首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study aimed to assess how poor planning for irrigation led to heavy salt loads, how those salt loads adversely affected the environment, and how to identify management practices to deal with these potential problems in the Great Menderes River Basin, Aydin Plain Irrigation Scheme of Turkey for the period between 2000 and 2006. In order to determine the effects on the environment; electrical conductivity, salinity load, total amount of water table salinity, inflow and outflow salinity were measured and calculated for the research area. There was no problem on account of water table fluctuations. The mean of area prevented the plant growth by high water table was 8.5%. The percentage of the area occurring water table salinity problem was 39.2. The total amount of salt transported to the Great Menderes River and accumulated in the soil of the research area was 211,609 and 246,565 tones respectively. Salt, 458,174 tones in total, had adverse effects on the environment.  相似文献   

2.
Water environmental degradation is a major issue in the Heihe River Basin belonging to the inland river basin of temperate arid zone in northwestern China. Mankind’s activities, such as dense population and heavy dependence on irrigated agriculture, place immense pressure on available and limited water resources during the last century, especially the recent five decades. An investigation on the water environmental degradation in the Heihe River Basin and analysis of its causation were conducted. The results indicated that water environmental changes in the whole basin were tremendous mostly in the middle reaches, which reflected in surface water runoff change, decline of groundwater table and degeneration of surface water and groundwater quality. Some new forms of management based on traditional and scientific knowledge must be introduced to solve problems of water environmental degradation in the Heihe River Basin.  相似文献   

3.
Tuzla geothermal basin is situated in north-western Turkey on the Biga Peninsula, which is located at the west end of the Northern Anatolian Fault system. Soil and water samples were collected between August 2003 and June 2004 to initiate development of a geochemical profile of surface and subsurface waters in the geothermal basin and radionuclide concentrations in soils. All water samples were found to fall within Turkish Water Quality Class 4, meaning they were remarkably contaminated for any water consumption sector (industrial, human use or agricultural) based on sodium and chloride ions. Such waters could be used only after appropriate water treatment. The water samples are of the chloride type in terms of geochemical evaluation. Preliminary geochemical evidence shows that the N-S flowing part of the Tuzla River acts as a natural barrier within the basin. Heavy metal concentrations in the soil samples show slight elevations, especially those obtained from the east part of the basin where thermal springs are dominant. Geochemical calculations were carried out with PHREEQC software to determine equilibrium concentration of chemical species and saturation indices, by which it is suggested that chloride is the most important ligand to mobilize the heavy metals in the studied system. In addition, the activity concentration and gamma-absorbed dose rates of the terrestrial naturally occurring radionuclides were determined in the soil using gamma-ray spectrometry. The soil activity ranged from 42.77 to 988.66 Bq kg(-1) (averaging 138 Bq kg(-1)) for ( 238 )U, 13.27 to 106.31 Bq kg(-1) (averaging 32.42 Bq kg(-1)) for ( 232 )Th, and 99.28 to 935.36 Bq kg(-1) (averaging 515.44 Bq kg(-1)) for ( 40 )K. The highest value of ( 238 )U was found in the soil samples obtained from an area close to the hot spring.  相似文献   

4.
Groundwater recharge and available groundwater resources in Chithar River basin, Tamil Nadu, India spread over an area of 1,722 km2 have been estimated by considering various hydrological, geological, and hydrogeological parameters, such as rainfall infiltration, drainage, geomorphic units, land use, rock types, depth of weathered and fractured zones, nature of soil, water level fluctuation, saturated thickness of aquifer, and groundwater abstraction. The digital ground elevation models indicate that the regional slope of the basin is towards east. The Proterozoic (Post-Archaean) basement of the study area consists of quartzite, calc-granulite, crystalline limestone, charnockite, and biotite gneiss with or without garnet. Three major soil types were identified namely, black cotton, deep red, and red sandy soils. The rainfall intensity gradually decreases from west to east. Groundwater occurs under water table conditions in the weathered zone and fluctuates between 0 and 25 m. The water table gains maximum during January after northeast monsoon and attains low during October. Groundwater abstraction for domestic/stock and irrigational needs in Chithar River basin has been estimated as 148.84 MCM (million m3). Groundwater recharge due to monsoon rainfall infiltration has been estimated as 170.05 MCM based on the water level rise during monsoon period. It is also estimated as 173.9 MCM using rainfall infiltration factor. An amount of 53.8 MCM of water is contributed to groundwater from surface water bodies. Recharge of groundwater due to return flow from irrigation has been computed as 147.6 MCM. The static groundwater reserve in Chithar River basin is estimated as 466.66 MCM and the dynamic reserve is about 187.7 MCM. In the present scenario, the aquifer is under safe condition for extraction of groundwater for domestic and irrigation purposes. If the existing water bodies are maintained properly, the extraction rate can be increased in future about 10 % to 15 %.  相似文献   

