首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper summarises the findings of an Intergovernmental Panel on Climate Change (IPCC) Expert Meeting on Methods for the Assessment of Inventory Data Quality held in Bilthoven, The Netherlands, 5–7 November 1997. Under the Kyoto Protocol of the Climate Convention, reliable inventories of national greenhouse gases (GHG) are needed for verifying compliance. Four approaches are suggested for assessing and improving the quality of greenhouse gas inventories: inventory quality assurance; inventory comparisons; model comparisons; and direct emission measurements. The paper presents recommendations for improving the quality of emission estimates of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O).  相似文献   

2.
Under the United Nations Framework Convention on Climate Change, more than 160 countries are required to report their national greenhouse gas inventories. To help countries meet this requirement, the Intergovernmental Panel on Climate Change (IPCC) prepared guidelines for inventorying greenhouse gases. These guidelines are regularly reviewed to ensure that they are based on the best scientific knowledge. In May 1998, in Dakar, Senegal, an IPCC expert meeting reviewed and evaluated three approaches for accounting for carbon from forest harvesting and wood products. They are the atmospheric-flow, stock-change and production approaches. In the future, governments may decide to include one of the three approaches in the land-use change and forestry module of the IPCC Guidelines for National Greenhouse Gas Inventories. Here, we demonstrate how such approaches can be evaluated using technical, scientific and policy criteria. The purpose of this evaluation is to help policy-makers potentially choose an approach for the IPCC Guidelines. This paper presents the framework of the evaluation by separating the technical and policy issues of each approach, but it does not make policy recommendations. On technical and scientific grounds, a group of experts found that the three approaches gave similar results at a global level. Data availability is not a critical factor in choosing between the approaches. However, at the national level, the approaches can differ significantly, for example, in terms of their system boundaries. Depending on technical features of each approach, credits and debits for CO2 flows or changes in carbon stock in wood products are accounted for differently among countries that produce or consume wood. This leads to differing incentives for conserving or enhancing carbon stocks in forests, the use of imported wood products and woodfuels and waste minimisation strategies. Each approach has different implications.  相似文献   

3.
National governments that are Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are required to submit greenhouse gas (GHG) inventories accounting for the emissions and removals occurring within their geographic territories. The Intergovernmental Panel on Climate Change (IPCC) provides inventory methodology guidance to the Parties of the UNFCCC. This methodology guidance, and national inventories based on it, omits carbon dioxide (CO2) from the atmospheric oxidation of methane, carbon monoxide, and non-methane volatile organic compounds emissions that result from several source categories. The inclusion of this category of “indirect” CO2 in GHG inventories increases global anthropogenic emissions (excluding land use and forestry) between 0.5 and 0.7%. However, the effect of inclusion on aggregate UNFCCC Annex I Party GHG emissions would be to reduce the growth of total emissions, from 1990 to 2004, by 0.2% points. The effect on the GHG emissions and emission trends of individual countries varies. The paper includes a methodology for calculating these emissions and discusses uncertainties. Indirect CO2 is equally relevant for GHG inventories at other scales, such as global, regional, organizational, and facility. Similarly, project-based methodologies, such as those used under the Clean Development Mechanism, may need revising to account for indirect CO2.  相似文献   

4.
Accounting the changes in the net carbon (C) sink-source balance is an important component for greenhouse gas emissions (GHG) inventories. However, carbon emission due to the vegetation biomass extraction for household purposes is generally not accounted in forest carbon budget analysis due to miniscule volume and non-availability of data. However, if vegetation remains in the forests, then vegetation biomass decomposes after natural death and decay and fixes some carbon to soil and releases some directly to the atmosphere. The study attempts to quantify the carbon removal against the biomass extraction for livestock feed by collecting primary data on feed from 316 randomly selected households engaged in livestock rearing in the lower Himalayas, Uttarakhand, India and carbon flow components due to livestock production. The analysis results that average daily forest fodder consumption was 13 kg per Adult Cattle Unit (ACU) and total of 20.31 Million tonnes (Mt) consumption of forest biomass by total livestock of Uttarakhand. This results into absolute annual carbon removal of 3.25 Mt from Uttarakhand forests against the livestock fodder. However, overall carbon flow including the enteric fermentation and manure management system of livestock estimated as per IPCC guidelines, results into emissions of 9.42 Mt CO2 eq. Therefore, biomass extraction for household purposes should be accounted in regional carbon flow analysis and properly addressed in the GHG inventories of the forests and livestock sector. Suitable measures should be taken for emissions reduction generated due to forest based livestock production.  相似文献   

