelling has been conducted by means of the WinOSPM model. Concentration fields obtained from model simulations have been compared with experimental data of CO concentrations measured at two vertical locations within the canyon. The CFD results are in good agreement with the experimental data, while poor agreement is observed for the WinOSPM results. This is because WinOSPM was originally developed and tested for street canyons with aspect ratio H/W ≌ 1. Large discrepancies in wind profiles simulated within the canyon are observed between CFD and OSPM models. Therefore, a modification of the wind profile within the canyon is introduced in WinOSPM for extending its applicability to deeper canyons, leading to an improved agreement between modelled and experimental data. Further development of the operational dispersion model is required in order to reproduce the distinct air circulation patterns within deep street canyons.  相似文献   

19.
The post-harvest burning of agricultural fields is commonly used to dispose of crop residue and provide other desired services such as pest control. Despite careful regulation of burning, smoke plumes from field burning in the Pacific Northwest commonly degrade air quality, particularly for rural populations. In this paper, ClearSky, a numerical smoke dispersion forecast system for agricultural field burning that was developed to support smoke management in the Inland Pacific Northwest, is described. ClearSky began operation during the summer through fall burn season of 2002 and continues to the present. ClearSky utilizes Mesoscale Meteorological Model version 5 (MM5v3) forecasts from the University of Washington, data on agricultural fields, a web-based user interface for defining burn scenarios, the Lagrangian CALPUFF dispersion model and web-served animations of plume forecasts. The ClearSky system employs a unique hybrid source configuration, which treats the flaming portion of a field as a buoyant line source and the smoldering portion of the field as a buoyant area source. Limited field observations show that this hybrid approach yields reasonable plume rise estimates using source parameters derived from recent field burning emission field studies. The performance of this modeling system was evaluated for 2003 by comparing forecast meteorology against meteorological observations, and comparing model-predicted hourly averaged PM2.5 concentrations against observations. Examples from this evaluation illustrate that while the ClearSky system can accurately predict PM2.5 surface concentrations due to field burning, the overall model performance depends strongly on meteorological forecast error. Statistical evaluation of the meteorological forecast at seven surface stations indicates a strong relationship between topographical complexity near the station and absolute wind direction error with wind direction errors increasing from approximately 20° for sites in open areas to 70° or more for sites in very complex terrain. The analysis also showed some days with good forecast meteorology with absolute mean error in wind direction less than 30° when ClearSky correctly predicted PM2.5 surface concentrations at receptors affected by field burns. On several other days with similar levels of wind direction error the model did not predict apparent plume impacts. In most of these cases, there were no reported burns in the vicinity of the monitor and, thus, it appeared that other, non-reported burns were responsible for the apparent plume impact at the monitoring site. These cases do not provide information on the performance of the model, but rather indicate that further work is needed to identify all burns and to improve burn reports in an accurate and timely manner. There were also a number of days with wind direction errors exceeding 70° when the forecast system did not correctly predict plume behavior.  相似文献   

20.
An analytical model for the crosswind integrated concentrations released from a continuous source in a finite atmospheric boundary layer is formulated by considering the wind speed as a power law profile of vertical height above the ground and eddy diffusivity as an explicit function of downwind distance from the source and vertical height. A closed form analytical solution of the resulting advection–diffusion equation for these profiles of wind speed and eddy diffusivity with the physically relevant boundary conditions is derived using the separation of variables technique that leads to a Sturm–Liouville eigen value problem. Various particular cases of the model are deduced.The model is evaluated with the observations obtained from Prairie Grass experiment in various stability classes varying from very unstable to neutral and stable conditions and Hanford diffusion experiment in stable conditions. The agreement is found to be good between the computed and observed concentrations in both the diffusion experiments. For Prairie Grass experiment, the model is predicting 78% cases with in a factor of two and gives a value of NMSE as 0.075. On the other hand, for Hanford observations in stable conditions, it predicts 70% cases with in factor of two. An extensive analysis of statistical measures with the downwind distances from the source reveals that the model is performing well close to the source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号