首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Monteagudo JM  Durán A 《Chemosphere》2006,65(7):1242-1248
The decoloration and mineralization of the azo dye orange II under conditions of artificial ultraviolet light and solar energy concentrated by a Fresnel lens in the presence of hydrogen peroxide and TiO(2)-P25 was studied. A comparative study to demonstrate the viability of this solar installation was done to establish if the concentration reached in the focus of the Fresnel lens was enough to improve the photocatalytic degradation reaction. The degradation efficiency was higher when the photolysis was carried out under concentrated solar energy irradiation as compared to UV light source in the presence of an electron acceptor such us H(2)O(2) and the catalyst TiO(2). The effect of hydrogen peroxide, pH and catalyst concentration was also determined. The increase of H(2)O(2) concentration until a critical value (14.7 mM) increased both the solar and artificial UV oxidation reaction rate by generating hydroxyl radicals and inhibiting the (e(-)/h(+)) pair recombination, but the excess of hydrogen peroxide decreases the oxidation rate acting as a radical or hole scavenger and reacting with TiO(2) to form peroxo-compounds, contributing to the inhibition of the reaction. The use of the response surface methodology allowed to fit the optimal values of the parameters pH and catalyst concentration leading to the total solar degradation of orange II. The optimal pH range was 4.5-5.5 close to the zero point charge of TiO(2) depending on surface charge of catalyst and dye ionization state. Dosage of catalyst higher than 1.1 gl(-1) decreases the degradation efficiency due to a decrease of light penetration.  相似文献   

2.
Fathima NN  Aravindhan R  Rao JR  Nair BU 《Chemosphere》2008,70(6):1146-1151
Catalytic wet hydrogen peroxide oxidation of an anionic dye has been explored in this study. Copper(II) complex of NN'-ethylene bis(salicylidene-aminato) (salenH2) has been encapsulated in super cages of zeolite-Y by flexible ligand method. The catalyst has been characterized by Fourier transforms infra red spectroscopy, X-ray powder diffractograms, Thermo-gravimetric and differential thermal analysis and nitrogen adsorption studies. The effects of various parameters such as pH, catalyst and hydrogen peroxide concentration on the oxidation of dye were studied. The results indicate that complete removal of color has been obtained after a period of less than 1h at 60 degrees C, 0.175M H2O2 and 0.3g l(-1) catalyst. More than 95% dye removal has been achieved using this catalyst for commercial effluent. These studies indicate that copper salen complex encapsulated in zeolite framework is a potential heterogeneous catalyst for removal of color from wastewaters.  相似文献   

3.
Chou S  Liao CC  Perng SH  Chang SH 《Chemosphere》2004,54(7):859-866
Our previous work applied a novel supported iron oxyhydroxide (FeOOH) catalyst to effectively treat benzoic acid by hydrogen peroxide. The FeOOH catalyst was prepared via the oxidation of Fe2+ by H2O2 in the acidic condition using a fluidized-bed crystallization reactor. The major components coated on the surface were identified as amorphous FeOOH and gamma-FeOOH. In terms of the crystallization conditions of FeOOH, some parameters including the operational pH, superficial velocity, specific iron loading, and influent H2O2 concentration were investigated to quantify their effects on the crystallization efficiency. All these parameters were found to significantly influence the crystallization efficiency. Two types of FeOOH catalysts were synthesized: FeOOH I was prepared at pH 3.5, and FeOOH II was formed by aging FeOOH I at pH 13. The percentages of surface amorphous FeOOH reduced from 70% to 30% after aging. The FeOOH II catalyst presented a higher reactivity toward H2O2 but lower stoichiometric efficiency in oxidizing benzoic acid than FeOOH I, similar to the result of the commercial goethite. Therefore, it is concluded that the crystalline property significantly affects the performance of catalytic oxidation.  相似文献   

4.
Fe^2+—H2O2氧化法处理氨基J酸工业废水的研究   总被引:13,自引:0,他引:13  
用Fe^2+-H2O2氧化法处理氨基J酸工业废水。结果表明,当溶液pH=1-3,H2O2和Fe^2+用量分别为H2O2:Fe^2+10:1,H2O2:CODCr=2g:g时,J酸废水的CODCr去除率达66.7%,氨基去除率达68.4%。处理后的废水BOD5/CODCr=0.5,已达到生化处理的要求。该法可作为氨基J酸废水的预处理方法。  相似文献   

