首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Will Observation Error and Biases Ruin the Use of Simple Extinction Models?   总被引:1,自引:0,他引:1  
Abstract: Estimating the risk of extinction for populations of endangered species is an important component of conservation biology. These estimates must be made from data that contain both environmental noise in the year-to-year transitions in population size (so-called "process error"), random errors in sampling, and possible biases in sampling ( both forms of observation errors). To determine how much faith to place in estimated extinction rates, it is important to know how sensitive they are to observation error. We used three simple, commonly employed models of population dynamics to generate simulated population time series. We then combined random observation error or systematic biases with those data, fit models to the time series data, and observed how close the extinction dynamics of the fitted models compared with the dynamics of the underlying models. We found that systematic biases in sampling rarely affected estimates of extinction risk. We also found that even moderate levels of random observation error do not significantly affect extinction estimates except over a small range of process errors, corresponding to the region where extinction risk is most uncertain. With more substantial sampling error, estimates of extinction risk degraded rapidly. Field census techniques for a variety of taxa often involve observation errors within ±32% of actual population sizes. For typical time series used in conservation, therefore, we often may not need to be overly concerned about observation errors as an extra source of imperfection in our estimated extinction rates.  相似文献   

2.
Population viability analysis programs are being used increasingly in research and management applications, but there has not been a systematic study of the congruence of different program predictions based on a single data set. We performed such an analysis using four population viability analysis computer programs: GAPPS, INMAT, RAMAS/AGE, and VORTEX. The standardized demographic rates used in all programs were generalized from hypothetical increasing and decreasing grizzly bear ( Ursus arctos horribilis ) populations. Idiosyncracies of input format for each program led to minor differences in intrinsic growth rates that translated into striking differences in estimates of extinction rates and expected population size. In contrast, the addition of demographic stochasticity, environmental stochasticity, and inbreeding costs caused only a small divergence in viability predictions. But, the addition of density dependence caused large deviations between the programs despite our best attempts to use the same density-dependent functions. Population viability programs differ in how density dependence is incorporated, and the necessary functions are difficult to parameterize accurately. Thus, we recommend that unless data clearly suggest a particular density-dependent model, predictions based on population viability analysis should include at least one scenario without density dependence. Further, we describe output metrics that may differ between programs; development of future software could benefit from standardized input and output formats across different programs.  相似文献   

3.
A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100–1000 times pre‐human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard‐bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification—the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over‐ and under‐estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre‐human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05–0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher. Estimación de la Tasa Normal de Extinción de Especies  相似文献   

4.
The accuracy of population estimates strongly interferes with our ability to obtain unbiased estimates of population parameters based on analyses of time series of population fluctuations. Here we use long-term data on fluctuations in the size of Mallard populations collected as part of the May Breeding Waterfowl Survey covering a large section of North America. We assume a log-linear model of density dependence and use a hierarchical Bayesian state-space approach in which all parameters are assumed to be realizations from a common underlying distribution. Thus, parameters for different populations are not allowed to vary independently of each other. We then simulated independent time series of aerial counts, using the estimated parameters and adding various levels of observation error. These simulations showed that the estimates of stochastic population growth rate and strength of density dependence were biased even when moderate sampling errors were present. In contrast, the estimates of the environmental stochasticity and the carrying capacity were unbiased even for short time series and large observation error. Our results underline the importance of reducing the magnitude of sampling error in the design of large-scale monitoring programs of population fluctuations.  相似文献   

5.
Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage‐based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts’ 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data‐collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk‐averse decisions than to expect precise forecasts from models. Habilidad de los Modelos Matriciales para Explicar el Pasado y Predecir el Futuro de las Poblaciones de Plantas  相似文献   

6.
Correctly classifying a species as extinct or extant is of critical importance if current rates of biodiversity loss are to be accurately quantified. Observing an extinction event is rare, so in many cases extinction status is inferred using methods based on the analysis of records of historic sighting events. The accuracy of such methods is difficult to test. However, results of recent experiments with microcosm communities suggest that the rate at which a population declines to extinction, potentially driven by varying environmental conditions, may alter one's ability accurately to infer extinction status. We tested how the rate of population decline, driven by historic environmental change, alters the accuracy of 6 commonly applied sighting‐based methods used to infer extinction. We used data from small‐scale experimental communities and recorded wild population extirpations. We assessed how accuracy of the different methods was affected by rate of population decline, search effort, and number of sighting events recorded. Rate of population decline and historic population size of the species affected the accuracy of inferred extinction dates; however, faster declines produced more accurate inferred dates of extinction, but only when population sizes were higher. Optimal linear estimation (OLE) offered the most reliable and robust estimates, though no single method performed best in all situations, and it may be appropriate to use a different method if information regarding historic search efforts is available. OLE provided the most accurate estimates of extinction when the number of sighting events used was >10, and future use of this method should take this into account. Data from experimental populations provide added insight into testing techniques to discern wild extirpation events. Care should be taken designing such experiments so that they mirror closely the abundance dynamics of populations affected by real‐world extirpation events. Efectos del Cambio Ambiental Reciente sobre la Precisión de las Inferencias sobre el Estado de Extinción  相似文献   

