首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
城市轻型车实际道路瞬态排放的特征   总被引:4,自引:2,他引:4       下载免费PDF全文
采用清华大学环境科学与工程系构建的车载排放测试系统对北京市8辆轻型车的实际道路瞬态排放进行测试,分别解析了速度、加速度与排放的数理规律,引入“排放增量”概念,建立一套可用于研究交通流特征对机动车排放影响的轻型车瞬态排放数学模拟模式.验证结果表明,污染物排放总量模拟值与实测值相差±20%以内,瞬态排放速率的模拟值与实测值较接近,体现出排放变化趋势及排放峰值.  相似文献   

2.
基于实际道路交通流信息的北京市机动车排放特征   总被引:5,自引:7,他引:5  
樊守彬  田灵娣  张东旭  曲松 《环境科学》2015,36(8):2750-2757
通过模型模拟和调查统计方法获取了北京路网的车流量、车型构成和车速基础数据.基于具有时空分布特征的实际道路交通流信息和排放因子,以Arc GIS为平台构建了北京市机动车尾气排放清单,并分析实际道路排放特征及污染物排放的空间分布特征.结果表明,北京市城区各类型道路上小客车比例均在89%以上,郊区道路也为小客车比例最高,但小货车、中货车、大货车、大客车、拖拉机和摩托车均占一定比例.污染物排放强度与车流量呈正相关性,污染物排放强度总体上呈现白天高夜间底的趋势,但是郊区道路PM排放昼夜变化趋势不明显,高速路的PM排放强度夜间大于白天.污染物排放的空间分布为城区、南部、东南以及东北部接近城区的区域排放强度较高,西部山区及北部山区由于路网密度较小排放强度较低,城区环路和郊区高速公路附近由于车流量大,排放强度较高.  相似文献   

3.
重型柴油车实际道路油耗与排放模拟及其应用研究   总被引:1,自引:0,他引:1  
基于实际行驶状态下重型车动力需求和传动系统变化规律,建立了重型柴油车整车的瞬态油耗和排放模拟方法,可实现整车发动机工况及油耗与排放的实时模拟.为验证模型的有效性,利用重型车车载排放测试手段,以柴油公交车为研究案例,模拟并验证了车辆在实际运营线路上的油耗与排放水平.公交车综合线路实测百公里油耗为16.38L,NOx、CO和THC排放因子分别为4.44、3.35、1.96g·km-1,模拟结果与实测值基本吻合,其油耗与排放因子与实测值之比均在1.06倍左右.模拟结果显示,实测公交车怠速、NOx控制区及其它区域工况点分别占32.6%、7.1%和60.4%,增加10t负载或提高1.5倍车速可使发动机负荷利用率上升,控制区比例上升至18.4%和18.8%,同时增加负载和提高车速,控制区工况可提高至33.9%.相应地,增加负载或提高车速情景分别使车辆油耗与排放上升至1.5~1.7倍和1.6~1.8倍,同时增加负载和提高车速,油耗与排放可增至2.5倍~3.0倍,控制区油耗与排放比例均有大幅度上升.总体上,该模型方法可以为评价和研究重型柴油车在实际道路上的能耗及其排放状况提供新的模拟方法和分析手段.  相似文献   

4.
黄成  陈长虹  戴璞  李莉  黄海英  程真  贾记红 《环境科学》2008,29(10):2975-2982
系统介绍了CMEM模型及其计算原理.以轻型柴油车为研究对象,给出了模型的主要输入参数,并计算了车辆在实际道路上的瞬时排放结果,并根据实测数据对模拟结果进行了验证.测试车辆的CO、THC、NOx和CO2排放因子为0.81、0.61、2.09和193 g·km-1,相同线路模拟所得的排放因子分别为0.75、0.47、2.47和212 g·km-1,相关系数分别达到0.69、0.69、0.75和0.72.通过模拟发现,轻型柴油车在实际道路微观区域内的排放水平随交通条件和行驶状态波动明显,采用CMEM模型能够较好地反映该车排放随行驶工况的瞬时变化趋势.应用CMEM模拟发现,改善典型交叉口区域的交通条件后,轻型柴油车在模拟区域内的CO、THC、NOx和CO2排放量分别削减了50%、47%、45%和44%,排放改善效果显著.从研究结果来看,利用微观尺度模型来分析混合车流在一些典型交通区域的瞬时排放变化是必要的,也是可行的,对于评价道路交通规划的环境效果具有一定的指导意义.  相似文献   