5.
The effects of chloride, nitrate, perchlorate and sulfate ions on the rates of the decomposition of hydrogen peroxide and the oxidation of organic compounds by the Fenton's process have been investigated. Experiments were conducted in a batch reactor, in the dark at pH < or = 3.0 and at 25 degrees C. Data obtained from Fe(II)/H2O2 experiments with [Fe(II)]0/[H2O2]0 > or = 2 mol mol(-1), showed that the rates of reaction between Fe(II) and H2O2 followed the order SO4(2-) > ClO4(-) = NO3- = Cl-. For the Fe(III)/H2O2 process, identical rates were obtained in the presence of nitrate and perchlorate, whereas the presence of sulfate or chloride markedly decreased the rates of decomposition of H2O2 by Fe(III) and the rates of oxidation of atrazine ([atrazine]0 = 0.83 microM), 4-nitrophenol ([4-NP]0 = 1 mM) and acetic acid ([acetic acid]0 = 2 mM). These inhibitory effects have been attributed to a decrease of the rate of generation of hydroxyl radicals resulting from the formation of Fe(III) complexes and the formation of less reactive (SO4(*-)) or much less reactive (Cl2(*-)) inorganic radicals.  相似文献   

6.
研究了在120℃的反应温度下,H2O和SO2对V2O5-WO3/TiO2催化剂选择性催化氧化(SCO)NO的影响。结果表明,在H2O和SO2存在的情况下催化剂失活很快,停止通入H2O和SO2后活性不能恢复,但在加热到250℃后催化活性基本恢复。FT-IR分析表明,催化剂表面形成了金属硝酸盐和Ti的硫酸盐,对催化活性有一定影响,但不影响催化剂在250℃下催化活性的恢复。SO2、H2O和NO的竞争吸附与SO2和NO2的铅室反应是影响催化剂活性的主要原因。  相似文献   

7.
Salem IA  El-Maazawi MS 《Chemosphere》2000,41(8):1173-1180
The catalyzed kinetics of the oxidative mineralization of the cationic dye methylene blue, phenothiazonium, 3,7-bis(dimethylamino)-chloride, with hydrogen peroxide were studied both in buffered and unbuffered solutions. The supported alumina catalysts used were in the form of copper(II), cobalt(II), manganese(II), and nickel(II)-ions. Also, some copper(II)-complexes were used, e.g. copper(II)-ammine ([Cu(amm)4]2+), copper(II)-ethylenediamine ([Cu(en)2]2+) and copper(II)-monoethanolamine ([Cu(mea)2]2+). The reaction is first order with respect to methylene blue. On the other hand, the order with respect to hydrogen peroxide is concentration range dependent. This range depends strongly on the catalyst used. At lower [H2O2], the order was 1 which then decreases with increasing [H2O2] passing through 0 at the maximum rate and finally becomes negative. This phenomenon is parallel to the formation of a colored intermediate on the surface of the catalyst. This suggests that the intermediate has an inhibiting effect on the rate of color removal. Moreover, the rate of the reaction was found to be strongly dependent on the pH of the solution and its ionic strength. It increases with increasing both pH and the concentration of added potassium chloride. Also, the rate of reaction is inhibited in presence of sodium dodecylsulfate anionic surfactant. The repeated use of the different catalysts showed that their catalytic activities are almost unaffected. A reaction mechanism was proposed with the formation of free radicals as reactive intermediates.  相似文献   

8.
研究了微波辐射下,以负载于沸石上的三氧化二铋为催化剂,以双氧水为氧化剂的催化氧化体系处理硝基苯工艺。通过单因素实验法,从反应催化剂负载量、pH、双氧水用量、微波功率、反应时间、催化剂用量等方面初步考察了硝基苯在该体系中的催化氧化效果。在氧化铋负载量3%(质量比),pH=2,2 mL 30%双氧水,火力为中火,催化剂投加量为0.7 g,反应2 m in,对降解过程所得的中间产物和终产物进行了分析。结果表明,该体系对硝基苯的去除率能够达到99.2%,COD去除率为73.91%。  相似文献   

9.
Liou RM  Chen SH  Hung MY  Hsu CS 《Chemosphere》2004,55(9):1271-1280
Pentachlorophenol (PCP) is a wood preserving agent that is commonly found in contaminated soils at wood treatment sites. The catalytic properties of Fe+3-resin for the oxidation of PCP in aqueous solution and soil suspension with H2O2 were tested. Batch tests in aqueous solution were performed at various dosages of catalyst and H2O2, and reaction temperatures. The results showed that the oxidation of PCP in aqueous solution depends on the dose of H2O2 and the temperature. Essentially complete oxidation of 100 mgl(-1) PCP was obtained with 0.5% Fe+3-resin catalyst, 0.1 M H2O2 and at a reaction temperature of 80 degrees C. The oxidation of PCP achieved in three different soil suspensions was more than 94% within 30-50 min. Moreover, it was demonstrated that the same Fe+3-resin could be reused for at least six cycles of PCP oxidation in soil solutions without loss in efficiency unless the pH of the reaction falls below 5. It was proposed that the loss in used Fe+3-resin catalyst activity could be related to the leaching of Fe+3 at low pH.  相似文献   