7.
I examine whether or not it is appropriate to use extinction probabilities generated by population viability analyses, based on best estimates for model parameters, as criteria for listing species in Red Data Book categories as recently proposed by the World Conservation Union. Such extinction probabilities are influenced by how accurately model parameters are estimated and by how accurately the models depict actual population dynamics. I evaluate the effect of uncertainty in parameter estimation through simulations. Simulations based on Steller sea lions were used to evaluate bias and precision in estimates of probability of extinction and to consider the performance of two proposed classification schemes. Extinction time estimates were biased (because of violation of the assumption of stable age distribution) and underestimated the variability of probability of extinction for a given time (primarily because of uncertainty in parameter estimation). Bias and precision in extinction probabilities are important when these probabilities are used to compare the risk of extinction between species. Suggestions are given for population viability analysis techniques that incorporate parameter uncertainty. I conclude that testing classification schemes with simulations using quantitative performance objectives should precede adoption of quantitative listing criteria.  相似文献   

8.
Abstract:  Conventional population viability analysis (PVA) is often impractical because data are scarce for many threatened species. For this reason, simple count-based models are being advocated. The simplest of these models requires nothing more than a time series of abundance estimates, from which variance and autocorrelation in growth rate are estimated and predictions of population persistence are generated. What remains unclear, however, is how many years of data are needed to generate reliable estimates of these parameters and hence reliable predictions of persistence. By analyzing published and simulated time series, we show that several decades of data are needed. Predictions based on short time series were very unreliable mainly because limited data yielded biased, unreliable estimates of variance in growth rate, especially when growth rate was strongly autocorrelated. More optimistically, our results suggest that count-based PVA is sometimes useful for relative risk assessment (i.e., for ranking populations by extinction risk), even when time series are only a decade long. However, some conditions consistently lead to backward rankings. We explored the limited conditions under which simple count-based PVA may be useful for relative risk assessment.  相似文献   

9.
Yackulic CB  Reid J  Davis R  Hines JE  Nichols JD  Forsman E 《Ecology》2012,93(8):1953-1966
In this paper, we modify dynamic occupancy models developed for detection-nondetection data to allow for the dependence of local vital rates on neighborhood occupancy, where neighborhood is defined very flexibly. Such dependence of occupancy dynamics on the status of a relevant neighborhood is pervasive, yet frequently ignored. Our framework permits joint inference about the importance of neighborhood effects and habitat covariates in determining colonization and extinction rates. Our specific motivation is the recent expansion of the Barred Owl (Strix varia) in western Oregon, USA, over the period 1990-2010. Because the focal period was one of dramatic range expansion and local population increase, the use of models that incorporate regional occupancy (sources of colonists) as determinants of dynamic rate parameters is especially appropriate. We began our analysis of 21 years of Barred Owl presence/nondetection data in the Tyee Density Study Area (TDSA) by testing a suite of six models that varied only in the covariates included in the modeling of detection probability. We then tested whether models that used regional occupancy as a covariate for colonization and extinction outperformed models with constant or year-specific colonization or extinction rates. Finally we tested whether habitat covariates improved the AIC of our models, focusing on which habitat covariates performed best, and whether the signs of habitat effects are consistent with a priori hypotheses. We conclude that all covariates used to model detection probability lead to improved AIC, that regional occupancy influences colonization and extinction rates, and that habitat plays an important role in determining extinction and colonization rates. As occupancy increases from low levels toward equilibrium, colonization increases and extinction decreases, presumably because there are more and more dispersing juveniles. While both rates are affected, colonization increases more than extinction decreases. Colonization is higher and extinction is lower in survey polygons with more riparian forest. The effects of riparian forest on extinction rates are greater than on colonization rates. Model results have implications for management of the invading Barred Owl, both through habitat alteration and removal.  相似文献   

