首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Estimates of ozone concentration and deposition flux to coniferous and deciduous forest in the Czech Republic on a 1 × 1 km grid during growing season (April–September) of the year 2001 are presented. Ozone deposition flux was derived from ozone concentrations in the atmosphere and from its deposition velocities. To quantify the spatial pattern in surface concentrations at 1 km resolution incorporating topography, empirical methods are used. The procedure maps ozone concentrations from the period of the day when measurements are representative for the forest areas of countryside. The effects of boundary layer stability are quantified using the observed relationship between the diurnal variability of surface ozone concentration and altitude. Ozone deposition velocities were calculated according to a multiple resistance model incorporating aerodynamic resistance (R a ), laminar layer resistance (R b ) and surface resistance (R c ). Surface resistance (R c ) comprises stomatal resistance (R sto ). R sto was calculated with respect to global radiation, surface air temperature and land cover. Modelled total and stomatal ozone fluxes are compared with the maps describing equivalent values of AOT40 (accumulated exposure over threshold of 40 ppb). For forests, the critical level (9,000 ppbh May–July daylight hours) is exceeded over 50% of forested territory. This indicates the potential for effects on large areas of forest. There is significiant correspondence between the exposure index AOT40 and the total ozone flux, but the relation between the total ozone flux and AOT40 exposure index is not clear in all parts of the forest territory.  相似文献   

2.
Prediction of the amount of hospital waste production will be helpful in the storage, transportation and disposal of hospital waste management. Based on this fact, two predictor models including artificial neural networks (ANNs) and multiple linear regression (MLR) were applied to predict the rate of medical waste generation totally and in different types of sharp, infectious and general. In this study, a 5-fold cross-validation procedure on a database containing total of 50 hospitals of Fars province (Iran) were used to verify the performance of the models. Three performance measures including MAR, RMSE and R2 were used to evaluate performance of models. The MLR as a conventional model obtained poor prediction performance measure values. However, MLR distinguished hospital capacity and bed occupancy as more significant parameters. On the other hand, ANNs as a more powerful model, which has not been introduced in predicting rate of medical waste generation, showed high performance measure values, especially 0.99 value of R2 confirming the good fit of the data. Such satisfactory results could be attributed to the non-linear nature of ANNs in problem solving which provides the opportunity for relating independent variables to dependent ones non-linearly. In conclusion, the obtained results showed that our ANN-based model approach is very promising and may play a useful role in developing a better cost-effective strategy for waste management in future.  相似文献   

3.
The intentional dissemination of Bacillus anthracis (anthrax) spores at multiple locations in the United States in the fall of 2001 resulted not only in several deaths and illnesses (including psychological effects), but likely changed lifestyles and attitudes, and increased the public's awareness of individual vulnerability. While federal resources had previously been committed to preparing local public health agencies for counter‐terrorism activities and to enhance environmental and medical response, these release episodes have increased the consistency of environmental and medical response activities, and increased government resources for homeland security. This article abstracts current information from many sources that summarize the environmental responses to the anthrax releases. The article discusses the international agreements and the U.S. regulations concerning biological weapons, the characteristics of the anthrax organism, potential exposure pathways, adverse health conditions resulting from inhalation exposure, the environmental response to two specific release episodes, environmental sampling and analytical procedures, recommended personal protective equipment, and the subsequent federal efforts to improve response capabilities. © 2003 Wiley Periodicals, Inc.  相似文献   

4.

The present study sought to evaluate the effectiveness of vermicomposting for the valorization of distilled grape marc, one of the main solid by-products of the winery sector during a 56-day pilot-scale trial. The increase in the density and biomass of earthworms (Eisenia andrei) during the earlier stages of the process reflected the suitability of the distilled marc (Vitis vinifera L. cv. Mencía) as feedstock in order to sustain large earthworm populations on a pilot-scale level. Supporting this, from 14 days onwards the pH of Mencía distilled marc fell within weak-alkaline levels and the electrical conductivity was between 0.21 and 0.11 mS cm−2 providing optimum conditions for earthworm growth. A rapid decrease in microbial activity as well as in the content of total polyphenols, both indicative of stabilized materials was also recorded after 14 days of vermicomposting. Moreover, the content of macro- and micronutrients in the end product matched with those considered to have the quality criteria of a good vermicompost with respect to plant health and safe agricultural use. Altogether, it underlines the feasibility of vermicomposting as an environment-friendly approach for the biological stabilization of distilled grape marc fulfilling both environmental protection and fertilizer production.

