首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 618 毫秒
1.

Bioretention, also known as rain garden, allows stormwater to soak into the ground through a soil-based medium, leading to removal of particulate and dissolved pollutants and reduced peak flows. Although soil organic matter (SOM) is efficient at sorbing many pollutants, amending the bioretention medium with highly effective adsorbents has been proposed to optimize pollutant removal and extend bioretention lifetime. The aim of this research was to investigate whether soil amended with activated carbon produced from sewage sludge increases the efficiency to remove hydrophobic organic compounds frequently detected in stormwater, compared to non-amended soil. Three lab-scale columns (520 cm3) were packed with soil (bulk density 1.22 g/cm3); activated carbon (0.5% w/w) was added to two of the columns. During 28 days, synthetic stormwater—ultrapure water spiked with seven hydrophobic organic pollutants and dissolved organic matter in the form of humic acids—was passed through the column beds using upward flow (45 mm/h). Pollutant concentrations in effluent water (collected every 12 h) and polluted soils, as well as desorbed amounts of pollutants from soils were determined using GC-MS. Compared to SOM, the activated carbon exhibited a significantly higher adsorption capacity for tested pollutants. The amended soil was most efficient for removing moderately hydrophobic compounds (log K ow 4.0–4.4): as little as 0.5% (w/w), carbon addition may extend bioretention medium lifetime by approximately 10–20 years before saturation of these pollutants occurs. The column tests also indicated that released SOM sorb onto activated carbon, which may lead to early saturation of sorption sites on the carbon surface. The desorption test revealed that the pollutants are generally strongly sorbed to the soil particles, indicating low bioavailability and limited biodegradation.

  相似文献   

2.
Sorption of 3,4-dichloroaniline (3,4-DCA) on four typical Greek agricultural soils, with distinct texture, organic matter content and cation exchange capacities, was compared by using sorption isotherms and the parameters calculated from the fitted Freundlich equations. The sorption process of 3,4-DCA to the soil was completed within 48–72 h. The 3,4-DCA sorption on all soils was well described by the Freundlich equation and all sorption isotherms were of the L-type. The sandy clay loam soil with the highest organic matter content and a slightly acidic pH was the most sorptive, whereas the two other soil types, a high organic matter and neutral pH clay and a low organic matter and acidic loam, had an intermediate sorption capacity. A typical calcareous soil with low organic matter had the lowest sorption capacity which was only slightly higher than that of river sand. The 3,4-DCA sorption correlated best to soil organic matter content and not to clay content or cation exchange capacity, indicating the primary role of organic matter. The distribution coefficient (K d) decreased with increasing initial 3,4-DCA concentration and the reduction was most pronounced with the highly sorptive sandy clay loam soil, suggesting that the available sorption sites of the soils are not unlimited. Liming of the two acidic soils (the sandy clay loam and the loam) raised their pH (from 6.2 and 5.3, respectively) to 7.8 and reduced their sorption capacity by about 50 %, indicating that soil pH may be the second in importance factor (after organic matter) determining 3,4-DCA sorption.  相似文献   

3.

The degradation of metribuzin [4-amino-6-tert-butyl-3-methylthio-1,2,4-triazin-5(4H)-one] as influenced by soil type, temperature, humidity, organic fertilizers, soil sterilization, and ultra-violet radiation was studied in two soil types of Lebanon under laboratory conditions. The two soil types were sandy loam and clay. Deamination of metribuzin in the sandy loam soil to its deaminometribuzin (DA) derivative was basically a result of biological activity. In the clay soil the first metabolite diketometribuzin (DK) was a result of oxidative desulfuration, while diketo-deaminometribuzin (DADK) was the product of reductive deamination. The two soils represented major differences in the pesticide transformation processes. Photodecomposition on the soil surface and in aqueous media was also an important process in the degradation of metribuzin. Furthermore, the increase in soil organic matter enhanced degradation.  相似文献   