5.
Intergovernmental Panel on Climate Change (IPCC) Tier 1 key sources level 1 assessment was applied to the 1994–1994 National Greenhouse Gases (GHG) emission inventory for Mexico in order to identify and analyze the key sources within it. Top key sources were from land use change and energy combustion contributing to about 60% of total national emissions. In addition, a Tier 1 trend assessment revealed some changes with respect to Tier 1 level assessment: Top key sources according to this analysis are waste disposal and delayed emissions from land clearing. Important insight for cost effective preventive mitigation actions can be extracted from this analysis. A comparison with other countries was carried out to find similarities in the GHG national emissions inventories related to common features on economic development.  相似文献   

6.
天津市居民生活消费CO2排放估算分析   总被引:6,自引:1,他引:5       下载免费PDF全文
根据联合国政府间气候变化专门委员会(IPCC)碳排放计算指南(2006年版)中的计算公式和CO2排放系数缺省值,以居住综合消费碳排放、叠加交通消费碳排放计算模型为基础,应用碳排放系数法估算了2006~2008年天津市居民人均生活消费CO2排放量及其在总的能源消耗CO2排放量中所占比例.结果表明,2006~2008年天津市居民生活消费CO2排放量呈逐年上升趋势,2008年的排放量比2006年增加了13.7%.居民生活消费CO2排放在总的能源消耗CO2排放中所占比例整体呈上升趋势,并从产业结构和能源消费结构两个角度分析了导致这一现象的原因.  相似文献   

7.
In response to the United Nations Framework Convention on Climate Change (UNFCCC) process investigating the technical issues surrounding the ability to reduce greenhouse gas (GHG) emissions from deforestation in developing countries, this paper reviews technical capabilities for monitoring deforestation and estimating emissions. Implementation of policies to reduce emissions from deforestation require effective deforestation monitoring systems that are reproducible, provide consistent results, meet standards for mapping accuracy, and can be implemented at the national level. Remotely sensed data supported by ground observations are key to effective monitoring. Capacity in developing countries for deforestation monitoring is well-advanced in a few countries and is a feasible goal in most others. Data sources exist to determine base periods in the 1990s as historical reference points. Forest degradation (e.g. from high impact logging and fragmentation) also contribute to greenhouse gas emissions but it is more technically challenging to measure than deforestation. Data on carbon stocks, which are needed to estimate emissions, cannot currently be observed directly over large areas with remote sensing. Guidelines for carbon accounting from deforestation exist and are available in approved Intergovernmental Panel on Climate Change (IPCC) reports and can be applied at national scales in the absence of forest inventory or other data. Key constraints for implementing programs to monitor greenhouse gas emissions from deforestation are international commitment of resources to increase capacity, coordination of observations to ensure pan-tropical coverage, access to free or low-cost data, and standard and consensual protocols for data interpretation and analysis.  相似文献   

8.
Mitigation and Adaptation Strategies for Global Change - Guidelines of the Intergovernmental Panel on Climate Change (IPCC) were used to assess a greenhouse gas inventory for land use change and...  相似文献   

9.
Developing a transparent,accurate greenhouse gas (GHG) emissionsinventory is the first step toward buildingan effective GHG management system. Todate, GHG inventories have been conductedprimarily at national levels. Theinternationally accepted inventorymethodology developed by theIntergovernmental Panel on Climate Change(IPCC) is oriented to countrywideinventories. The electricity company RAOUESR is the largest single corporateemitter of GHG in the Russian Federation. The company is responsible for about 1/3 ofRussia's CO2 emissions; RAO's fossil fuelemissions are comparable to the fossil fuelemissions of the United Kingdom. The GHGinventory prepared by RAO is the first suchcorporate emissions inventory undertaken ina non-OECD country. In this article wepresent a detailed independent examinationof the methodology RAO applied for theinventory. We identify the most importantsources of uncertainty and we estimate theuncertainty. The main conclusion of theindependent review is that the methodologyutilized by RAO and the informationsupporting the methodology are reliable andpresent a reasonably accurate company-widepicture of RAO's CO2 emissions. The shareof other greenhouse gases is negligiblysmall and we did not focus on this fractionof RAO's GHG emissions. As a next step, RAOmay wish to conduct more precisefacility-by-facility inventories in orderto create a robust GHG emission managementsystem.  相似文献   

10.