  相似文献   

5.
Dynamic respiration index (DRI) is an effective respirometric method to measure the biological stability of municipal solid waste (MSW). It allows testing MSW biological stability under standardized conditions and is now used as a routine analytical method. However, the method needs to be studied for precision parameters to ensure the quality of results generated.This work reports on a DRI validation study, detecting repeatability (r) and reproducibility limits (R). To perform the study, 4-6 Italian laboratories took part in an interlaboratory test for the validation of the DRI method on four different municipal solid wastes from different mechanical-biological treatment full-scale plants. Precision values (r and R) of DRI, expressed as relative standard deviation, were in the range of 3.6% and 15.5%, and were acceptable when compared with previous data obtained in another respirometric test. On the other hand, no regressions were found between r and R, and DRI, and as a consequence prediction of precision values was not possible a priori for different DRI levels, unless the same typology of waste was considered.  相似文献   

6.
7.
We used laboratory experiments to investigate surface resistance (R c) to dry deposition of ozone (O3) on different types of soil samples collected from the arid deserts and the Loess Plateau of northern China. Furthermore, we measured the factors that affected R c, which depends on the physical and chemical interaction between trace constituents and the deposition surface, and evaluated deposition velocity (V d). There was little influence of geometric surface area, soil weight, or O3 concentration on V d of O3. The effect of relative humidity (RH) (i.e. moisture content of the soil) on O3 uptake was in agreement with results reported in the literature: a distinct RH dependence of V d and little uptake under water-saturated conditions were observed. R c values for all the soil samples examined were in the range 0.21–3.3 s mm−1 and were exponentially related to the surface area of the particles and the organic carbon content of each soil sample at RH of both <10 and 60%.  相似文献   

8.
To assess the environmental quality of compost, it is insufficient to use only total metal concentration. Therefore in this study, the stability of metals in compost and the environmental risk they pose were assessed by three indices that have been proposed for soils or sediments: the IR, the RAC and the MRI. In mature composts, the highest bonding intensity was for Ni (0.79 < IR < 0.93), then for Cu (0.56 < IR < 0.65) and Pb (0.55 < IR < 0.73), and the lowest for Zn (0.19 < IR < 0.25). Although, both the IR and the RAC are useful indices for evaluating the mobility of metals, they do not take into account their toxicity. Therefore, the overall classification of compost should also include the MRI, at which metal toxicity from the most available fractions is considered. Based on the MRI ranged between 10.0 and 11.6, all composts evaluated posed a low risk.  相似文献   

9.
We examined dissolution of polystyrene (PS) into cyclic monoterpenes present in tree essential oils, in order to develop an environmentally friendly shrinking agent for expanded polystyrene. The relationship between the chemical structure of the monoterpenes and their dissolution power for PS was studied through the solubility parameter (δ) and apparent activation energy (E a) for dissolution. (R)-Limonene and its structural isomers on a C=C bond have high solvent power for PS. This favorable solubility was explained by their solubility parameters. The occurrence of hydroxyl group in a solvent molecule, such as in terpinen-4-ol, reduced affinity for PS. Bicyclic monoterpenes and 1,8-cineole, which have sterically bulky structure, showed limited dissolution power even though they have solubility parameters similar to that of (R)-limonene. Their bulky structures would interfere with permeation of solvent into the PS matrix. Cyclic monoterpenes and PS were recovered almost quantitatively by simple steam distillation of the PS solution.  相似文献   

