共查询到20条相似文献,搜索用时 15 毫秒
1.
The sonolytic degradation of alkylphenols (APs), such as butylphenol, pentylphenol, octylphenol, and nonylphenol (NP), in water was investigated at a sound frequency of 200 kHz with an acoustic intensity of 6 W cm(-2) under argon, oxygen, and air atmospheres. The sonolytic degradation rate of the APs under the conditions of the present study depended upon their alkyl chain length. The decrease in the degradation rate by the radical scavenging effect was in the range of about 48-82% for APs in the presence of 3 mM 2-methyl-2-propanol. The free radicals play a significant role in the sonolytic degradation process of the APs. In the presence of Fe(II) and Fe(III), the pseudo-first-order rate constants for the sonolytic degradation of 30 microM NP as a function of the concentration of Fe(II) and Fe(III) were estimated under argon and oxygen. The maximum rate constants were observed at 50 microM Fe(II) (0.139 +/- 0.008 min(-1)) and 100 microM Fe(III) (0.103 +/- 0.001 min(-1)) under oxygen. The total organic carbon concentration (TOC) was investigated under same conditions. TOC decreased in the range of about 50-70% during the sonication in the presence of Fe(II) and Fe(III) under argon and oxygen. The sonochemical effects by the addition of Fe(II) and Fe(III) as catalyst during the sonication under the proper atmosphere result in a remarkable enhancement of degradation and mineralization. 相似文献
2.
Green rust (Fe(4)(II)Fe(2)(III)(OH)(12)SO(4).3H(2)O) is an intermediate phase in the formation of iron (oxyhydr)oxides such as goethite, lepidocrocite, and magnetite. It is widely considered that green rust occurs in many soil and sediment systems. Green rust has been shown to reduce sorbed Se(VI), Cr(VI), and U(VI). In addition, it is also reported that green rust does not reduce As(V) to As(III). In this study, we have investigated for the first time the interaction between Sb(V) and green rust using XAFS and HPLC-ICP-MS. Most of the added Sb(V) was adsorbed on green rust, and Sb(III), a reduced form, was observed in both solid and liquid phases. Thus, it was shown that green rust has high affinity for Sb(V), and that Sb(V) was reduced to more toxic Sb(III) by green rust despite the high stability of the Sb(V) species even under reducing condition as reported in previous studies. Therefore, green rust can be one of the most important reducing agents for Sb(V), which can influence the Sb mobility in suboxic environments where green rust is formed. 相似文献
3.
Mest'ánková H Mailhot G Pilichowski JF Krýsa J Jirkovský J Bolte M 《Chemosphere》2004,57(10):1307-1315
The degradation of Monuron (3-(4-chlorophenyl)-1,1-dimethylurea) photoinduced by Fe(III) in aqueous solution has been investigated. The rate of degradation depends on the concentration of Fe(OH)2+, the most photoreactive species in terms of *OH radical formation. These *OH radicals are able to degrade Monuron until total mineralisation. The primordial role of the speciation of Fe(III)-hydroxy complex in aqueous solution, for the efficiency of the elimination of pollutant, was shown and explained in detail. The formation of Fe(II) in the irradiated solution was monitored and correlated with the total organic carbon evolution. Degradation photoproducts were identified and a mechanism of degradation is proposed. 相似文献
4.
Yanlin Wu Haixia Yuan Guanran Wei Shanduan Zhang Hongjing Li Wenbo Dong 《Environmental science and pollution research international》2013,20(1):3-9
4-Tert-octylphenol (4-t-OP), a kind of endocrine-disrupting compounds, is widely distributed in natural water surroundings but can hardly be biodegraded. The advanced oxidation processes (AOPs) have been proved to be an efficient method to degrade 4-t-OP. In this study, the photodegradation of 4-t-OP in aqueous solution promoted by Fe(III) and the photooxidation mechanism were investigated. The ferric perchlorate was added into the aqueous solution for the production of hydroxyl radical. The efficiency of mineralization was monitored by total organic carbon analyzer, and photooxidation products were determined by high-performance liquid chromatography and liquid chromatography-mass spectrometer. 4-t-OP (2.4?×?10?5 M) in aqueous solution was completely degraded after 45 min in the presence of Fe(III) (1.2?×?10?3 M) under UV irradiation (λ?=?365 nm). The optimal pH was 3.5. Higher Fe(III) concentration or lower initial 4-t-OP concentration led to increased photodegradation efficiency of 4-t-OP. The reaction was almost completely inhibited in the presence of 2-propanol. About 70 % mineralization of the solution was obtained after 50 h. The photooxidation product was supposed to be 4-tert-octyl catechol. 4-t-OP in aqueous solution can be degraded in the presence of Fe(III) under the solar irradiation. The photoinduced degradation is due to the reaction with hydroxyl radicals. It shows that the 4-t-OP is mineralized by the inducement of Fe(III) aquacomplexes, which exposes to solar light. Therefore, the results would provide useful information for the potential application of the AOPs to remove 4-t-OP in water surroundings. 相似文献
5.