Emission inventories (EIs) are the fundamental tool to monitor compliance with greenhouse gas (GHG) emissions and emission reduction commitments. Inventory accounting guidelines provide the best practices to help EI compilers across different countries and regions make comparable, national emission estimates regardless of differences in data availability. However, there are a variety of sources of error and uncertainty that originate beyond what the inventory guidelines can define. Spatially explicit EIs, which are a key product for atmospheric modeling applications, are often developed for research purposes and there are no specific guidelines to achieve spatial emission estimates. The errors and uncertainties associated with the spatial estimates are unique to the approaches employed and are often difficult to assess. This study compares the global, high-resolution (1 km), fossil fuel, carbon dioxide (CO2), gridded EI Open-source Data Inventory for Anthropogenic CO2 (ODIAC) with the multi-resolution, spatially explicit bottom-up EI geoinformation technologies, spatio-temporal approaches, and full carbon account for improving the accuracy of GHG inventories (GESAPU) over the domain of Poland. By taking full advantage of the data granularity that bottom-up EI offers, this study characterized the potential biases in spatial disaggregation by emission sector (point and non-point emissions) across different scales (national, subnational/regional, and urban policy-relevant scales) and identified the root causes. While two EIs are in agreement in total and sectoral emissions (2.2% for the total emissions), the emission spatial patterns showed large differences (10~100% relative differences at 1 km) especially at the urban-rural transitioning areas (90–100%). We however found that the agreement of emissions over urban areas is surprisingly good compared with the estimates previously reported for US cities. This paper also discusses the use of spatially explicit EIs for climate mitigation applications beyond the common use in atmospheric modeling. We conclude with a discussion of current and future challenges of EIs in support of successful implementation of GHG emission monitoring and mitigation activity under the Paris Climate Agreement from the United Nations Framework Convention on Climate Change (UNFCCC) 21st Conference of the Parties (COP21). We highlight the importance of capacity building for EI development and coordinated research efforts of EI, atmospheric observations, and modeling to overcome the challenges.

  相似文献   

11.
In the last few years, nearly all industrialized countries have submitted estimates of national inventories of methane and other greenhouse gases as required under the Framework Convention on Climate Change. National inventories of methane emissions in industrialized countries are fairly complete but give some suggestion of underestimation when inventory totals are compared with recent atmospheric measurements and global budgets. In this paper, possible discrepancies are assessed for fossil fuel sources and landfills based on comparisons between independent estimates and national communications. The Kyoto Protocol to the Framework Convention and the European Union make new provisions to develop procedures for technical review of national inventories and projections, and requirements for more thorough documentation from parties, which should improve accuracy. Limits to accuracy and the political implications of underestimation are discussed in this article, along with suggestions for improving inventories through better analysis, documentation and review procedures.  相似文献   

12.

Restoration of deforested and drained tropical peat swamp forests is globally relevant in the context of reducing emissions from deforestation and forest degradation. The seasonal flux of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in a restoration concession in Central Kalimantan, Indonesia, was measured in the two contrasting land covers: shrubs and secondary forests growing on peatlands. We found that land covers had high, but insignificantly different, soil carbon stocks of 949?+?56 and 1126?+?147 Mg ha?1, respectively. The mean annual CO2 flux from the soil of shrub areas was 52.4?±?4.1 Mg ha?1 year?1, and from secondary peat swamp forests was 42.9?±?3.6 Mg ha?1 year?1. The significant difference in mean soil temperature in the shrubs (31.2 °C) and secondary peat swamp forests (26.3 °C) was responsible for the difference in total CO2 fluxes of these sites. We also found the mean annual total soil respiration was almost equally partitioned between heterotrophic respiration (20.8?+?1.3 Mg ha?1 year?1) and autotrophic respiration (22.6?+?1.5 Mg ha?1 year?1). Lowered ground water level up to ??40 cm in both land covers caused the increase of CO2 fluxes to 40–75%. These numbers contribute to the provision of emission factors for rewetted organic soils required in the national reporting using the 2013 Supplement of the 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for wetlands as part of the obligation under the United Nations Framework Convention on Climate Change (UNFCCC).

  相似文献   

13.
深圳市温室气体排放清单研究   总被引:10,自引:5,他引:5       下载免费PDF全文
根据深圳市相关统计资料收集到的活动水平数据,参照《2006年IPCC国家温室气体清单指南》温室气体核算方法,建立了深圳市温室气体排放清单,并且与其他城市的温室气体排放水平进行了对比. 结果表明:2008年深圳市温室气体总排放量(以CO2排放当量计)为6 569.4×104 t,能源部门的温室气体排放量占总排放量的比例最大,达80.8%;工业过程、废物处理处置部门和农林和其他土地利用(AFOLU)部门排放所占比例分别为16.5%、5.1%和-2.4%. 深圳市温室气体人均排放量为7.49 t/人,单位GDP的温室气体排放量为0.84 t/104元,二者均低于北京、上海、天津和无锡的平均排放水平,但高于重庆市.   相似文献   

14.
This study aims to contribute to the ongoing international debate on the choice of approaches and methods to be used for estimating the amount of carbon that has accumulated in harvested wood products (HWP), within the context of national greenhouse gas emission inventories. A method for estimating carbon accumulation in HWP was developed and applied to three accounting approaches currently under discussion, namely: the stock-change approach, the production approach and the atmospheric-flow approach. This method is consistent with tier 3 methods suggested by the Intergovernmental Panel on Climate Change.An estimation of the carbon accumulation in HWP in Portugal for the period 1990–2000 varied between 112 and 1016 Gg C year−1. The atmospheric-flow approach provided the most favourable results for the whole period, largely because Portugal acted as a net exporter of carbon. The production approach ranked second, because the HWP exported were mainly produced from domestically grown wood. The uncertainty level of the estimates was in general lower than the uncertainty level expected when using a method based on generic default data. In conclusion, a simple method such as the one developed in this study may be used to estimate carbon accumulation in HWP with acceptable uncertainty levels, provided that country-specific data are available.  相似文献   