4.
This work reports a relatively rapid procedure for the forecasting of the remediation time (RT) of sandy soils contaminated with cyclohexane using vapour extraction. The RT estimated through the mathematical fitting of experimental results was compared with that of real soils. The main objectives were: (i) to predict the RT of soils with natural organic matter (NOM) and water contents different from those used in experiments; and (ii) to analyse the time and efficiency of remediation, and the distribution of contaminants into the soil matrix after the remediation process, according to the soil contents of: (ii1) NOM; and (ii2) water. For sandy soils with negligible clay contents, artificially contaminated with cyclohexane before vapour extraction, it was concluded that: (i) if the NOM and water contents belonged to the range of the prepared soils, the RT of real soils could be predicted with relative differences not higher than 12%; (ii1) the increase of NOM content from 0% to 7.5% increased the RT (1.8-13 h) and decreased the remediation efficiency (RE) (99-90%) and (ii2) the increase of soil water content from 0% to 6% increased the RT (1.8-4.9 h) and decreased the RE (99-97%). NOM increases the monolayer capacity leading to a higher sorption into the solid phase. Increasing of soil water content reduces the mass transfer coefficient between phases. Concluding, NOM and water contents influence negatively the remediation process, turning it less efficient and more time consuming, and consequently more expensive.  相似文献   

5.
In the Ellen catchment on the Pinjarra Plain, NE of Perth in Western Australia, cadmium from fertilisers is starting to leach from soils. About 70% of surface soils in the Ellen catchment are sandy and often on top of a shallow ephemeral water table. Adsorption of Cd in the sandy soils of the Ellen catchment was studied by batch adsorption and by leaching small columns of soil. Adsorption of Cd increases linearly with increasing soil organic matter content and exponentially with increasing pH. Cadmium is significantly mobilised in the sandy soils by dissolved organic matter.The capacity of most of the sandy soils in the Ellen catchment to adsorb phosphate from fertiliser has been saturated. Resulting concentrations in Ellen Brook average 500 μg L−1 P. Cadmium is adsorbed more strongly in the sandy soils than phosphate and is just starting to leach into Ellen Brook. From a comparison of Cd/P ratios in water, soils and fertiliser, cadmium concentrations in Ellen Brook are estimated to be at 10–30% of their maximum for complete breakthrough from soils. Present concentrations of Cd in Ellen Brook average 0.1 μg L−1 and are estimated to approach the maximum for complete breakthrough in 100 yr. Maximum Cd concentrations in Ellen Brook could range from 0.6 to 2 μg L−1, depending on rates of input with fertiliser and future increases in agricultural land use in the catchment.Breakthrough curves, resulting from leaching Cd through small columns of sandy soil, indicate that adsorption significantly increases the effective hydrodynamic dispersion of Cd. Longitudinal dispersivities, measured at pore-water velocities of 0.7–14 m day−1, were 5 cm for Cd and 0.1–0.2 cm for chloride. The much greater dispersion of Cd in the sandy soils than of chloride is shown not to be caused by non-equilibrium adsorption.  相似文献   

6.
Pyraclostrobin is a new broad-spectrum foliar applied and seed protectant fungicide of the strobilurin group. In this paper, adsorption-desorption of pyraclostrobin has been investigated in three different soils viz. Inceptisol (sandy loam, Delhi), Vertisol (sandy clay, Hyderabad) and Ultisol (sandy clay loam, Thrissur). Effect of organic matter and clay content on sorption was also studied in Inceptisol of Delhi. Leaching potential of pyraclostrobin as influenced by rainfall was studied in intact soil columns to confirm the results of adsorption-desorption studies. The adsorption studies were carried out at initial concentrations of 0.05, 0.1, 0.5, 1 and 1.5 μg mL?1. The distribution coefficient (Kd) values in three test soils ranged from 4.91 to 18.26 indicating moderate to high adsorption. Among the three test soils, adsorption was the highest in Ultisol (Kd 18.26), followed by Vertisol (Kd 9.87) and Inceptisol (Kd 4.91). KF value was also highest for Ultisol soil (66.21), followed by Vertisol (40.88) and Inceptisol (8.59). S-type adsorption isotherms were observed in all the three test soils. Kd values in organic carbon-removed soil and clay-removed soil were 3.57 and 2.83 respectively, indicating lower adsorption than normal Inceptisol. Desorption studies were carried out at initial concentrations of 0.5, 1 and 1.5 μg mL?1. Desorption was the greatest in Inceptisol, followed by Vertisol and Ultisol. Amounts of pyraclostrobin desorbed in three desorption cycles for different concentrations were 23.1–25.3%, 9.4–20.7% and 8.1–13.6% in Inceptisol, Vertisol and Ultisol respectively. Desorption was higher in clay fraction-removed and organic carbonremoved soils than normal Inceptisol. Desorption was slower than adsorption in all the test soils, indicating hysteresis effect (with hysteresis coefficient values varying from 0.05 to 0.20). Low values of hysteresis coefficient suggest high hysteresis effect indicating easy and strong adsorption, and slow desorption, of pyraclostrobin in soils. Higher hysteresis coefficient values in organic carbon removed soil (0.25–0.30) and clay fraction removed soil (0.28–0.36) as compared to normal Inceptisol soil suggest relatively weak adsorption and easy desorption of pyraclostrobin. Results of regression analysis suggest that the organic matter and pH of the soil play a major role in adsorption of pyraclostrobin. Leaching studies were carried out in intact soil columns in Inceptisol. The columns were leached with different amounts of water simulating different amounts of rainfall. The results suggest that most of the pyraclostrobin residues will remain present in the top soil layers even under high rainfall conditions and chances of pyraclostrobin moving to lower soil depth are almost negligible.  相似文献   