10.
Birth-pulse populations are often characterized with discrete-time models, that use a single function to relate the post-breeding population size to the post-breeding size of the previous year. Recently, models of seasonal density dependence have been constructed that emphasize interactions during shorter time periods also. Here, we study two very simple forms of density-dependent mortality, that lead to Ricker and Beverton-Holt type population dynamics when viewed over the whole year. We explore the consequences of harvest timing to equilibrium population sizes under such density dependence. Whether or not individual mortality compensates for the harvested quota, the timing of harvesting has a strong impact on the sustainability of a harvesting quota. Further, we show that careless discretization of a continuous mortality scheme may seriously underestimate the reduction in population size caused by hunting and overestimate the sustainable yield. We also introduce the concept of the demographic value of an individual, which reflects the expected contribution to population size over time in the presence of density dependence. Finally, we discuss the possibility of calculating demographic values as means of optimizing harvest strategies. Here, a Pareto optimal harvest strategy will minimize the loss of demographic value from the population for a given yield.  相似文献   

11.
Birds have been comprehensively assessed on the International Union for Conservation of Nature (IUCN) Red List more times than any other taxonomic group. However, to date, generation lengths have not been systematically estimated to scale population trends when undertaking assessments, as required by the criteria of the IUCN Red List. We compiled information from major databases of published life-history and trait data for all birds and imputed missing life-history data as a function of species traits with generalized linear mixed models. Generation lengths were derived for all species, based on our modeled values of age at first breeding, maximum longevity, and annual adult survival. The resulting generation lengths varied from 1.42 to 27.87 years (median 2.99). Most species (61%) had generation lengths <3.33 years, meaning that the period of 3 generations—over which population declines are assessed under criterion A—was <10 years, which is the value used for IUCN Red List assessments of species with short generation times. For these species, our trait-informed estimates of generation length suggested that 10 years is a robust precautionary value for threat assessment. In other cases, however, for whole families, genera, or individual species, generation length had a substantial impact on their estimated extinction risk, resulting in higher extinction risk in long-lived species than in short-lived species. Although our approach effectively addressed data gaps, generation lengths for some species may have been underestimated due to a paucity of life-history data. Overall, our results will strengthen future extinction-risk assessments and augment key databases of avian life-history and trait data.  相似文献   

12.
Abstract:  Many researchers have obtained extinction-rate estimates for plant populations by comparing historical and current records of occurrence. A population that is no longer found is assumed to have gone extinct. Extinction can then be related to characteristics of these populations, such as habitat type, size, or species, to test ideas about what factors may affect extinction. Such studies neglect the fact that a population may be overlooked, however, which may bias estimates of extinction rates upward. In addition, if populations are unequally detectable across groups to be compared, such as habitat type or population size, comparisons become distorted to an unknown degree. To illustrate the problem, I simulated two data sets, assuming a constant extinction rate, in which populations occurred in different habitats or habitats of different size and these factors affected their detectability. The conventional analysis implicitly assumed that detectability equalled 1 and used logistic regression to estimate extinction rates. It wrongly identified habitat and population size as factors affecting extinction risk. In contrast, with capture-recapture methods, unbiased estimates of extinction rates were recovered. I argue that capture-recapture methods should be considered more often in estimations of demographic parameters in plant populations and communities.  相似文献   

13.
Assessing causes of population decline is critically important to management of threatened species. Stochastic patch occupancy models (SPOMs) are popular tools for examining spatial and temporal dynamics of populations when presence–absence data in multiple habitat patches are available. We developed a Bayesian Markov chain method that extends existing SPOMs by focusing on past environmental changes that may have altered occupancy patterns prior to the beginning of data collection. Using occupancy data from 3 creeks, we applied the method to assess 2 hypothesized causes of population decline—in situ die-off and residual impact of past source population loss—in the California red-legged frog. Despite having no data for the 20–30 years between the hypothetical event leading to population decline and the first data collected, we were able to discriminate among hypotheses, finding evidence that in situ die-off increased in 2 of the creeks. Although the creeks had comparable numbers of occupied segments, owing to different extinction–colonization dynamics, our model predicted an 8-fold difference in persistence probabilities of their populations to 2030. Adding a source population led to a greater predicted persistence probability than did decreasing the in situ die-off, emphasizing that reversing the deleterious impacts of a disturbance may not be the most efficient management strategy. We expect our method will be useful for studying dynamics and evaluating management strategies of many species.  相似文献   