5.
轻型柴油车排放特性与机动车比功率分布的实例研究   总被引:5,自引:8,他引:5  
引入机动车比功率概念研究了驾驶条件(DrivingCondition)对机动车排放的影响及二者间的关系.利用美国Sensors公司生产的SEMTECH-D车载排放测试仪在上海选取2辆轻型柴油客货两用车开展了实际道路排放测试.测试道路包括城市快速道、主干道和次干道,2辆轻型车测试的道路全长分别为31·8和39·7km.通过计算逐秒的比功率值,研究了实际行驶中机动车比功率(VSP)与机动车油耗、空燃比和污染物排放的关系.回归分析结果表明,比功率比加速度能够更好地反映与NOx排放之间的关系,不同道路上机动车的CO、TC、NOx排放速率和油耗的比功率区间(VSPbin)分布具有较好的一致性.实测研究中VSPbin分布于-20~20kW·t-1的范围内,其中超过50%的数据分布在-3~1kW·t-1之间.高排放集中在分布频率较低的高VSP区间.应用污染物排放与VSP分布的关系式和VSPbins的频率分布可以估算机动车污染物排放总量.排放速率计算式具有一定的不确定性,还有待将来进一步修正.  相似文献   

6.

机动车排放实验室测试与实际道路测试结果间存在较大差距,目前实际道路测试普遍采用车载排放系统(portable emission measurement system,PEMS),但PEMS系统具有操作复杂、测试装置整体较重等缺点,急需简单易行的实际道路排放测试系统。基于传感器技术的机动车智能排放测试系统(smart emission measurement system,SEMS),结构简单,操作方便,将其引入机动车实际行驶排放检测非常必要,但国内缺乏SEMS系统测试应用相关研究。通过研究国内外SEMS系统现状,并开展相关对比测试试验,研究SEMS系统引入机动车排放检测可行性与存在的问题。结果表明:SEMS系统测试的颗粒物数量(PN)与PEMS测试结果的差异为10%~30%;氮氧化物(NOx)排放量与实际道路对比测试结果差异较大,特别是激烈驾驶情况下,最大差异高达369%;PN和NOx排放测试结果瞬时分布和累计分布趋势较为一致。基于测试试验及结果分析,探讨了SEMS系统引入机动车排放检测的可行性,提出SEMS系统引入机动车排放检测具备一定可行性,可用于NOx和PN高排放车辆筛查。

  相似文献   

7.
国Ⅲ柴油公交车尾气排放实际道路测试研究   总被引:1,自引:0,他引:1  
应用车载式尾气排放测试设备对北京国Ⅲ排放标准的柴油公交车在实际道路上的尾气排放特征进行了实测研究,测试时间为10 552 s,行驶里程达到61.97 km,共获得10 552组有效数据,测试数据能够反映车辆在实际道路上的排放特征。车辆在实际道路上尾气排放NOx、CO、THC和PM的排放因子分别为14.12±2.54g/km、8.04±2.51 g/km、0.158±0.022 g/km和3.16±1.73 g/km。研究结果表明,油耗及污染物排放与各行驶工况下的速度、加速度均密切相关,车辆在高速加速行驶状态下易产生高的排放速率。车速小于10 km/h时排放因子远大于车速较快时的排放因子,车辆在加速时的排放因子最大,减速时最小。车辆在30 km/h~50 km/h速度区间内等速行驶时,油耗与排放因子最为经济且环境友好。测试车辆排放的颗粒形态主要集中在累积模式,属于纳米或超细微粒。  相似文献   