5.
Secondary salinization of intensively irrigated lands is an increasingly alarming redesertification process experienced in many irrigated regions of the developed countries. The major cause is a profound interference in the geochemical/salt balances of irrigated regions. A case-in-point is the recent salinization of the Yizre'el Valley, a 20,000 ha intensively irrigated region in Israel. The extremely intensive and advanced agroecosystem developed in the region since the 1940s included pumping and importing irrigation water by the National Water Carrier, large-scale reclamation and reuse of municipal sewage water, winter flood impoundment in reservoirs for summer irrigation, and cloud seeding to enhance rainfall. Modern irrigation methods were applied, including sprinkler, trickle, moving-line, and center-pivot systems. Water use efficiency at any level was very high. Nevertheless, large-scale salinization of regional water resources and many fields had developed in the mid-1980s. Reconstructing and evaluating the water and salt balances of the Yizre'el Valley (using Cl as the representative salt constituent) shows that as water use in the valley increased to about 60 million m3 per year, the importing of soluble salts by water totaled 15,000 tons of Cl per year. Recirculated salt — salt picked up by impounded surface water and applied to fields — increased significantly and in the late 1980s amounted to more than 9,000 tons Cl per year. The source of recirculated salts was the accumulated salts in soils and in the shallow aquifer in the valley, which were leached by floodwater or drained or infiltrated into reservoirs, grossly and adversely affecting water quality. Analysis of the Yizre'el Valley's case points to the utmost importance of maintaining the geochemical balances in addition to increasing irrigation efficiency. An irrigated region may achieve geochemical balance by the following means: limiting the extent of irrigated areas, developing a well-maintained drainage system that drains tail-water and salinized shallow-aquifer water, and devoting a significant portion of water for regional leaching. The sustained long-term productivity of irrigated lands in arid zones crucially depends on correctly managing water and soil resources. Regional management of irrigated lands to prevent secondary desertification will be aimed at carefully balancing the undisputed benefits of irrigation with the long-term (on time scales of 10 to 100 years) detrimental processes set in motion when irrigation is introduced to arid and semiarid zone soils.  相似文献   

6.
In this study, the effects of various agro-industrial wastes were investigated when applied to soil alone or in combination with chemical fertilizers, regarding the risks of boron and heavy metal pollution of soils and plants. Nine combinations of production residues from various agro-industries, urban wastes, and mineral fertilizers were applied to potatoes in a field experiment. The content of available boron in the soil differed significantly (p < 0.05) among the applications. Generally, B values were found to be slightly higher when soapstock, prina, and blood were used alone or in combination. Although total Co, Cd, and Pb contents of soils showed no significant differences between the applications, Cr content differed significantly (p < 0.05). No pollution risk was observed in soil in respect to total Co, Cd, Pb, and Cr contents. The amount of boron and heavy metals in leaves showed no significant differences among the applications. Cobalt, Cd, and Pb in leaves were at normal levels whereas Cr was slightly above normal but well under the critical level. Boron was low in tubers and varied significantly between applications such as Co and Cd. The Co content of tubers was high, Cd and Cr contents were below average, and Pb content was between the given values. Some significant correlations were found between soil characteristics and the boron and heavy metal content of soil, leaves, and tubers.  相似文献   

7.
Irrigation return flows (IRF) are a major contributor of non-point source pollution to surface and groundwater. We evaluated the effects of irrigation on stream hydrochemistry in a Mediterranean semi-arid catchment (Flumen River, NE Spain). The Flumen River was separated into two zones based on the intensity of irrigation activities in the watershed. General linear models were used to compare the two zones. Relevant covariables (urban sewage, pig farming, and gypsum deposits in the basin) were quantified with the help of geographic information system techniques, accompanied by ground-truthing. High variability of the water quality parameters and temporal dynamics caused by irrigation were used to distinguish the two river reaches. Urban activity and livestock farming had a significant effect on water chemistry. An increase in the concentration of salts (240–541 μS·cm???1 more in winter) and nitrate (average concentrations increased from 8.5 to 20.8 mg·l???1 during irrigation months) was associated with a higher level of IRF. Those river reaches more strongly influenced by urban areas tended to have higher phosphorus (0.19–0.42 mg·l???1 more in winter) concentrations. These results support earlier research about the significant consequences to water quality of both urban expansion and intensive agricultural production in arid and semi-arid regions. Data also indicate that salinization of soils, subsoils, surface water, and groundwater can be an unwelcome result of the application of pig manure for fertilization (increase in sodium concentration in 77.9 to 138.6 mg·l???1).  相似文献   