10.
Gallard H  De Laat J 《Chemosphere》2001,42(4):405-413
The rates of degradation of 1,2,4-trichlorobenzene (TCB), 2,5-dichloronitrobenzene (DCNB), diuron and isoproturon by Fe(II)/H2O2 and Fe(III)/H2O2 have been investigated in dilute aqueous solution ([Organic compound]0 approximately 1 microM, at 25.0 +/- 0.2 degrees C and pH < or = 3). Using the relative rate method with atrazine as the reference compound, and the Fe(II)/H2O2 (with an excess of Fe(II)) and Fe(III)/H2O2 systems as sources of OH radicals, the rate constants for the reaction of OH* with TCB and DCNB were determined as (6.0 +/- 0.3)10(9) and (1.1 +/- 0.2)10(9) M(-1) s(-1). Relative rates of degradation of diuron and isoproturon by Fe(II)/H2O2 were about two times smaller in the absence of dissolved oxygen than in the presence of oxygen. These data indicate that radical intermediates are reduced back to the parent compound by Fe(II) in the absence of oxygen. Oxidation experiments with Fe(III)/H2O2 showed that the rate of decomposition of atrazine markedly increased in the presence of TCB and this increase has been attributed to a regeneration of Fe(II) by oxidation reactions of intermediates (radical species and dihydroxybenzenes) by Fe(III).  相似文献   

11.
采用低频超声与Fe-Ni-Mn/Al2O3催化剂协同降解偶氮染料酸性绿B模拟废水,考察染料初始浓度和pH值、催化剂、饱和气体及H2O2等因素对酸性绿B降解效果的影响,结果表明:催化剂Fe-Ni-Mn/Al2O3与低频超声存在协同效应,催化剂的最佳投加量为6g/L;酸性条件有利于染料的超声降解,当pH=3.8时,可取得最佳的降解效果;酸性绿B降解率随初始浓度的增大而降低,其优化初始浓度为100mg/L,此外,在反应体系中鼓入饱和气体也可促进酸性B的降解,且影响顺序为混合气体(air+Ar)〉氧气〉氩气;在反应过程中投加H2O2有利于染料降解率的提高。在优化实验条件下降解150min,酸性绿B色度去除率达到91.4%。  相似文献   

12.
The selective catalytic reduction (SCR) of NOx by C(2)H(5)OH was studied in excess oxygen over Ag/Al(2)O(3) catalysts with different Ag loadings at lab conditions. The 4% Ag/Al(2)O(3) has the highest activity for the C(2)H(5)OH-SCR of NOx with a drawback of simultaneously producing CO and unburned THC in effluent gases. An oxidation catalyst 10% Cu/Al(2)O(3) was directly placed after the Ag/Al(2)O(3) to remove CO and unburned THC. Washcoated honeycomb catalysts were prepared based on the 4% Ag/Al(2)O(3) and 10% Cu/Al(2)O(3) powders and tested for the C(2)H(5)OH-SCR of NOx on a diesel engine at the practical operating conditions. Compared with the Ag/Al(2)O(3) powder, the Ag/Al(2)O(3) washcoated honeycomb catalyst (SCR catalyst) has a similar activity for NOx reduction by C(2)H(5)OH and the drawback of increasing the CO and unburned THC emissions. Using the SCR+Oxi composite catalyst with the optimization of C(2)H(5)OH addition, the diesel engine completely meets EURO III emission standards.  相似文献   

13.
Carbon-coated TiO(2) modified by iron, were prepared from TiO(2) of anatase structure and PET modified by FeC(2)O(4). Catalysts were prepared by mixing powders of TiO(2) and modified PET and heating at different temperatures, from 400 to 800 degrees C under flow of Ar gas. High adsorption of phenol was observed on the catalyst heated at 400 degrees C, confirmed by FT-IR analysis. On this catalyst, fast rate of phenol decomposition was achieved by addition of small amount of H(2)O(2) to the reaction mixture. Phenol decomposition proceeded mainly through the direct oxidation of phenol species adsorbed on the catalyst surface due to the photo-Fenton reaction. Iron-modified carbon-coated TiO(2) catalysts heated at 500-800 degrees C showed almost no phenol adsorption or oxidation.  相似文献   