7.
Sorption–desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption–desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kdads, varied according to its initial concentration and was ranged 40–84 for HA, 14–58 for clay and 1.85–4.15 for bulk soil. Freundlich sorption coefficient, Kfads, values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ~800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/nads values <1 for all sorbents. Values of the hysteresis index (H) were <1, indicating the irreversibility of imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.  相似文献   

8.
Abstract

This study quantified 2,4-D [(2,4-dichlorophenoxy)acetic acid] sorption and mineralization rates in five soils as influenced by soil characteristics and nutrient contents. Results indicated that 2,4-D was weakly sorbed by soil, with Freundlich distribution coefficients ranging from 0.81 to 2.89 µg1?1/n  g?1 mL1/ n . First-order mineralization rate constants varied from 0.03 to 0.26, corresponding to calculated mineralization half-lives of 3 and 22 days, respectively. Herbicide sorption generally increased with increasing soil organic carbon content, but the extent of 2,4-D sorption per unit organic carbon varied among the soils due to differences in soil pH, clay content and/or organic matter quality. Herbicide mineralization rates were greater in soils that sorbed more 2,4-D per unit organic carbon, and that had greater soil nitrogen contents. We conclude that the effect of sorption on herbicide degradation cannot be generalized without a better understanding of the effects of soil characteristics and nutrient content on herbicide behavior in soil.  相似文献   

9.
Concentrations of organic contaminants in common productive soils based on the total soil mass give a misleading account of actual contamination effects. This is attributed to the fact that productive soils are essentially water-saturated, with the result that the soil uptake of organic compounds occurs principally by partition into the soil organic matter (SOM). This report illustrates that the soil contamination intensity of a compound is governed by the concentration in the SOM (Com) rather than by the concentration in whole soil (Cs). Supporting data consist of the measured levels and toxicities of many pesticides in soils of widely differing SOM contents and the related levels in in-situ crops that defy explanation by the Cs values. This SOM-based index is timely needed for evaluating the contamination effects of food crops grown in different soils and for establishing a dependable priority ranking for intended remediation of numerous contamination sites.  相似文献   

10.
In the present laboratory study, persistence of imidacloprid (IMI) as a function of initial insecticide concentration and soil properties in two Croatian soils (Krk sandy clay and Istria clay soils) was studied and described mathematically. Upon fitting the obtained experimental data for the higher concentration level (5 mg/kg) to mathematical models, statistical parameters (R 2, scaled root mean squared error and χ 2 error) indicated that the single first-order kinetics model provided the best prediction of IMI degradation in the Krk sandy clay soil, while in the Istria clay soil biphasic degradation was observed. At the lower concentration level (0.5 mg/kg), the biphasic models Gustafson and Holden models as well as the first-order double exponential model fitted the best experimental data in both soils. The disappearance time (DT50) values estimated by the single first-order double exponential model (from 50 to 132 days) proved that IMI can be categorized as a moderately persistent pesticide. In the Krk sandy clay soil, resulting DT50 values tended to increase with an increase of initial IMI concentration, while in the Istria clay soil, IMI persistence did not depend on the concentration. Organic matter of both experimental soils provided an accelerating effect on the degradation rate. The logistic model demonstrated that the effect of microbial activity was not the most important parameter for the biodegradation of IMI in the Istria clay soil, where IMI degradation could be dominated by chemical processes, such as chemical hydrolysis. The results pointed that mathematical modeling could be considered as the most convenient tool for predicting IMI persistence and contributes to the establishment of adequate monitoring of IMI residues in contaminated soil. Furthermore, IMI usage should be strictly controlled, especially in soils with low organic matter content where the risk of soil and groundwater contamination is much higher due to its longer persistence and consequent leaching and/or moving from soil surface prior to its degradation.  相似文献   