The Fe(III)-photoinduced degradation of 4-dodecylbenzenesulphonate (DBS) in aqueous solution was investigated. The mixing of DBS (1 mm) and Fe(III) (1 mm) solutions immediately led to the formation of a precipitate that contained DBS and monomeric Fe(OH)2+, the predominant Fe(III) species. Both species were also present in the supernatant. Irradiation of the supernatant solution resulted in a photoredox process that yielded Fe(II) and *OH radicals. The disappearance of DBS was shown to involve only attack by *OH radicals; the quantum yield of DBS disappearance is similar to the quantum yield of *OH radical formation. A wavelength effect was also observed; the rate of DBS disappearance was higher for shorter wavelength irradiation. Five photoproducts, all containing the benzene sulphonate group, were identified. *OH radicals preferentially abstract hydrogen from the carbon in the alpha position of the aromatic ring. The results show that the Fe(III)-photoinduced degradation of DBS could be used as an alternative method for polluted water treatment. 相似文献
6.
The dark degradation of tetraacetylethylenediamine (TAED) was investigated. It is a slow process which is favored in acidic medium. There is a hydrolysis of an imide group with the scission of the C---N bond giving rise to the triacetyl derivative (TAED'). When allowed to stand for longer times a second acetyl group is eliminated with the formation of the symetric diacetyl derivative (DAED). The degradation of TAED photoinduced by iron (III) was also investigated. It appears a faster degradation which does not lead to the same products. The process only involves •OH radicals formed upon photolysis of aquocomplex of iron (III). They preferentially abstract a hydrogen from the methylene group. The degradation is then assisted by oxygen and leads to the formation of carbonylated oxidation products. 相似文献
7.
Fe (III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution 总被引:4,自引:0,他引:4
FeIII supported on resin as an effective catalyst for oxidation was prepared and applied for the degradation of aqueous phenol. Phenol was selected as a model pollutant and the catalytic oxidation was carried out in a batch reactor using hydrogen peroxide as the oxidant. The influent factors on oxidation, such as catalyst dosage, H2O2 concentration, pH, and phenol concentration were examined by considering both phenol conversion and chemical oxygen demand (COD) removal. The FeIII-resin catalyst possesses a high oxidation activity for phenol degradation in aqueous solution. The experimental results of this study show that almost 100% phenol conversion and over 80% COD removal can be achieved with the FeIII-resin catalyst catalytic oxidation system. A series of prepared resin were investigated for improving the oxidation efficiency. It was found that the reaction temperature and initial pH in solution significantly affected both of phenol conversion and COD removal efficiency. The activity of the catalyst significantly decreased at high pH, which was similar to the Fenton-like reaction mechanism. Results in this study indicate that the FeIII-resin catalytic oxidation process is an efficient method for the treatment of phenolic wastewater. 相似文献
8.