14.
Wang CH  Lin SS  Liou SB  Weng HS 《Chemosphere》2002,49(4):389-394
The CuO-MoO3/gamma-Al2O3 catalyst, confirmed previously as having good activity in the catalytic incineration of (CH3)2S2, was employed as the principal catalyst in this study. With the aim of improving catalyst activity and resistance to deactivation by sulfur compounds, a promoter was added either before adding the precursors of Cu and Mo or together with Cu and Mo onto the gamma-Al2O3. Promoters included transition metals and elements from groups IA-VIIA in the chemical periodic table. Experimental results reveal Cr2O3 as the most effective promoter, with an optimal composition of 5 wt.% Cu, 6 wt.% Mo and 4 wt.% Cr (designated as Cu(5)-Mo(6)-Cr(4)/gamma-Al2O3). Knowing that higher acidity can improve activity, we further investigated the effect of acid treatment on the performance of the Cu(5)-Mo(6)-Cr(4)/gamma-Al2O3 catalyst. Experimental results indicate the H2SO4-treated catalyst (Cu(5)-Mo(6)-Cr(4)/sulfated-gamma-Al2O3) has a better activity and durability. A study for finding an appropriate rate expression for the catalytic incineration of (CH3)2S2 by Cu(5)-Mo(6)-Cr(4)/sulfated-gamma-Al2O3 was carried out in a differential reactor. The results show that the Mars-Van Krevelen model is applicable to this destructive oxidation reaction. Results additionally reveal that competitive adsorption of CH4 reduces conversion of (CH3)2S2.  相似文献   

15.
采用低频超声与Fe-Ni-Mn/Al2O3催化剂协同降解偶氮染料酸性绿B模拟废水,考察染料初始浓度和pH值、催化剂、饱和气体及H2O2等因素对酸性绿B降解效果的影响,结果表明:催化剂Fe-Ni-Mn/Al2O3与低频超声存在协同效应,催化剂的最佳投加量为6 g/L;酸性条件有利于染料的超声降解,当pH=3.8时,可取得最佳的降解效果;酸性绿B降解率随初始浓度的增大而降低,其优化初始浓度为100 mg/L,此外,在反应体系中鼓入饱和气体也可促进酸性B的降解,且影响顺序为混合气体(air+Ar)>氧气>氩气;在反应过程中投加H2O2有利于染料降解率的提高.在优化实验条件下降解150 min,酸性绿B色度去除率达到91.4%.  相似文献   

16.
Lee JY  Kim SB  Hong SC 《Chemosphere》2003,50(8):1115-1122
Natural manganese ore (NMO) catalysts were characterized and tested in the selective catalytic oxidation of ammonia to nitrogen oxides under dilute conditions. Also, the oxidation of ammonia (NH(3)) was carried out using pure MnO(2), Mn(2)O(3) for comparing with the activity. It is found that the activity of NMO was similar to that of MnO(2) at low temperature below 150 degrees C but above this temperature, the activity of these catalysts showed the difference. In the course of NH(3) oxidation, N(2), NO, N(2)O and H(2)O were produced. But the quantity of NO(2) produced in this experiment was negligible. At temperature below 250 degrees C, selectivity into N(2) from NH(3) oxidation was in the order, NMO > MnO(2) > Mn(2)O(3). This is the reverse of activity of these manganese oxides. Also the characterization of NH(3) oxidation was proposed and supported by the effect of space velocity, inlet O(2) and NH(3) concentration. The increase of space velocity remarkably influenced not only the conversion but also selectivity into N(2). The higher the reaction temperature was, the higher the effect of inlet O(2) and NH(3) concentration on the reaction rate was. By introducing NO during NH(3) oxidation reaction, the possibility of NMO as selective catalytic reduction catalyst at low temperature was studied and showed positive results.  相似文献   