11.
Soil moisture and organic matter level affects soil respiration and microbial activities, which in turn impact greenhouse gas (GHG) emissions. This study was conducted to evaluate the effect of irrigation levels (75% [deficit], 100% [full], and 125% [excess] of reference crop evapotranspiration requirements), and organic amendments (OA) type (chicken manure [CM] and bone meal [BM]) and OA application rates (0,168, 336 and 672 kg total N ha?1) on (i) soil physical properties (bulk density, organic matter content and soil moisture content) and (ii) soil carbon dioxide (CO2) emissions from a highly weathered tropical Hawai'ian soil. Carbon dioxide readings were consistently taken once or twice a week for the duration of the cropping season. A drip irrigation system was used to apply the appropriate amount of irrigation water to the treatment plots. Treatments were randomly selected and corresponding organic amendments were manually incorporated into the soil. Plots were cultivated with sweet corn (Zea mays ‘SS-16’). Soil moisture content within and below the rootzone was monitored using a TDR 300 soil moisture sensor (Spectrum Technologies, Inc., Plainfield, IL, USA) connected with 12 cm long prongs. Soil bulk density and organic matter content were determined at the end of the cropping season. Analysis of variance results revealed that OA type, rate, and their interaction had significant effect on soil CO2 flux (P < 0.05). Among the OA rates, all CM mostly resulted in significantly higher soil CO2 fluxes compared to BM and control treatment (p < 0.05). The two highest rates of BM treatment were not significantly different from the control with regard to soil CO2 flux. In addition, organic amendments affected soil moisture dynamics during the crop growing season and organic matter content measured after the crop harvest. While additional studies are needed to further investigate the effect of irrigation levels on soil CO2 flux, it is recommended that in order to minimize soil CO2 emissions, BM soil amendments could be a potential option to reduce soil CO2 fluxes from agricultural fields similar to the one used in this study.  相似文献   

12.
The main purpose of this work was to identify the role of soil humic acids (HAs) in controlling the behavior of Cu(II) in vineyard soils by exploring the relationship between the chemical and binding properties of HA fractions and those of soil as a whole. The study was conducted on soils with a sandy loam texture, pH 4.3-5.0, a carbon content of 12.4-41.0 g kg−1 and Cu concentrations from 11 to 666 mg kg−1. The metal complexing capacity of HA extracts obtained from the soils ranged from 0.69 to 1.02 mol kg−1, and the stability constants for the metal ion-HA complexes formed, log K, from 5.07 to 5.36. Organic matter-quality related characteristics had little influence on Cu adsorption in acid soils, especially if compared with pH, the degree of Cu saturation and the amount of soil organic matter.  相似文献   

13.
Ptaquiloside (PTA) is a carcinogenic norsesquiterpene glucoside produced by Bracken in amounts up to at least 500 mg m(-2). The toxin is transferred from Bracken to the underlying soil from where it may leach to surface and groundwater's impairing the quality of drinking water. The objectives of the present study were to characterize the solubility, degradation and retention of PTA in soils in order to evaluate the risk for groundwater contamination. PTA was isolated from Bracken. The logarithmic octanol-water and ethyl acetate-water partitioning coefficients for PTA were -0.63 and -0.88, respectively, in agreement with the high water solubility of the compound. PTA hydrolysed rapidly in aqueous solution at pH 4 or lower, but was stable above pH 4. Incubation of PTA with 10 different soils at 25 degrees C showed three different first order degradation patterns: (i) rapid degradation observed for acid sandy soils with half life's ranging between 8 and 30 h decreasing with the soil content of organic matter, (ii) slow degradation in less acid sandy soils with half-lives of several days, and (iii) fast initial degradation with a concurrent solid phase-water partitioning reaction observed for non-acid, mostly clayey soils. The presence of clay silicates appears to retard the degradation of PTA, possibly through sorption. Degradation at 4 degrees C was generally of type (iii) and degradation rates were up to 800 times lower than at 25 degrees C. Sorption isotherms for the same set of soils were almost linear and generally showed very low sorption affinity with distribution coefficients in the range 0.01-0.22 l kg(-1) at a solution concentration of 1 mg l(-1) except for the most acid soil; Freundlich affinity coefficients increased linearly with clay and organic matter contents. Negligible sorption was also observed in column studies where PTA and a non-sorbing tracer showed almost coincident break-through. Leaching of PTA to the aqueous environment will be most extensive on sandy soils, having pH >4 and poor in organic matter which are exposed to high precipitation rates during cold seasons.  相似文献   