8.
Soil water content is a key property in the study of water available for plants, infiltration, drainage, hydraulic conductivity, irrigation, plant water stress and solute movement. However, its measurement consumes time and, in the case of stony soils, the presence of stones difficult to determinate the water content. An alternative is the use of pedotransfer functions (PTFs), as models to predict these properties from readily available data. The present work shows a comparison of different widely used PTFs to estimate water content at-33 kPa (WR-33kPa) in high stoniness soils. The work was carried out in the Caramacate River, an area of high interest because the frequent landslides worsen the quality of drinking water. The performance of all evaluated PTFs was compared with a PTF generated for the study area. Results showed that the Urach’s PTF presented the best performance in relation to the others and could be used to estimate WR-33kPa in soils of Caramacate River basin. The calculated PTFs had a R2 of 0.65. This was slightly higher than the R2 of the Urach’s PTF. The inclusion of the rock fragment volume could have the better results. The weak performance of the other PTFs could be related to the fact that the mountain soils of the basin are rich in 2:1 clay and high stoniness, which were not used as independent variables for PTFs to estimate the WR-33kPa.  相似文献   

9.
This paper gives an account of the implementation of a decision support system for assessing aquifer pollution hazard and prioritizing subwatersheds for groundwater resources management in the southeastern Pampa plain of Argentina. The use of this system is demonstrated with an example from Dulce Stream Basin (1,000 km2 encompassing 27 subwatersheds), which has high level of agricultural activities and extensive available data regarding aquifer geology. In the logic model, aquifer pollution hazard is assessed as a function of two primary topics: groundwater and soil conditions. This logic model shows the state of each evaluated landscape with respect to aquifer pollution hazard based mainly on the parameters of the DRASTIC and GOD models. The decision model allows prioritizing subwatersheds for groundwater resources management according to three main criteria including farming activities, agrochemical application, and irrigation use. Stakeholder participation, through interviews, in combination with expert judgment was used to select and weight each criterion. The resulting subwatershed priority map, by combining the logic and decision models, allowed identifying five subwatersheds in the upper and middle basin as the main aquifer protection areas. The results reasonably fit the natural conditions of the basin, identifying those subwatersheds with shallow water depth, loam–loam silt texture soil media and pasture land cover in the middle basin, and others with intensive agricultural activity, coinciding with the natural recharge area to the aquifer system. Major difficulties and some recommendations of applying this methodology in real-world situations are discussed.  相似文献   

10.
The review analysis of twenty two irrigation efficiency (IE) studies carried out in the Ebro River Basin shows that IE is low (average IE)avg(= 53%) in surface-irrigated areas with high-permeable and shallow soils inadequate for this irrigation system, high (IE)avg(= 79%) in surface-irrigated areas with appropriate soils for this system, and very high (IE)avg(= 94%) in modern, automated and well managed sprinkler-irrigated areas. The unitary salt (total dissolved solids) and nitrate loads exported in the irrigation return flows (IRF) of seven districts vary, depending on soil salinity and on irrigation and N fertilization management, between 3–16 Mg salt/ha⋅ year and 23–195 kg NO)3 -N/ha⋅ year, respectively. The lower nitrate loads exported from high IE districts show that a proper irrigation design and management is a key factor to reduce off-site nitrogen pollution. Although high IE’s also reduce off-site salt pollution, the presence of salts in the soil or subsoil may induce relatively high salt loads (≥14 Mg/ha⋅ year) even in high IE districts. Two important constrains identified in our revision were the short duration of most surveys and the lack of standards for conducting irrigation efficiency and mass balance studies at the irrigation district level. These limitations {emphasize the need for the establishment of a permanent and standardized network of drainage monitoring stations for the appropriate off-site pollution diagnosis and control of irrigated agriculture.  相似文献   

11.
近几十年来,随着全球气候的变化和社会经济的发展,受筑坝建闸、河道断流、水质恶化、酷渔滥捕、人工引种、海水入侵、调水调沙等因素影响,黄河流域水生生物多样性及资源量呈下降趋势。在目前流域内多目标同步推进的要求下,黄河流域生态保护和高质量发展正不断面临新的挑战。通过分析黄河流域水生生物多样性和资源量在时空分布上的演变规律,明确了是水资源短缺、工程建设、水环境恶化等因素的共同作用导致了黄河流域的水生态危机。基于绿色生态、高质量发展的科学管理理念,提出了新时代黄河流域水文-环境-生态协同保护与修复的发展策略,为促进黄河流域水资源保护和生态系统可持续发展提供数据支持与理论参考。  相似文献   