8.
应用车载式尾气排放测试设备对北京国Ⅲ、国Ⅳ排放标准的柴油公交车和国Ⅲ排放标准压缩天然气公交车在实际道路上的尾气CO2排放特征进行了实测研究,测试时间为30 787 s,行驶里程达到168.58 km,共获得30 787组有效数据,测试数据能够反映车辆在实际道路上的排放特征。3种类型车辆测试期间在实际道路上的CO2排放因子分别为(1.10±0.24)g/m、(0.99±0.23)g/m和(1.02±0.21)g/m。车辆的排放状况与车辆的行驶工况有密切关系,车速较低,加速度越大,CO2排放速率和排放因子越大,车辆在匀速且车速较快时排放速率和排放因子较低。  相似文献   

9.
针对目前机动车温室气体甲烷(CH4)排放因子缺乏的问题,利用便携式尾气测量系统(Portable Emission Measurement System,PEMS)对13辆轻型汽油车开展实际道路车载测试,获得汽油车CH4排放因子及排放特征.结果表明,轻型汽油车CH4排放因子随着国标加严而下降,国6轻型汽油车CH4排放因子相较于国1车辆下降了约94.5%.基于CH4逐秒排放特征分析发现,在实际行驶工况下CH4排放变动剧烈,排放峰值通常出现在高速或高加速工况.同时,研究发现CH4排放因子与燃烧效率(MCE)、机动车比功率(VSP)呈现显著相关性,通过CH4与MCE、VSP的关系构建了轻型汽油车不同标准下的基于MCE及基于VSP的排放因子模型.以一辆国4汽油车实测值对模型进行验证与评估,该车CH4排放因子的实测值为(3.9±0.6) mg·km-1,基于MCE、VSP的模型模...  相似文献   

10.
天津市机动车尾气排放因子研究   总被引:4,自引:1,他引:4  
通过调查研究天津市机动车车型构成、保有量、车辆行驶状况、气象数据和油品等基础数据,利用COPERT IV模型计算了在国1、国2、国3、国4和国5排放标准下机动车尾气中CO、NO_x、VOC和PM_(2.5)的排放因子.应用车载测试系统在实际道路上对国4柴油货车的排放因子进行了测量,并将模型结果与实测结果进行了比较,研究表明,国4排放标准下,污染物排放实测数据普遍高于模型模拟数据.对于轻型载货柴油车而言,实际道路测量的CO、NO_x、VOC和PM_(2.5)的排放因子分别是模型模拟数据的2.5、4.3、1.9和1.2倍;对于中型载货柴油车而言,以上污染物的实测排放因子分别是模型的1.3、2.1、1.0和1.2倍;对于重型载货柴油车而言,以上污染物的实测排放因子分别是模型的1.7、1.9、1.1和1.2倍.  相似文献   

11.
车载尾气检测技术的出现和发展为机动车尾气的相关研究提供了一种较为准确、便捷、实时反映城市路网排放的测试方法。本文详细介绍了车载尾气检测技术的发展历程和原理,综述了该技术在行驶周期开发、尾气排放特性和规律研究、建立机动车尾气排放数据库和建立城市路网排放清单等领域的应用现状,并通过比较该技术在国内、外的应用差距,提出了在绿色交通领域充分利用该技术进行机动车污染评价与控制的合理建议。  相似文献   

12.
重型柴油车车载排放实测与加载影响研究   总被引:5,自引:2,他引:3  
采用车载排放测试仪,对2辆重型柴油卡车在空载和加载条件下进行实际道路车载排放测试.通过分析获得了油耗与排放速率的速度-加速度及其工况点的分布,发现高油耗与高排放工况点主要集中在高速加速区域,加载时油耗与排放高值随工况点分布更广;车辆在(30±2.5)km·h-1等速及加速行驶时受加载影响最大,此时加载油耗与排放约是空载的1.6~3.2倍左右;由实测结果发现,卡车Ⅰ和卡车Ⅱ加载时油耗及CO、HC、NOx排放因子分别是空载的1.6倍、3.5倍、1.1倍、1.5倍以及1.2倍、1.0倍、0.9倍和1.5倍,加载对油耗与NOx排放影响最为明显,对HC影响最小,CO影响取决于车辆保养水平;卡车Ⅱ较卡车Ⅰ车型更大,发动机功率更高,相同荷载时受加载影响较小,说明重型车在发动机负荷可承受的范围内合理装载,有助于避免油耗与排放恶化,提高燃油经济性和排放水平.  相似文献   