The rates of degradation of 1,2,4-trichlorobenzene (TCB), 2,5-dichloronitrobenzene (DCNB), diuron and isoproturon by Fe(II)/H2O2 and Fe(III)/H2O2 have been investigated in dilute aqueous solution ([Organic compound]0 approximately 1 microM, at 25.0 +/- 0.2 degrees C and pH < or = 3). Using the relative rate method with atrazine as the reference compound, and the Fe(II)/H2O2 (with an excess of Fe(II)) and Fe(III)/H2O2 systems as sources of OH radicals, the rate constants for the reaction of OH* with TCB and DCNB were determined as (6.0 +/- 0.3)10(9) and (1.1 +/- 0.2)10(9) M(-1) s(-1). Relative rates of degradation of diuron and isoproturon by Fe(II)/H2O2 were about two times smaller in the absence of dissolved oxygen than in the presence of oxygen. These data indicate that radical intermediates are reduced back to the parent compound by Fe(II) in the absence of oxygen. Oxidation experiments with Fe(III)/H2O2 showed that the rate of decomposition of atrazine markedly increased in the presence of TCB and this increase has been attributed to a regeneration of Fe(II) by oxidation reactions of intermediates (radical species and dihydroxybenzenes) by Fe(III). 相似文献
9.
Kang Caiyan Li Qiuyan Yi Hui Deng Hua Mo Weiming Meng Mianwu Huang Siyu 《Environmental science and pollution research international》2021,28(6):6733-6745
Environmental Science and Pollution Research - In this study, a novel magnetic cassava stalk composite (M-EMCS) was prepared through modification with ethylenediamine tetraacetic anhydride (EDTAD)... 相似文献
10.
The photochemical transformation of natural estrogenic steroid 17beta-estradiol (E2) and the synthetic oral contraceptive 17alpha-ethinylestradiol (EE2) has been studied in dilute non buffered aqueous solution (pH 5.5-6.0) upon monochromatic (254 nm) and polychromatic (lambda>290 nm) irradiation. Upon irradiation at 254 nm, the quantum yields of E2 and EE2 photolysis were similar and evaluated to be 0.067+/-0.007 and 0.062+/-0.007, respectively. Upon polychromatic excitation, and by using phenol as chemical actinometer, the photolysis efficiencies have been determined to be 0.07+/-0.01 and 0.08+/-0.01 for E2 and EE2, respectively. For both estrogens, photodegradation by-products were identified with GC/MS and LC/MS. In a first step, a model compound--5,6,7,8-tetrahydro-2-naphthol (THN)--, which represents the photoactive phenolic group, was used to obtain basic photoproduct structural informations. Numerous primary and secondary products were observed, corresponding to hydroxylated phenolic- or quinone-type compounds. 相似文献
11.
The determination of quantum yields for the photolysis of Fe(III)-hydroxo complexes is important for the quantitative investigation of hydroxyl radical (*OH) production, not only in a natural water body, but also in the photo-Fenton process. A novel kinetic method, using a *OH probe compound, was established for the determination of the quantum yields in this study. The method was based on measuring the pseudo-first-order rate constant of the photodecomposition of dimethylsulfoxide (DMSO) in which DMSO and its primary products scavenged the *OH at an identical rate. The preliminary experiments for the photodecomposition kinetics supported the suitability of DMSOs as a probe compound for determining quantum yields. The individual quantum yields for the photolysis of the monomeric Fe(III) complexes, in the wavelength range 240-380 nm, were determined by the photodecomposition kinetics of the hydroxyl radical (*OH) probe compound (DMSO). The determined values of the individual quantum yields were 0.046+/-0.00052 for Fe3+ (H2O)6 (hexaaquo ion) and 0.69+/-0.025 for Fe(OH)2+ (H2O)5 (hydroxypentaaquo ion) at 254 nm, and showed decreasing values with increasing wavelength, in the ranges of 240-380 nm. The quantum yields between 240 and 280 nm were newly reported in this study, and the values obtained between 280 and 380 nm were in good agreement with the literature values. 相似文献
12.
Photodegradation of hexabromocyclododecane (HBCD) by Fe(III) complexes/H2O2 under simulated sunlight
Danna Zhou Yao Wu Xiaonan Feng Yong Chen Zongping Wang Tao Tao Dongbin Wei 《Environmental science and pollution research international》2014,21(9):6228-6233
Hexabromocyclododecane (HBCD) is a globally produced brominated flame retardant used primarily as an additive flame retardant in polystyrene and textile products. Photodegradation of HBCD in the presence of Fe(III)-carboxylate complexes/H2O2 was investigated under simulated sunlight. The degradation of HBCD decreased with increasing pH in the Fe(III)-oxalate solutions. In contrast, the optimum pH was 5.0 for the Fe(III)-citrate-catalyzed photodegradation within the range of 3.0 to 7.0. For both Fe(III)-oxalate and Fe(III)-citrate complexes, the increase of carboxylate concentrations facilitated the photodegradation. The photochemical removal of HBCD was related to the photoreactivity and speciation distribution of Fe(III) complexes. The addition of H2O2 markedly accelerated the degradation of HBCD in the presence of Fe(III)-citrate complexes. The quenching experiments showed that ·OH was responsible for the photodegradation of HBCD in the Fe(III)-carboxylate complexes/H2O2 solutions. The results suggest that Fe(III) complexes/H2O2 catalysis is a potential method for the removal of HBCD in the aqueous solutions. 相似文献
13.