12.
This environmetric study deals with the interpretation of river water monitoring data from the basin of the Buyuk Menderes River and its tributaries in Turkey. Eleven variables were measured to estimate water quality at 17 sampling sites. Factor analysis was applied to explain the correlations between the observations in terms of underlying factors. Results revealed that, water quality was strongly affected from agricultural uses. Cluster analysis was used to classify stations with similar properties and results distinguished three groups of stations. Water quality at downstream of the river was quite different from the other part. It is recommended to involve the environmetric data treatment as a substantial procedure in assessment of water quality data.  相似文献   

13.
The Songhua River is the third largest river in China and the primary source of drinking and irrigation water for northeastern China. The distribution of 16 priority polycyclic aromatic hydrocarbons (PAHs) in water [dissolved water (DW) and suspended particulate matter (SPM)], sediment, and soil in the river basin was investigated, and the associated risk of cancer from these PAHs was also assessed. The total concentration of PAHs ranged from 13.9 to 161 ng L?1 in DW, 9.21 to 83.1 ng L?1 in SPM, 20.5 to 632 ng g?1 dw (dry weight) in sediment, and from 30.1 to 870 ng g?1 dw in soil. The compositional pattern of PAHs indicated that three-ring PAHs were predominant in DW and SPM samples, while four-ring PAHs dominated in sediment and soil samples. The spatial distribution of PAHs revealed some site-specific sources along the river, with principal component analysis indicating that these were from pyrogenic sources (such as coal and biomass combustion, and vehicle emissions) and coke oven emission distinguished as the main source of PAHs in the Songhua River Basin. Based on the ingestion of PAH-contaminated drinking water from the Songhua River, cancer risk was quantitatively estimated by combining the Incremental Lifetime Cancer Risk assessment model and BaP-equivalent concentration for five age groups of people (adults, teenagers, children, toddlers, and infants). Overall, the results suggest that the estimated integrated lifetime cancer risk for all groups was in acceptable levels. This study is the first attempt to provide information on the cancer risk of PAHs in drinking water from the Songhua River.  相似文献   

14.
黑龙江流域地处世界三大黑土区之一的中国东北平原,土壤腐殖质含量高,这些腐殖质随着地面径流进入水体,成为流域溶解性有机物(DOM)的自然本底(环境背景)。自然本底的存在导致流域水质有机污染综合指标不能真实反映流域的人为污染,流域背景区内高锰酸盐指数、化学需氧量背景值范围分别为3.0~11.7、14.3~40.5 mg/L。流域部分水质考核断面水质受到有机质背景值的影响。由于叠加人为污染,定量分析高锰酸盐指数、化学需氧量背景值范围存在很大难度。重金属元素相对稳定,相对于"六五"时期重金属背景值,目前水体中重金属含量普遍升高。结合水环境管理需求,背景值研究成果应用于水环境管理还需要进一步深入研究和实践。笔者在综述黑龙江流域水环境背景值研究基础上,总结目前存在的问题,提出水环境背景值研究建议,为科学客观评价流域水质提供参考。  相似文献   

15.
采用遥感分布式面源污染评估模型(DPeRS),对2018年黄河流域(甘肃段)面源污染空间分布特征进行分析,具体包括多类型污染量产排特征解析和流域优先管控单元识别。结果表明,污染量上,2018年黄河流域(甘肃段)总氮(TN)、总磷(TP)、氨氮(NH3-N)、化学需氧量(CODCr)的面源污染排放负荷分别为65.6,11.8,19.1和77.2 kg/km2,入河量分别为836.7,33.3,220.2和1 353.3 t;空间分布上,氮型(TN和NH3-N)排放负荷高值区主要分布在流域中部和东部局部地区,流域大部分地区TP排放负荷均较高,CODCr面源污染排放负荷高值区分布较为零散。与排放负荷相比,黄河流域(甘肃段)面源污染入河负荷并不突出,这与该地区水资源量少有密切关系。筛选出黄河流域(甘肃段)面源污染优先控制单元15个,面积占比为85.2%,I类优控单元主要分布在庆阳市、天水市、兰州市和白银市等地区,II类优控单元主要分布在甘南藏族自治州,且TN、TP、NH3-N和CODCr面源污染优控单元识别结果的平均精度达到80%。  相似文献   