14.
Forecasting extinction risk with nonstationary matrix models.   总被引:1,自引:0,他引:1  
Matrix population growth models are standard tools for forecasting population change and for managing rare species, but they are less useful for predicting extinction risk in the face of changing environmental conditions. Deterministic models provide point estimates of lambda, the finite rate of increase, as well as measures of matrix sensitivity and elasticity. Stationary matrix models can be used to estimate extinction risk in a variable environment, but they assume that the matrix elements are randomly sampled from a stationary (i.e., non-changing) distribution. Here we outline a method for using nonstationary matrix models to construct realistic forecasts of population fluctuation in changing environments. Our method requires three pieces of data: (1) field estimates of transition matrix elements, (2) experimental data on the demographic responses of populations to altered environmental conditions, and (3) forecasting data on environmental drivers. These three pieces of data are combined to generate a series of sequential transition matrices that emulate a pattern of long-term change in environmental drivers. Realistic estimates of population persistence and extinction risk can be derived from stochastic permutations of such a model. We illustrate the steps of this analysis with data from two populations of Sarracenia purpurea growing in northern New England. Sarracenia purpurea is a perennial carnivorous plant that is potentially at risk of local extinction because of increased nitrogen deposition. Long-term monitoring records or models of environmental change can be used to generate time series of driver variables under different scenarios of changing environments. Both manipulative and natural experiments can be used to construct a linking function that describes how matrix parameters change as a function of the environmental driver. This synthetic modeling approach provides quantitative estimates of extinction probability that have an explicit mechanistic basis.  相似文献   

15.
A 40% reduction in relative gonad size in perch (Perca fluviatilis) has been observed over that past two decades at the Swedish national reference site Kvädöfjärden. This biomarker response could be interpreted as a reduction in fecundity and increased risk of local extinction. However, abundance estimates from the same area has not provided any evidence of a reduction in population size. In the present study, a matrix population model was developed to investigate if a reduction in fecundity can be expected to have long term effects on population viability for perch and to evaluate the probability to detect such effects through abundance estimates. The model was parameterized from 17 years of population data from Kvädöfjärden as well as from other studies on perch. The model included density dependence and environmental stochasticity. The results indicated that a reduction in fecundity that is in level with the observed reduction in relative gonad size in Kvädöfjärden will cause a substantial risk for local extinction. The risk that the population will fall below 20% of the carrying capacity within 50 years is 44% when the fecundity is reduced by 40%. However, due to variability in abundance measurements it will take some time before a reduction in gonad size leads to statistically significant effects on the population. If the fecundity is reduced by 40% successively over a 10-year period, the probability to detect this through abundance estimates within 10 years is less than 50%. The results of the present study clearly show that relevant biomarkers have an important role in environmental monitoring as early warning signals, preferably in combination with measurements at higher levels of biological organization.  相似文献   

16.
Population viability analysis (PVA) is a powerful conservation tool, but it remains impractical for many species, particularly species with multiple, broadly distributed populations for which collecting suitable data can be challenging. A recently developed method of multiple-population viability analysis (MPVA), however, addresses many limitations of traditional PVA. We built on previous development of MPVA for Lahontan cutthroat trout (LCT) (Oncorhynchus clarkii henshawi), a species listed under the U.S. Endangered Species Act, that is distributed broadly across habitat fragments in the Great Basin (U.S.A.). We simulated potential management scenarios and assessed their effects on population sizes and extinction risks in 211 streams, where LCT exist or may be reintroduced. Conservation populations (those managed for recovery) tended to have lower extinction risks than nonconservation populations (mean = 19.8% vs. 52.7%), but not always. Active management or reprioritization may be warranted in some cases. Eliminating non-native trout had a strong positive effect on overall carrying capacities for LCT populations but often did not translate into lower extinction risks unless simulations also reduced associated stochasticity (to the mean for populations without non-native trout). Sixty fish or 5–10 fish/km was the minimum reintroduction number and density, respectively, that provided near-maximum reintroduction success. This modeling framework provided crucial insights and empirical justification for conservation planning and specific adaptive management actions for this threatened species. More broadly, MPVA is applicable to a wide range of species exhibiting geographic rarity and limited availability of abundance data and greatly extends the potential use of empirical PVA for conservation assessment and planning.  相似文献   