13.
北京市轻型汽车尾气排放检测结果分析   总被引:2,自引:0,他引:2  
对北京市566辆在用轻型车排放尾气进行了BASM检测,对不同厂牌的化油器车、化油器改造车和电喷车排放的HC、CO和NO平均浓度进行了比较,结果表明,化油器改造车3种污染物平均浓度比化油器车低50%左右,电喷车3种污染物平均浓度可比化油器车低80%左右。同时对几种车型的劣化规律进行了分析,发现化油器车的劣化关系离散性大,而另外两种技术的车辆的劣化关系呈收敛性,说明化油器车的污染物排放和保养关系密切,电喷车劣化规律明显优于化油器车和化油器改造车。实验结果为I/M实施提供了科学依据。  相似文献   

14.
实时尾气检测系统OEM的应用   总被引:10,自引:5,他引:10  
机动车尾气排放实时检测系统OEM是基于车辆实际行驶路况的新型车载尾气检测系统。该系统突破了传统的定点尾气收集数据的局限性,能够方便快捷地获得不同路段、不同车型、不同时段的以秒为单位的尾气排放数据以及包括速度和加速度在内的瞬间车辆行驶数据。文中对OEM系统的基本原理和方法进行了简单的介绍,并给出了应用该系统在北京市交通网络测试尾气的一些初始结果。  相似文献   

15.
本文采用车载排放测试系统对11辆国Ⅰ~国Ⅳ标准重型柴油车进行实际道路测试,利用GC-MS对样品中典型烷烃进行定量分析,解析重型柴油车尾气典型烷烃排放特征及规律.结果表明,排放标准对重型柴油车尾气中正构烷烃、藿烷类有机物排放有显著影响,总体呈现随排放标准的加严而降低的趋势,相比于国Ⅰ测试车辆,国Ⅳ测试车辆正构烷烃、17α(H),21β(H)-C30藿烷(C30-藿烷)、22S-和22R-17α(H),21β(H)-C31升藿烷(22S-C31升藿烷;22R-C31升藿烷)总排放因子分别降低了72.23%,64.95%,70.78%和74.68%.气相正构烷烃呈双峰前锋型,以C17~C18为主峰碳,固相呈单峰前锋型,以C18~C21为主峰碳.藿烷类有机物其22S-C31升藿烷/(22S-C31升藿烷+22R-C31升藿烷)的比值在0.46~0.56之间,平均值为0.50,符合石油中藿烷的分布特征.正构烷烃总排放因子与17α(H),21β(H)-C30藿烷总排放因子呈现出一定的线性关系,其R~2为0.926 8.此外,行驶工况对测试车辆正构烷烃及藿烷类有机物排放有较大影响,非高速工况下排放因子是高速工况的1.69~2.42倍.  相似文献   

16.
北京机动车尾气排放特征研究   总被引:7,自引:0,他引:7  
近年来随着机动车保有量的快速增加,北京市机动车排放污染受到越来越多的关注。本研究应用COPERTⅣ模型计算了北京不同类型机动车排放因子,根据保有量和年均行驶里程等基础数据计算了2009年机动车尾气污染物排放量;调查了北京典型道路车流量和车辆运行速度等参数,计算机动车尾气排放强度,得出了典型道路不同污染物的综合排放因子;应用COPERTⅣ模型分析了车速对不同污染物排放的影响,将基于G IS的机动车活动强度、行驶速度和排放因子结合在一起,得到了北京机动车尾气排放网格分布清单。结果表明:CO排放量为71.58×104t,HC排放量为7.95×104t,NOx排放量为8.77×104t,PM排放量为0.38×104t。北京城区高峰小时CO排放量为143.9 t/h,HC排放量为18.6 t/h,NOx排放量为12.5/h,PM10排放量为1.14 t/h。  相似文献   