15.
Estimates of uncertainty are presented for projections of forest carbon inventory and average annual net carbon flux on private timberland in the US using the model FORCARB. Uncertainty in carbon inventory was approximately ±9% (2000 million metric tons) of the estimated median in the year 2000, rising to 11% (2800 million metric tons) in projection year 2040, with this range covering 95% of the distribution. Relative uncertainties about net flux were higher and more variable than relative uncertainty estimates of carbon inventory. Results indicated that relatively high correlations among projected carbon budgets for the regional forest types led to greater total uncertainty than under assumptions of independence among types, indicating that an accurate portrayal of correlations is important. Uncertainty in soil carbon, closely followed by uncertainty in tree carbon, were most influential in estimating uncertainty in carbon inventory, but uncertainties in projections of volume growth and volume removals were most important in estimating uncertainty in carbon flux. This implies the most effective ways of reducing uncertainty in carbon flux are different from those required to reduce uncertainties in carbon inventory. Analyses as presented here are necessary prerequisites to identify and reduce uncertainty in a systematic and iterative way.  相似文献   

16.
基于中国统计年鉴中1985~2018年全国能源消耗和人口数据,估计中国城市人为热排放通量及其时间变化趋势.利用人口空间分布和污染物排放清单数据,探讨人为热排放的空间分布特征.依据能源类型,人为热分为工业、交通运输、建筑和新陈代谢4类排放.结果表明,我国人为热排放多年来持续增长,2000年增长加速,2012~2016年增速有所放缓.2016年我国平均人为热排放通量达到0.442W/m2,工业、建筑、交通、新陈代谢排放的全国平均人为热排放通量分别为0.311,0.072,0.038和0.020W/m2.人为热排放的高值主要分布在京津冀、长江三角洲、珠江三角洲重点城市群区域以及其他一些规模较大的区域重点城市.4类人为热排放均呈现东部多、西部少的特点.工业排放人为热分布与区域经济发展水平和城市化程度有关.交通运输排放的人为热主要集中在交通枢纽城市.与已有的人为热排放清单相比,本研究估计的人为热排放通量在规模较大的城市具有更大的数值,更能体现人类活动对人为热排放的贡献.  相似文献   

17.
The 2006 IPCC Guidelines for National Greenhouse Gas Inventories provide four accounting approaches to harvested wood products (HWP). These differ in the way they define system boundaries. Therefore, reported national carbon emissions differ according to the accounting approach used, and the implications of each accounting approach differ for different countries. This paper investigates four IPCC accounting approaches, as well as the 1996 IPCC default approach, to determine whether they provide incentives to achievement of major policy goals related to climate, forest, trade, and waste, taking into account indirect effects of wood use change (i.e., the effects on forest carbon stocks and on carbon emissions from the use of other fuels and materials). Conclusions are as follows: (1) The analyses produced many different results from those of previous studies. These differences appear to be attributable to whether or not the indirect effects of wood use change are taken into account and the reference scenarios that are assumed; (2) The best approaches for achieving each policy goal differ, and the best approaches for particular policy goals might pose problems for other policy goals; (3) Overall, the IPCC default approach is the best accounting approach from the viewpoint of greater compatibility with, or integration across, the array of policy goals, although it does not address the issue of an increasing global carbon stock in HWP.  相似文献   

18.
19.
Demand for new environmental services from forests requires improved monitoring of these services at three scales: project-, regional-, and national-level. Most forest management activities are organized at the project scale, while the Framework Convention on Climate Change (FCCC) recognizes the nation as the party to the agreement. Hence, measurement and monitoring issues are emerging at the intersections of the project and national scales, referred to here as monitoring-domain edge effects. The following actions are necessary to improve existing monitoring capabilities and to help resolve project/national edge effects: (1) consensus on standard methods and protocols for monitoring mitigation activities, their off-site greenhouse gas (GHG) impacts, the fate of forest products and their relation to national GHG inventories (baselines); (2) a global program for collecting land use, land cover, biomass burning, and other data essential for national baselines; (3) the development of new nested-monitoring-domain methods that allow projects to be identified in national GHG inventories (baselines), and permit tracking of leakage of GHGs and wood product flows outside project boundary and over time; and (4) presentation of a set of credible, carefully designed, and well-documented forest mitigation activities that resolve most of the current issues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号