17.
Population models for multiple species provide one of the few means of assessing the impact of alternative management options on the persistence of biodiversity, but they are inevitably uncertain. Is it possible to use population models in multiple-species conservation planning given the associated uncertainties? We use information-gap decision theory to explore the impact of parameter uncertainty on the conservation decision when planning for the persistence of multiple species. An information-gap approach seeks robust outcomes that are most immune from error. We assess the impact of uncertainty in key model parameters for three species, whose extinction risks under four alternative management scenarios are estimated using a metapopulation model. Three methods are described for making conservation decisions across the species, taking into account uncertainty. We find that decisions based on single species are relatively robust to uncertainty in parameters, although the estimates of extinction risk increase rapidly with uncertainty. When identifying the best conservation decision for the persistence of all species, the methods that rely on the rankings of the management options by each species result in decisions that are similarly robust to uncertainty. Methods that depend on absolute values of extinction risk are sensitive to uncertainty, as small changes in extinction risk can alter the ranking of the alternative scenarios. We discover that it is possible to make robust conservation decisions even when the uncertainties of the multiple-species problem appear overwhelming. However, the decision most robust to uncertainty is likely to differ from the best decision when uncertainty is ignored, illustrating the importance of incorporating uncertainty into the decision-making process.  相似文献   

18.
Abstract: Although there has been a call for the integration of behavioral ecology and conservation biology, there are few tools currently available to achieve this integration. Explicitly including information about behavioral strategies in population viability analyses may enhance the ability of conservation biologists to understand and estimate patterns of extinction risk. Nevertheless, most behavioral‐based PVA approaches require detailed individual‐based data that are rarely available for imperiled species. We present a mechanistic approach that incorporates spatial and demographic consequences of behavioral strategies into population models used for conservation. We developed a stage‐structured matrix model that includes the costs and benefits of movement associated with 2 habitat‐selection strategies (philopatry and direct assessment). Using a life table for California sea lions (Zalophus californianus), we explored the sensitivity of model predictions to the inclusion of these behavioral parameters. Including behavioral information dramatically changed predicted population sizes, model dynamics, and the expected distribution of individuals among sites. Estimated population sizes projected in 100 years diverged up to 1 order of magnitude among scenarios that assumed different movement behavior. Scenarios also exhibited different model dynamics that ranged from stable equilibria to cycles or extinction. These results suggest that inclusion of behavioral data in viability models may improve estimates of extinction risk for imperiled species. Our approach provides a simple method for incorporating spatial and demographic consequences of behavioral strategies into population models and may be easily extended to other species and behaviors to understand the mechanisms of population dynamics for imperiled populations.  相似文献   

19.
Abstract:  In conservation ecology there is an urgent need for indicators that can be used to predict the risk of extinction of populations. Identifying extinction-prone populations has been difficult because few data sets on the demographic characteristics of the final stage to extinction are available and because of problems in separating out stochastic effects from changes in the expected dynamics. We documented the demographic changes that occurred during the period prior to extinction of a small island population of House Sparrows ( Passer domesticus ) after the end of permanent human settlement. A mark-recapture analysis revealed that this decline to extinction was mainly due to increased mortality after closure of the last farm that resulted in a negative long-term-specific growth rate. No change occurred in either the structural composition (breeding sex ratio and age distribution) of the population or in female recruitment. No male, however, recruits were produced on the island after the farm closure. Based on a simple, stochastic, density-dependent model we constructed a population prediction interval (PPI) to estimate the time to extinction. The 95% PPI slightly overestimated the time to extinction with large uncertainty in predictions, especially due to the influence of demographic stochasticity and parameter drift. Our results strongly emphasize the importance of access to data on temporal variation that can be used to parameterize simple population models that allow estimation of critical parameters for credible prediction of time to extinction.  相似文献   

20.
Miller TE  Inouye BD 《Ecology》2011,92(11):2141-2151
Most population dynamics models explicitly track the density of a single sex. When the operational sex ratio can vary, two-sex models may be needed to understand and predict population trajectories. Various functions have been proposed to describe the relative contributions of females and males to recruitment, and these functions can differ qualitatively in the patterns that they generate. Which mating function best describes the dynamics of real populations is not known, since alternative two-sex models have not been confronted with experimental data. We conducted the first such comparison, using laboratory populations of the bean beetle Callosobruchus maculatus. Manipulations of the operational sex ratio and total density provided strong support for a demographic model in which the birth rate was proportional to the harmonic mean of female and male densities, and females, males, and their offspring made unique contributions to density dependence. We offer guidelines for transferring this approach to other, less tractable systems in which possibilities for sex ratio manipulations are more limited. We show that informative experimental designs require strong perturbations of the operational sex ratio. The functional form of density dependence (saturating vs. over-compensatory) and the relative contributions of each sex to density dependence can both determine in which direction and at which population densities such perturbations would be most informative. Our experimental results and guidelines for design strategies promote synthesis of two-sex population dynamics theory with empirical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号