10.
This article describes a design approach that has been developed for bioremediation of chlorinated volatile organic compound–impacted groundwater that is based upon experience gained during the past 17 years. The projects described in the article generally involve large‐scale enhanced anaerobic dechlorination (EAD) and combined aerobic/anaerobic bioremediation techniques. Our design approach is based on three primary objectives: (1) selecting and distributing the proper additives (including bioaugmentation) within the targeted treatment zone; (2) maintaining a neutral pH (and adding alkalinity when needed); and (3) sustaining the desired conditions for a sufficient period of time for the bioremediation process to be fully completed. This design approach can be applied to both anaerobic and aerobic bioremediation systems. Site‐specific conditions of hydraulic permeability, groundwater velocity, contaminant type and concentrations, and regulatory constraints will dictate the best remedial approach and design parameters for in situ bioremediation at each site. The biggest challenges to implementing anaerobic bioremediation processes are generally the selection and delivery of a suitable electron donor and the proper distribution of the donor throughout the targeted treatment zone. For aerobic bioremediation processes, complete distribution of adequate concentrations of a suitable electron acceptor, typically oxygen or oxygen‐yielding compounds such as hydrogen peroxide, is critical. These design approaches were developed based on understanding the biological processes involved and the mechanics of groundwater flow. They have evolved based on actual applications and results from numerous sites. An EAD treatment system, based on our current design approach, typically uses alcohol as a substrate, employs groundwater recirculation to distribute additives, and has an operational period of two to four years. An aerobic in situ treatment system based on our current design approach typically uses pure oxygen or hydrogen peroxide as an electron acceptor, may involve enhancements to groundwater flow for better distribution, and generally has an operational period of one to four years. These design concepts and specific project examples are presented for 17 sites. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Travis Air Force Base, California, has accelerated the pace of remediation while reducing long‐term costs and cutting greenhouse gas production. This has been achieved through optimizing existing systems and processes, adopting greener cleanups best management practices, and testing and implementing innovative “green” technologies. By optimizing and replacing existing systems that used energy‐intensive infrastructure, and by promoting the use of innovative in situ technologies, the US Air Force (Air Force) led team comprised of the Air Force Civil Engineer Center, the US Army Corps of Engineers, the performance‐based contractor CH2M, and the regulatory agencies consisting of the US Environmental Protection Agency, the California Water Board, and the California Department of Toxic Substances Control, has reduced annual system operation and maintenance costs by over $200,000 per year, while reducing annual carbon dioxide production by approximately 930 tons per year. As a result of these actions, chlorinated solvent source areas have been reduced by over 99 percent in some cases, and the predicted cleanup time frame for multiple sites has been reduced by several decades. This article provides a case study for implementation of cost‐effective greener cleanup actions, and summarizes the approach taken by the Air Force led team to complete the greener cleanups self‐declaration process consistent with the ASTM International's E‐2893 Standard Guide for Greener Cleanups.  相似文献   

12.

This study aimed to perform a comparative analysis of the performance of five models (Gompertz, logistic, Richards, the first-order, artificial neural networks) in predicting methane production rate from anaerobic digestion of livestock manures. The input variables were fermentation time, digestion temperature, biogas temperature, ambient temperature, pH, and specific biogas production rate. The physicochemical compositions of cow manure and sheep manure showed that volatile solid (VS) contents were close to each other in manure compositions (77.6% and 64.7%, respectively), while the potential of methane production from cow manure (673.44 mL CH4/g VS) was greater than that from sheep manure (320.32 mL CH4/g VS). The determination coefficients (R2) for logistic function, Gompertz, Richards, the first-order, and ANN models were obtained as 0.968, 0.967, 0.975, 0.825, and 0.995 for the cow manure, respectively. In case of the sheep manure, the R2 values obtained from these models were 0.976, 0.979, 0.981, 0.968 and 0.991, respectively. Although the determination coefficients of all models were in satisfactory agreement with the experimental data, the ANN model showed competitive lower RMSE values of 0.111 and 0.164 for cow and sheep manure data sets, respectively, indicating its superior performance than other models.