14.
The volatilization of DBCP from soils, as affected by the soil characteristics and application techniques, was studied in a laboratory experiment. The volatilization rate of DBCP applied in water was higher from sandy and silty loam soils than from clay soil. Water added after DBCP application acted as a soil cover, decreasing the volatilization rate. The results obtained with DBCP application in hexane to air-dry soils, indicate that adsorption could be an important factor in reducing the volatilization losses. Diffusion coefficients were calculated from the volatilization parameters, by using a simplified relationship between volatilization losses and diffusion through soil.  相似文献   

15.
Nanosized zero-valent iron (nZVI) is an effective land remediation tool, but there remains little information regarding its impact upon and interactions with the soil microbial community. nZVI stabilised with sodium carboxymethyl cellulose was applied to soils of three contrasting textures and organic matter contents to determine impacts on soil microbial biomass, phenotypic (phospholipid fatty acid (PLFA)), and functional (multiple substrate-induced respiration (MSIR)) profiles. The nZVI significantly reduced microbial biomass by 29 % but only where soil was amended with 5 % straw. Effects of nZVI on MSIR profiles were only evident in the clay soils and were independent of organic matter content. PLFA profiling indicated that the soil microbial community structure in sandy soils were apparently the most, and clay soils the least, vulnerable to nZVI suggesting a protective effect imparted by clays. Evidence of nZVI bactericidal effects on Gram-negative bacteria and a potential reduction of arbuscular mycorrhizal fungi are presented. Data imply that the impact of nZVI on soil microbial communities is dependent on organic matter content and soil mineral type. Thereby, evaluations of nZVI toxicity on soil microbial communities should consider context. The reduction of AM fungi following nZVI application may have implications for land remediation.  相似文献   

16.
Organic matter amendments have been proposed as a means to enhance soil carbon stocks on degraded soils, particularly under arid climate. Soil organic carbon (SOC) plays a critical role in terrestrial carbon cycling and is central to preserving soil quality. The effects of biowaste compost (BWC) on soil carbon storage were investigated. In addition, changes in soil organic matter (SOM) and even soil organic carbon (SOC) in BWC-amended soils following different applications were studied. The added BWC quantities were as followed: BWC/soil (weight/weight (w/w) respectively: 1/8, 1/4, and 1/2). The different BWC-amended soils were assessed during 180 days under arid ambient conditions and in comparison with control soil. Results showed a significant increase in SOM and SOC with relation to BWC quantities applied. This increase was relatively clear up to 120 days, after which decrease in SOM and SOC levels were observed. Furthermore, results showed improved microbiological activities of the amended soils in comparison with the control soil. This was reflected by the increase of the amended soils’ respirometric activities as cumulative carbon dioxide carbon (C-CO2) as function of incubation time and also in terms of specific respiration expressed as C-CO2/SOC ratios.

Implications: Mediterranean soils under arid climate such as Tunisian soils are poor in organic matter content. Biowastes are potential source for soil fertilization. Composting process is the best method for the stabilization of organic matter of diverse origins. The biowaste compost amendment improves the soil organic carbon storage and enhances the soil microbial activity.  相似文献   


17.
Miretzky P  Bisinoti MC  Jardim WF 《Chemosphere》2005,60(11):1583-1589
The sorption of Hg (II) onto four different types of Amazon soils from the A-horizon was investigated by means of column experiments under saturation conditions and controlled metal load. Higher organic matter contents in the soil resulted in higher Hg (II) adsorptions, reaching values as high as 3.8 mg Hg g−1 soil. The amount of mercury adsorbed on a soil column (Q) shows a very poor correlation with soil clay content (r2 = 0.2527), indicating that Hg sorption in these topsoil samples is chiefly governed by the organic matter content. Desorption experiments using Negro River (Amazon) waters were conducted using soil saturated with Hg (II) in order to better understand the metal leaching mechanism. The amount of Hg (II) released from soils was around 30% of the total sorbed mercury upon saturation, suggesting that mercury sorption in the soils present in the catchment area of the Negro River basin is not a reversible process.  相似文献   