17.
选取不同排放标准的127辆轻型汽油客车和10辆轻型汽油货车为研究对象,利用便携式车载测试系统(portable emission measurement system, PEMS)结合台架稳态工况(acceleration simulation mode, ASM),探究了不同工况与车辆参数对轻型汽油车气态污染物二氧化碳(CO_2)、一氧化碳(CO)、氮氧化物(NO_x)、碳氢化合物(HC)和甲烷(CH_4)排放的影响.结果表明,轻型汽油车气态污染物在怠速工况下的排放率较低,仅为加速工况和匀速工况的22.9%和25.8%.污染物排放特征与工况密切相关,CO_2和NO_x在加速工况时的排放率小于匀速工况,而CO、HC和CH_4在加速工况时的排放率却大于匀速工况.在低速稳态下,轻型汽油客车和轻型汽油货车CO_2、CO、NO_x、HC和CH_4的排放因子分别为383.20、 2.98、 1.60、 0.14和0.03 g·km~(-1)和360.66、 2.64、 1.61、 0.005 5和0.002 7 g·km~(-1).排放标准的加严带来了明显减排效果,CO、NO_x、HC和CH_4的排放因子从国Ⅰ~国Ⅴ分别下降了87.5%、 97.3%、 97.9%和86.4%.车龄、行驶里程和基准质量与车辆污染物的排放存在非线性关系,发动机排量与机动车的尾气污染物的排放呈正相关.  相似文献   

18.
重型柴油车污染物排放因子测量的影响因素   总被引:3,自引:0,他引:3  
为了调查我国重型柴油车排放污染物的基本水平,确定CO、HC、NOx和颗粒物等污染物的排放因子,利用满足国Ⅲ排放标准的重型柴油车,分别采用PEMS(portable emission measurement system,车载排放测试系统,由便携式SEMTECH-DS型气态污染物排放测量设备和DMM颗粒物排放测量设备组成)及满足法规排放测量要求的重型车整车底盘测功机方法,研究了不同负载(0%、50%、100%及120%)和2种测试工况对重型车排放因子测量的影响. 结果表明:过载(120%负载)下NOx和颗粒物等排放因子均比零负载下高出近90%;在平均车速较低、怠速时间长的VECC工况下,气态污染物、颗粒物的排放因子比平均车速高、怠速时间短的C-WTVC工况高出30%左右;PEMS系统和重型车底盘测功机系统所测气态污染物排放因子的相关性较好,但DMM颗粒物排放测试设备与重型车整车底盘测功机所测的颗粒物排放因子相差可达50%左右.   相似文献   

19.
王凯  樊守彬  亓浩雲 《环境科学》2020,41(6):2602-2608
利用车载排放测试技术对典型的联合收割机、拖拉机、农用运输车和农田建设机械实际工况下的尾气进行测试,建立了实际工况下农业机械的排放因子和2017年北京市农用机械排放清单.结果表明,不同的工作状态对农业机械尾气排放有较大的影响,怠速和行走时CO、NOx、HC和PM排放趋于平稳;而切地和翻地模式下的波动较为明显.根据各类机械的分类和排放标准对排放因子进行细化,建立了较为完整的实际工况下的排放因子.根据农业机械排放因子和燃油消耗量计算出2017年北京市CO、NOx、HC和PM的排放量分别是2 566.60、 1 239.29、 563.08和538.32 t.拖拉机、运输机械和联合收割机的污染物总量占CO、NOx、HC和PM这4种污染物总量的98%、 95%、 95%和98%.因此,农用拖拉机、运输机械和联合收割机在农业机械污染减排中应作为重点控制对象.  相似文献   

20.
机动车排放的含氧挥发性有机物(OVOCs)具有较高的大气反应活性,但在线测量识别其高分辨率排放特征的研究仍处于起步阶段,缺乏计算和预测OVOCs排放特征的模型工具.本研究利用质子转移反应飞行时间质谱仪(PTR-TOF-MS)与离子/分子反应质谱仪(IMR-MS),在简易瞬态测试工况下对轻型汽油车排放甲醛、丙酮和乙醇等8...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号