Batch studies were carried out to investigate the adsorption of zinc(II) from fresh waters on an iron(III) hydroxide surface maintained at the pH of zero point of charge of hydroxide (ZPC, 6.85) and also on both the acidic (5.5) and alkaline (8.2) sides of pH of ZPC, at 15 and 35 degrees C. Zinc(II) adsorption on iron(III) hydroxide increased with an increase in pH. The rise in temperature from 15 to 35 degrees C increased zinc(II) adsorption at pH 5.5 and 6.85, but decreased it at alkaline pH (8.2). In none of the cases did adsorption attain a maximum adsorption density. The results indicate the presence of heterogeneous sites of varying affinity on the adsorbent. Zinc(II) adsorption followed Langmuir behaviour only at small adsorption densities (less than 10(-2.95) M Zn/kg at pH 5.5) and at higher adsorption densities, the availability of strongest binding sites decreased. Nonspecifically adsorbed zinc(II) (reversible to Ba(II)) decreased with the increase in pH and temperature. Sequential desorption experiments also revealed that desorption of adsorbed zinc(II) decreased with an increase in pH. 相似文献
14.
Zhang Shubin Wang Tianxiao Guo Xin Chen Shengwen Wang Lijun 《Environmental science and pollution research international》2023,30(6):14240-14252
Environmental Science and Pollution Research - Sulfidated nanoscale zerovalent iron (S-nZVI) supported on a flower spherical Mg(OH)2 with different Mg/Fe ration were successfully synthesized. The... 相似文献
15.
针对TiO2光催化反应中易出现电子-空穴对(e--h+)的复合、而Fenton技术又面临铁污泥的问题,向TiO2光催化反应中加入零价铁(Fe0)。通过调节溶液pH,使Fe0缓释Fe2+,且反应之后的pH仍能满足TiO2光催化反应所需。溶液中的Fe2+,一方面能减弱TiO2光催化产生的e--h+的复合,提高TiO2光催化反应的效率;另一方面,在紫外灯照射下也可以起到光Fenton降解作用。研究结果表明,Fe0共存下TiO2光催化对废水的降解率高于单独使用TiO2光催化或光Fenton对废水的降解率。对Fe0共存下TiO2光催化降解废水的褪色率的动力学研究表明,该反应属于三级动力学反应,且其对有机物的降解具有TiO2光催化和光Fenton加合增效的效果。 相似文献
16.
Díaz-de-Mera Y Aranda A Bravo I Rodríguez D Rodríguez A Moreno E 《Environmental science and pollution research international》2008,15(7):584-591
Background, aim, and scope The adverse environmental impacts of chlorinated hydrocarbons on the Earth’s ozone layer have focused attention on the effort
to replace these compounds by nonchlorinated substitutes with environmental acceptability. Hydrofluoroethers (HFEs) and fluorinated
alcohols are currently being introduced in many applications for this purpose. Nevertheless, the presence of a great number
of C–F bonds drives to atmospheric long-lived compounds with infrared absorption features. Thus, it is necessary to improve
our knowledge about lifetimes and global warming potentials (GWP) for these compounds in order to get a complete evaluation
of their environmental impact. Tropospheric degradation is expected to be initiated mainly by OH reactions in the gas phase.
Nevertheless, Cl atoms reaction may also be important since rate constants are generally larger than those of OH. In the present
work, we report the results obtained in the study of the reactions of Cl radicals with HFE-7000 (CF3CF2CF2OCH3) (1) and its isomer CF3CF2CF2CH2OH (2).