  相似文献   

13.
An optimized “Three‐Dimensional Compound Specific Isotope Analysis (3D‐CSIA)'' investigation was conducted at a chlorinated hydrocarbon–contaminated site in order to (1) determine if multiple onsite sources of groundwater contamination existed and (2) demonstrate the cost‐effectiveness of applying isotope fingerprinting at such a complex contaminated site. Previous groundwater investigations identified chlorinated hydrocarbons at levels that significantly exceed drinking‐water standards but failed to determine the source(s) of contamination due to the lack of vadose‐zone contamination and the absence of groundwater contaminants in shallow portions of the surficial aquifer. To better understand the contaminant source(s), groundwater samples were taken and tested for both the presence of chlorinated hydrocarbons and their isotopic signatures of 13C/12C, 37Cl/35Cl, and 2H/1H. A site investigation with an optimized 3D‐CSIA approach revealed multiple chlorinated hydrocarbon releases from different sources, which was also cost‐effective considering the new lines of evidence of target contaminants obtained with the 3D‐CSIA approach instead of any traditional fingerprinting approaches. In addition, the 3D‐CSIA results inferred in situ bioremediation of chlorinated hydrocarbons would be feasible at the site. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
The feasibility of utilizing non edible rice (broken rice) for production of fine materials such as poly(3-hydroxybutyrate) (PHB) was considered as one of the alternative ways of keeping the environment clean for sustainable development. Thus, production of PHB from broken rice by simultaneous saccharification and fermentation (SSF) was investigated. During the SSF process, the rice (15% w/v) material was hydrolyzed to glucose, which was utilized by Cupriavidus necator for growth and production of PHB. The PHB content reached 38% at 58 h fermentation. The PHB had weight average molar mass (Mw) and polydipersity index of 3.82 × 105 (g/mol) and 4.15, respectively. Differential calorimetric scan of the PHB showed a melting temperature (Tm) of 176 °C. Given that the PHB was a homopolymer (which consisted of (R)-3-hydroxybutyric acid monomers), it was thought that broken rice could be a raw material for production of both PHB and (R)-3-hydroxybutyric acid. This SSF process would not only help in the utilization of broken rice or non edible rice, but would also serve as a model for utilization of other raw materials that contain starch for production of PHB.  相似文献   

15.
Poly[(R)-3-hydroxyalkanoates] (PHAs) are biopolymers stored by bacteria, which are currently receiving much attention because of their potential as renewable and biodegradable plastics. Most well-known representatives are poly[(R)-3-hydroxybutyrate] and its copolymers with 3-hydroxyvalerate, which have been commercialized under the trademark Biopol. In addition to these rigid materials, the elastomeric medium-chain length PHAs (mcl-PHAs) produced by fluorescent Pseudomonads are now emerging. The present review aims to survey the important developments concerning research and application prospects of mcl-PHAs.  相似文献   

16.
Current knowledge and recent advances in the area of microbial reductive dechlorination of polychlorinated organic compounds are summarized. Factors which may limit the efficacy of the dechlorination process for the in situ bioremediation of contaminated soil and sediment systems are identified. Results of recent studies on the anaerobic biotransformation of soil-sorbed chlorinated ethenes and sediment-sorbed chlorinated benzenes are provided to illustrate how low contaminant bioavailability may control the rate and extent of dechlorination in subsurface systems, especially those with long-term contamination. Use of nonionic, polysorbate surfactants as the sole electron donors of a mixed, methanogenic culture supported the microbial sequential reductive dechlorination of either free or sediment-bound hexachlorobenzene (HCB) to primarily 1,3-dichlorobenzene, but did not enhance the bioavailability of sediment-bound HCB as compared to microcosms, which used glucose. Because current knowledge on the interactions of dechlorinating populations with other microbial populations in the presence of alternative terminal electron acceptors (e.g., nitrate, Fe3+ , Mn4+) is limited, such interactions and their effect on the dechlorination process in subsurface systems need to be further explored to improve our understanding of the reductive dechlorination process in complex environmental systems and lead to the development of more efficient in situ bioremediation technologies and strategies.  相似文献   

17.
Vehicle queuing at municipal solid waste (MSW) facilities causes economic and environmental damage. In the United States, typical MSW receiving facilities (transfer, recycling, energy recovery, and landfill) have three queues: one at the entrance weighing station, one at the waste tipping location, and one at the exit weighing station. A common method of determining queue behavior relies on equations that assume exponentially distributed arrival and service times, but there has not been a comprehensive study to determine whether this assumption is valid for a variety of MSW facilities and conditions. In this study, data were gathered from two transfer stations, two energy recovery plants, and one transfer/landfill facility. Among the five facilities there was a variety of queuing styles. The data were plotted as an inverse exponential relationship and linearized. The linearized plots were regressed and R 2 values were calculated. It was determined that the negative exponential relationship can be used to describe arrival times at all three queues and service times at weighing queues. The queuing equations are therefore theoretically supported for use at entering and exiting weighing queues and moderately theoretically supported for use at tipping queues.  相似文献   