17.
Its is well known that in the biodesulfurization (BDS) process the low water solubility of sulfur compounds hinders its transference from the oil phase to the cells being the rate-limiting step in the metabolism of dibenzothiophenes (DBT). Thus sulfur compounds derivatives with high water solubility could be more easily transported increasing the BDS efficiency. The present work performed a stepwise evaluation of the enzymatic oxidation of DBT by horseradish peroxidase (HRP). Reactions were carried out in monophasic organic media containing 25% (v/v) acetonitrile. The following parameters were evaluated: DBT:H2O2 molar ratio (1:1-1:20); H2O2 addition mode (single or stepwise); pH (6.0-8.0) and temperature (37-50 degrees C). Best results were observed in a reaction medium at pH 8.0 presenting HRP 0.06IUml(-1), DBT 0.267mM, DBT:H2O2 molar ratio of 1:20 (stepwise hydrogen peroxide addition) and incubated at 45 degrees C for 60min. Under these conditions 60% of DBT was converted into dibenzothiophene sulfoxide (12%) and dibenzothiophene sulfone (46%). The DBT oxidation rate observed in this work, of 5mmolmin(-1)g(-1) of HRP, was 250-fold higher than the BDS rate, 20mumolmin(-1)g(-1) of catalyst. As such a combined enzyme-microbial desulfurization process could be envisaged. Products were determined by HPLC RP C-18.  相似文献   

18.
Liou RM  Chen SH  Hung MY  Hsu CS  Lai JY 《Chemosphere》2005,59(1):117-125
FeIII supported on resin as an effective catalyst for oxidation was prepared and applied for the degradation of aqueous phenol. Phenol was selected as a model pollutant and the catalytic oxidation was carried out in a batch reactor using hydrogen peroxide as the oxidant. The influent factors on oxidation, such as catalyst dosage, H2O2 concentration, pH, and phenol concentration were examined by considering both phenol conversion and chemical oxygen demand (COD) removal. The FeIII-resin catalyst possesses a high oxidation activity for phenol degradation in aqueous solution. The experimental results of this study show that almost 100% phenol conversion and over 80% COD removal can be achieved with the FeIII-resin catalyst catalytic oxidation system. A series of prepared resin were investigated for improving the oxidation efficiency. It was found that the reaction temperature and initial pH in solution significantly affected both of phenol conversion and COD removal efficiency. The activity of the catalyst significantly decreased at high pH, which was similar to the Fenton-like reaction mechanism. Results in this study indicate that the FeIII-resin catalytic oxidation process is an efficient method for the treatment of phenolic wastewater.  相似文献   

19.
Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation   总被引:21,自引:0,他引:21  
So CM  Cheng MY  Yu JC  Wong PK 《Chemosphere》2002,46(6):905-912
The photocatalytic oxidation (PCO) of a monoazo dye Procion Red MX-5B under various physico-chemical conditions was investigated. Degradation of the dye by PCO was enhanced by augmentation in UV intensity, titanium dioxide and hydrogen peroxide concentrations but was inhibited by increase in initial dye concentration. The PCO process was affected by pH in a peculiar way. In the presence of 100 mg/l of TiO2 and the absence of H2O2, the highest reaction rate was observed when the initial pH was 10. With 500 mg/l of TiO2 and 10 mM of H2O2, the reaction was the fastest at initial pH of 3-5. The optimal conditions for the degradation of the dye, at an UV intensity of 17 mW/cm2, were determined to be: TiO2 concentration, 500 mg/l; initial H2O2 concentration, 10 mM; initial pH, 5.0. Monitoring of TOC loss showed that the dye was mineralized by 90% within 80 min under these conditions. Nevertheless, the persistence of a low level of TOC indicated that mineralization was not complete and dead-end product(s) which was (were) resistant to PCO might have accumulated.  相似文献   

20.
Enhanced chemical oxidation of aromatic hydrocarbons in soil systems   总被引:5,自引:0,他引:5  
Kang N  Hua I 《Chemosphere》2005,61(7):909-922
Fenton's destruction of benzene, toluene, ethylbenzene, and xylene (BTEX) was investigated in soil slurry batch reactors. The purpose of the investigation was to quantify the enhancement of oxidation rates and efficiency by varying process conditions such as iron catalyst (Fe(II) or Fe(III); 2, 5, and 10mM), hydrogen peroxide (H2O2; 30, 150, 300 mM), and metal chelating agents (l-ascorbic acid, gallic acid, or N-(2-hydroxyethyl)iminodiacetic acid). Rapid contaminant mass destruction (97% after 3h) occurred in the presence of 300 mM H2O2 and 10 mM Fe(III). An enhanced removal rate (>90% removal after 15 min and 95% removal after 3h) was also observed by combining Fe(III), N-(2-hydroxyethyl)iminodiacetic acid and 300 mM H2O2. The observed BTEX mass removal rate constants (3.6-7.8 x 10(-4)s(-1)) were compared to the estimated rate constants (4.1-10.1 x 10(-3)s(-1)). The influence of non-specific oxidants loss (by reaction with iron hydroxides and soil organic matter) was also explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号