16.
根据昆明市环境监测中心2004~2008年连续5年对昆明辖区牛栏江流域河道及库区水质监测的结果,对牛栏江-滇池补水工程昆明辖区流域的水环境质量现状进行了分析研究,探讨了该流域段水污染的时空分布,就此提出水污染防治对策措施建议.  相似文献   

17.
为科学评价黄河流域的水质状况及工业企业污染源现状,根据黄河流域2018—2019年地表水和饮用水水源地水质监测数据,建立了综合反映流域水环境质量和可定量分析排名的城市水质指数;利用大数据技术分析工业企业水污染物排放数据,研究建立了企业环境信用动态评价体系。研究结果表明:2018—2019年,黄河流域城市水环境质量得到一定程度的改善,城市地表水环境质量优和良等级数量从17个增加到19个,饮用水水源地优等级城市数量从7个增加到11个;但黄河流域中游地区水污染问题较为严重,需要重点加强水污染控制。水质污染主要以点源工业污染为主,COD和氨氮排放量较多,COD和氨氮年日均排放浓度平均值分别为51.1、3.1 mg/L,工业废水处理率偏低;山西、陕西、河南等"高"风险企业数量较多,分别达到3 047、1 630、1 442家。建议加强黄河流域上下游、左右岸、干支流协同配合,加大水污染防治工作的深度和力度。  相似文献   

18.
通过对北京市通州污灌区土壤现状调查与蔬菜重金属污染监测,结合土壤环境质量标准、食品卫生标准及污灌区污染历史,分析对比该区土壤和蔬菜重金属污染状况及其变化。结果表明,本次监测通州污灌区土壤中重金属平均含量均达到土壤环境质量标准(GB15618-1995)中二级标准限量。对照土壤中的重金属Cu、Pb、Cr、Cd和As均达到土壤一级标准。凉水河两岸和通惠北干渠中重金属含量均高于对照土壤,说明污灌区污水灌溉已使土壤受到一定程度的污染。与二十世纪70年代末监测结果相比,土壤中多数重金属含量处于上升趋势。污灌区蔬菜重金属含量监测结果表明,其含量水平均达到食品卫生标准,说明污灌区蔬菜尚未受到严重污染。  相似文献   

19.
水生态监测能够为水生态环境监督、管理和保护提供重要的数据和技术支撑。加强黄河水生态监测,维护流域水生态系统健康,对促进黄河流域高质量发展具有重要意义。从常规水质监测、生境监测和生物监测3个方面,分析了中国水生态监测方法的研究进展及在黄河流域的应用实践。结合黄河流域水生态监测尤其是生物监测相对滞后的现状,探讨了流域水生态监测的发展方向。建议加快黄河流域水生态监测能力建设,建立适用于黄河流域的水生态监测与评价标准体系,探索新兴监测技术与传统技术的有机结合。  相似文献   

20.
The relationships between soils attributes, soil carbon stocks and vegetation carbon stocks are poorly know in Amazonia, even at regional scale. In this paper, we used the large and reliable soil database from Western Amazonia obtained from the RADAMBRASIL project and recent estimates of vegetation biomass to investigate some environmental relationships, quantifying C stocks of intact ecosystem in Western Amazonia. The results allowed separating the western Amazonia into 6 sectors, called pedo-zones: Roraima, Rio Negro Basin, Tertiary Plateaux of the Amazon, Javari-Juruá-Purus lowland, Acre Basin and Rondonia uplands. The highest C stock for the whole soil is observed in the Acre and in the Rio Negro sectors. In the former, this is due to the high nutrient status and high clay activity, whereas in the latter, it is attributed to a downward carbon movement attributed to widespread podzolization and arenization, forming spodic horizons. The youthful nature of shallow soils of the Javari-Juruá-Purus lowlands, associated with high Al, results in a high phytomass C/soil C ratio. A similar trend was observed for the shallow soils from the Roraima and Rondonia highlands. A consistent east–west decline in biomass carbon in the Rio Negro Basin sector is associated with increasing rainfall and higher sand amounts. It is related to lesser C protection and greater C loss of sandy soils, subjected to active chemical leaching and widespread podzolization. Also, these soils possess lower cation exchangeable capacity and lower water retention capacity. Zones where deeply weathered Latosols dominate have a overall pattern of high C sequestration, and greater than the shallower soils from the upper Amazon, west of Madeira and Negro rivers. This was attributed to deeper incorporation of carbon in these clayey and highly pedo-bioturbated soils. The results highlight the urgent need for refining soil data at an appropriate scale for C stocks calculations purposes in Amazonia. There is a risk of misinterpreting C stocks in Amazonia when such great pedological variability is not taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号