18.
Leaking underground storage tank systems at service stations have resulted in tens of thousands of petroleum releases and associated groundwater chemical plumes often extending hundreds of feet off‐site. Technical and engineering approaches to assess and clean up releases from underground tanks, product lines, and dispensers using technologies such as soil vapor extraction, air sparging, biostimulation, and monitored natural attenuation are well understood and widely published throughout the literature. This article summarizes life‐cycle environmental response costs typically encountered using site‐specific cost estimation or metric‐based cost categories considering the overall complexity of site conditions: (1) simple sites where response actions require smaller scale assessments and/or remediation and have limited or no off‐site impacts; (2) average sites where response actions require larger scale assessments and/or remediation typical of petroleum releases; (3) complex sites where response actions require greater on‐site and/or off‐site remediation efforts; and (4) mega sites where petroleum plumes have impacted public or private water supplies or where petroleum vapors have migrated into occupied buildings. Associated cleanup cost estimates rely upon appropriate combinations of individual work elements and the duration of operation, maintenance, and monitoring activities. These cost estimates can be offset by state reimbursement funds, coverage in purchase agreements, and insurance policies. A case study involving a large service station site portfolio illustrates the range of site complexity and life‐cycle environmental response costs. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
Metals have rapidly accumulated in the anthroposphere, especiallyin urban areas, indicating possible environmental and resource problems. Here, Stockholm City was chosen for a case study of urban metal flows, i.e. metal inflow to, metals in the stock of,and metal outflow from the anthroposphere to the biosphere. Themetal stock of Stockholm is large and still growing. The large amounts of metals in the solid waste fraction totally dominatethe outflow from the city. For major parts of the stock, the emissions from goods in use are negligible. There are, however,goods applications corresponding to significant emissions: e.g. the traffic sector (Cu, Zn, Cr, Ni, Pb), the tapwater system (Cu), roofs/fronts or other metal surfaces (Cu, Zn). Today's known metal flows from the anthroposphere of Stockholm to the biosphere and sewage sludge are quantitatively dominated by Zn(34 ton y-1) and Cu (14 ton y-1). Historical and present emissions have resulted in high metal concentrations insediments (especially Cd, Hg and Pb, but also Cu and Zn), groundwater (Cu, Hg) and in soils (Hg, Cu, Pb). At present theannual median concentrations are below the Swedish limits for metals in sewage sludge, even if the safety margins aresmall for Cd, Hg and to some extent Cu. The flows of Cu and Zn to Stockholm soils are high with a significant accumulationindicating an environmental impact in a longer time perspective.High levels of metals in surface sediments in the waterenvironments reflects an ongoing input where these metals aretransported from known (Cu, Zn) and or partly unknown (Cd, Hg, Pb) sources. In future urban areas, monitoring of metal flows must be performed both in the anthroposphere and the biospherein order to have a pro active approach to urban environmentalproblems and to get prompt answers to measures taken.  相似文献   

20.
Characterizing sorption processes is essential to understand the environmental distribution and toxicity potential of endocrine disruptors in terrestrial and aquatic systems. The sorption behaviors of three endocrine disruptors (bisphenol A (BPA), 17β-estradiol (E2), and 17α-ethynylestradiol (EE2)) on sediments were investigated using batch techniques. Samples were taken from some representative reaches in several major Chinese rivers. More attention has been paid to the effect of sediment organic components on the sorption of BPA, E2, and EE2. The results show that the sediment organic carbon-normalized partition coefficients (K oc (sed)) for three endocrine disruptors are in the order of EE2 > E2 > BPA, which corresponds to the octanol-water partitioning coefficients (logK ow) of the compounds. Moreover, the K oc values for humic substances (K oc (hs)) are comparable with the K oc (sed) values and highly dependent on the physico-chemical properties of humic substances in sediments. The UV absorptivity at 272 nm (A 272), which suggests the abundance of aromatic rings in humic substance structure, correlates well with the K oc (hs) values. In addition, the infrared spectra of the humic substances extracted from sediments show four strong bands centered at 3,400 cm−1, 1,625 cm−1, 1,390 cm−1, and 1,025 cm−1. The K oc (hs) values have a positive linear relation with the peak area ratio for peak at 1,025 cm−1 and a negative linear relation with the peak area ratio between peaks at 1,625 cm−1 and 1,025 cm−1. Hence, the hydrogen bonds play a critical role to the sorption of selected endocrine disruptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号