18.
Labud V  Garcia C  Hernandez T 《Chemosphere》2007,66(10):1863-1871
The aim of this work was to ascertain the effects of different types of hydrocarbon pollution on soil microbial properties and the influence of a soil's characteristics on these effects. For this, toxicity bioassays and microbiological and biochemical parameters were studied in two soils (one sandy and one clayey) contaminated at a loading rate of 5% and 10% with three types of hydrocarbon (diesel oil, gasoline and crude petroleum) differing in their volatilisation potential and toxic substance content. Soils were maintained under controlled conditions (50-70% water holding capacity, and room temperature) for six months and several microbiological and toxicity parameters were monitored 1, 60, 120 and 180 days after contamination. The toxic effects of hydrocarbon contamination were greater in the sandy soil. Hydrocarbons inhibited microbial biomass, the greatest negative effect being observed in the gasoline-polluted sandy soil. In both soils crude petroleum and diesel oil contamination increased microbial respiration, while gasoline had little effect on this parameter, especially in the sandy soil. In general, gasoline had the highest inhibitory effect on the hydrolase activities involved in N, P or C cycles in both soils. All contaminants inhibited hydrolase activities in the sandy soil, while in the clayey soil diesel oil stimulated enzyme activity, particularly at the higher concentration. In both soils, a phytotoxic effect on barley and ryegrass seed germination was observed in the contaminated soils, particularly in those contaminated with diesel or petroleum.  相似文献   

19.
The current models are not simple enough to allow a quick estimation of the remediation time. This work reports the development of an easy and relatively rapid procedure for the forecasting of the remediation time using vapour extraction. Sandy soils contaminated with cyclohexane and prepared with different water contents were studied. The remediation times estimated through the mathematical fitting of experimental results were compared with those of real soils. The main objectives were: (i) to predict, through a simple mathematical fitting, the remediation time of soils with water contents different from those used in the experiments; (ii) to analyse the influence of soil water content on the: (ii(1)) remediation time; (ii(2)) remediation efficiency; and (ii(3)) distribution of contaminants in the different phases present into the soil matrix after the remediation process. For sandy soils with negligible contents of clay and natural organic matter, artificially contaminated with cyclohexane before vapour extraction, it was concluded that (i) if the soil water content belonged to the range considered in the experiments with the prepared soils, then the remediation time of real soils of similar characteristics could be successfully predicted, with relative differences not higher than 10%, through a simple mathematical fitting of experimental results; (ii) increasing soil water content from 0% to 6% had the following consequences: (ii(1)) increased remediation time (1.8-4.9h, respectively); (ii(2)) decreased remediation efficiency (99-97%, respectively); and (ii(3)) decreased the amount of contaminant adsorbed onto the soil and in the non-aqueous liquid phase, thus increasing the amount of contaminant in the aqueous and gaseous phases.  相似文献   

20.
Abstract

The adsorption, desorption, and mobility of permethrin in six tropical soils was determined under laboratory and greenhouse conditions. The six soils were selected from vegetable growing areas in Malaysia. Soil organic matter (OM) was positively correlated (r 2 = 0.97) with the adsorption of permethrin. The two soils, namely, Teringkap 1 and Lating series with the highest OM (3.2 and 2.9%) released 32.5 and 30.8% of the adsorbed permethrin after four consecutive repetitions of the desorption process, respectively, compared to approximately 75.4% of the Gunung Berinchang soil with the lowest OM (1.0%) under the same conditions. The mobility of permethrin down the soil column was inversely correlated to the organic matter content of the soil. Permethrin residue penetrated only to the 10–15 cm zone in the Teringkap 1 soil with 3.2% OM but penetrated to a depth of more than 20 cm in the other soils. The Berinchang series soil with the lowest OM (1.0%) yielded leachate with 14.8% permethrin, the highest level in leachates from all the soils tested. Therefore, the possibility for permethrin to contaminate underground water may be greater in the presence of low organic matter content, which subsequently allows a higher percentage of permethrin to move downwards through the soil column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号