Materials and methods Kinetic rate coefficients with Cl atoms have been measured using the discharge flow tube–mass spectrometric technique at 1 Torr
of total pressure. The reactions of these chlorofluorocarbons (CFCs) substitutes have been studied under pseudo-first-order
kinetic conditions in excess of the fluorinated compounds over Cl atoms. The temperature ranges were 266–333 and 298–353 K
for reactions of HFE-7000 and CF3CF2CF2CH2OH, respectively.
Results The measured room temperature rate constants were k(Cl+CF3CF2CF2OCH3) = (1.24 ± 0.28) × 10−13 cm3 molecule−1 s−1and k(Cl+CF3CF2CF2CH2OH) = (8.35 ± 1.63) × 10−13 cm3 molecule−1 s−1 (errors are 2σ + 10% to cover systematic errors). The Arrhenius expression for reaction 1 was k
1(266–333 K) = (6.1 ± 3.8) × 10−13exp[−(445 ± 186)/T] cm3 molecule−1 s−1 and k
2(298–353 K) = (1.9 ± 0.7) × 10−12exp[−(244 ± 125)/T] cm3 molecule−1 s−1 (errors are 2σ). The reactions are reported to proceed through the abstraction of an H atom to form HCl and the corresponding halo-alkyl
radical. At 298 K and 1 Torr, yields on HCl of 0.95 ± 0.38 and 0.97 ± 0.16 (errors are 2σ) were obtained for CF3CF2CF2OCH3 and CF3CF2CF2CH2OH, respectively.
Discussion The obtained kinetic rate constants are related to the previous data in the literature, showing a good agreement taking into
account the error limits. Comparing the obtained results at room temperature, k
1 and k
2, HFE-7000 is significantly less reactive than its isomer C3F7CH2OH. A similar behavior has been reported for the reactions of other fluorinated alcohols and their isomeric fluorinated ethers
with Cl atoms. Literature data, together with the results reported in this work, show that, for both fluorinated ethers and
alcohols, the kinetic rate constant may be considered as not dependent on the number of –CF2– in the perfluorinated chain. This result may be useful since it is possible to obtain the required physicochemical properties
for a given application by changing the number of –CF2– without changes in the atmospheric reactivity. Furthermore, lifetimes estimations for these CFCs substitutes are calculated
and discussed. The average estimated Cl lifetimes are 256 and 38 years for HFE-7000 and C3H7CH2OH, respectively.
Conclusions The studied CFCs’ substitutes are relatively short-lived and OH reaction constitutes their main reactive sink. The average
contribution of Cl reactions to global lifetime is about 2% in both cases. Nevertheless, under local conditions as in the
marine boundary layer, τ
Cl values as low as 2.5 and 0.4 years for HFE-7000 and C3H7CH2OH, respectively, are expected, showing that the contribution of Cl to the atmospheric degradation of these CFCs substitutes
under such conditions may constitute a relevant sink. In the case of CF3CF2CF2OCH3, significant activation energy has been measured, thus the use of kinetic rate coefficient only at room temperature would
result in underestimations of lifetimes and GWPs.
Recommendations and perspectives The results obtained in this work may be helpful within the database used in the modeling studies of coastal areas. The knowledge
of the atmospheric behavior and the structure–reactivity relationship discussed in this work may also contribute to the development
of new environmentally acceptable chemicals. New volatile materials susceptible of emission to the troposphere should be subject
to the study of their reactions with OH and Cl in the range of temperature of the troposphere. The knowledge of the temperature
dependence of the kinetic rate constants, as it is now reported for the case of reactions 1 and 2, will allow more accurate
lifetimes and related magnitudes like GWPs. Nevertheless, a better knowledge of the vertical Cl tropospheric distribution
is still required. 相似文献
17.
Understanding of rapid disappearance of nitrite in natural waters and its impact on nitrogen natural cycling has remained limited. We found that NO2- disappeared rapidly in pH 3.2 aqueous Fe(III) solutions both in sunlight and in 356 nm light. Quantum yields of the NO2- loss at 356 nm were 0.049-0.14 for initial levels of 10-80 microns NO2- and 200 microns Fe(III). The NO2- loss (at 356 nm) followed apparent first-order kinetics. The rate constants were 1.3 x 10(-3) (40 microns NO2-) and 4.1 x 10(-4) s-1 (80 microns NO2-) for 100 microns Fe(III), and 2.3 x 10(-3) (40 microns NO2-) and 7.5 x 10(-4) s-1 (80 microns NO2(-1)) for 200 microns Fe(III) (t1/2 = 8.7, 27.9, 5.1, and 15.3 min, respectively). The rate constants were directly proportional to [Fe(III)]0 and inversely proportional to [NO2-]0. Agreement between the rate constants obtained experimentally and those calculated mechanistically supports the hypothesis that NO2- was oxidized to NO2 by .OH radicals from photolysis of FeOH2+ complexes, and at high [NO2-]0 (e.g., 80 microns) relative to [Fe(III)]0, hydrolysis of NO2 or N2O4 to form NO3- and NO2- could be significant. This study showed that light and Fe(III)-induced oxidation of NO2- (rate = approximately 10(-1)-10(-2) microns s-1) was more rapid than its direct photolysis (rate = approximately 10(-4) microns s-1), and the photolysis could be a significant source of .OH radicals only in cases where the Fe(III) level is much lower than the NO2- level ([Fe(III)]/[NO2-] < 1/80). This study suggests that the light and Fe(III)-induced oxidation of NO2- would be one potential important pathway responsible for the rapid transformation of NO2- in acidic surface waters, especially those affected by acid-mine drainage or volcanic activities. This study also may be of interest for modeling certain acidic atmospheric water environments. 相似文献
18.
Wan Dong Zhang Guofei Chen Yong Lu Xiye Zuo Yuegang 《Environmental science and pollution research international》2019,26(9):8640-8649
Environmental Science and Pollution Research - The photochemical role of Fe(III)-citrate complex is significant in natural waters due to its ubiquitous existence and excellent photoreactivity at... 相似文献
19.
The photoinduced degradation of an alcohol ethoxylate (AE) (Brij 30) by Fe(III) in aqueous solution has been investigated. The study was carried out with the major fraction of ethoxymers having an alkyl chain length of 12 carbon atoms and n ethoxy units E (C12En). The Fe(III) sensitised degradation of this fraction occurs efficiently at 365 nm. The rate of degradation depends on the concentration of Fe(OH)2+, the most photoreactive species in terms of .OH radical formation. Formate ethoxylates were identified as photoproducts and shortening of the ethoxylated chain all along the degradation process was observed. The mechanism of Brij 30 degradation implies a major .OH radicals attack on the polyethoxylated chain. For prolonged irradiations, the total degradation of Brij 30 and of the photoproducts is obtained. Consequently, the degradation photoinduced by iron (III) could be an efficient method of AEs removal in water. 相似文献
20.
High temperature dependence of 2,4-dichlorophenoxyacetic acid degradation by Fe3+/H(2)O(2) system 总被引:2,自引:0,他引:2
This study demonstrates the importance of reaction temperature on the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D). In addition, we provide a mechanistic explanation for the temperature dependence of 2,4-D degradation. Thermal enhancement of 2,4-D degradation and H(2)O(2) decomposition was measured in the absence and in the presence of the z.rad;OH scavenger (t-butanol). The half-life for 2,4-D degradation was reduced by more than 70-fold in the absence of t-butanol, and by more than 700-fold, in the presence of t-butanol, when the reaction temperature was increased from 10 to 50 degrees C. In addition, similar temperature relationships were found for H(2)O(2) decomposition. The major reason for the high temperature dependence of the Fe(3+)/H(2)O(2) system in the case of 2,4-D degradation is due to the dependence of the initiation reaction of the Fe(3+)/H(2)O(2) system (i.e., Fe(3+)+H(2)O(2)-->Fe(2+)+HO(2)(z.rad;)+H(+) upon temperature), which is entirely consistent with the kinetics of the activation energy. In the presence of a z.rad;OH scavenger, the initiation reaction of the Fe(3+)/H(2)O(2) system became a determining factor of this temperature dependence, whereas in the absence of z.rad;OH scavenger, several other radical reactions played a role and this result in an apparent decrease in the activation energy for 2,4-D degradation. Moreover, the enhanced 2,4-D removal at higher temperatures did not alter H(2)O(2) utilization. The practical implications of the thermal enhancement of the Fe(3+)/H(2)O(2) system are discussed. 相似文献