首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
During the last 50 years nitrate concentrations in Buttermere and Wastwater (Cumbria, UK) have risen significantly, by 70 and 100%, respectively. By estimating contemporary nitrate fluxes in the lakes' catchments and in sub-catchments and comparing them with the fractional areas of different soil types, it is deduced that the surface water nitrate is derived almost entirely from organic-rich ranker soils that have a limited ability to retain atmospherically-deposited nitrogen. Little or no nitrate leaches from the other major soil type, a brown podzol, despite it having a lower C:N ratio (12.0 g g(-1)) than the ranker (17.0 g g(-1)), nor is there much contribution from the small areas of improved (chemically fertilised) grassland within the catchments. Although some nitrate leaching is occurring, total N losses are appreciably smaller than atmospheric inputs, so the catchment soils are currently accumulating between 3 and 4 g N m(-2) a(-1).  相似文献   

2.
Nitrate leaching can be reduced by the adoption of less intensive grassland systems which, though requiring a greater land area to achieve the same agricultural output, result in less nitrate leaching per unit of production than do intensively managed grasslands. The economic penalties associated with reductions in output can be partly offset by greater reliance on symbiotic nitrogen fixation and the use of clover-based swards in place of synthetic N fertilisers. Alternatively, specific measures can be adopted to improve the efficiency of nitrogen use in intensively managed systems in order to maintain high outputs but with reduced losses. Controls should take account of other forms of loss and flows of nitrogen between grassland and other components of the whole-farm system and, in most instances, should result in an overall reduction in nitrogen inputs. Removing stock from the fields earlier in the grazing season will reduce the accumulation of high concentrations of potentially leachable nitrate in the soil of grazed pastures but will increase the quantity of manure produced by housed animals and the need to recycle this effectively. Supplementing grass diets with low-nitrogen forages such as maize silage will reduce the quantity of nitrogen excreted by livestock but may increase the potential for nitrate leaching elsewhere on the farm if changes to cropping patterns involve more frequent cultivation of grassland. Improved utilisation by the sward of nitrogen in animal excreta and manures and released by mineralisation of soil organic matter will permit equivalent reductions to be made in fertiliser inputs, provided that adequate information is available about the supply of nitrogen from these non-fertiliser sources.  相似文献   

3.
Yu Q  Chen Y  Ye X  Zhang Q  Zhang Z  Tian P 《Chemosphere》2007,67(5):872-878
The application of nitrogen fertilizers leads to various ecological problems such as nitrate leaching. The use of nitrification inhibitors (NI) as nitrate leaching retardants is a proposal that has been suggested for inclusion in regulations in many countries. In this study, the efficacy of the new NI, 3,4-dimethyl pyrazole phosphate (DMPP), was tested under simulated high-risk leaching situations in two types of undisturbed soil columns. The results showed that the accumulative leaching losses of soil nitrate under treatment of urea with 1.0% DMPP, from columns of silt loam soil and heavy clay soil, were 66.8% and 69.5% lower than those soil columns tested with regular urea application within the 60 days observation, respectively. However, the losses of ammonium leaching were reversely increased 9.7% and 6.7% under the former treatment than the latter one. Application of regular urea with 1.0% DMPP addition can reduce about 59.3%-63.1% of total losses of inorganic nitrogen via leaching. The application of DMPP to urea had stimulated the inhibition effects of DMPP on the ammonium nitrification process in the soil up to 60 days. It is proposed that the DMPP could be used as an effective NI to control inorganic N leaching losses, minimizing the risk of nitrate pollution in shallow groundwater.  相似文献   

4.
Mendoza C  Assadian NW  Lindemann W 《Chemosphere》2006,63(11):1933-1941
The determination of nitrogen (N) based loading rates for land application of biosolids is challenging and site specific. Over loading may contribute to environmental, agricultural, or human health problems. The objective of this study was to monitor N mineralization and losses in a moderately alkaline and calcareous desert soil amended with either anaerobically digested (AN) or lime-stabilized (LS) biosolids, and irrigated with and without urea enriched water. For Experiment 1, N inputs, leaching and residuals in soil were evaluated in an open soil column system. For Experiment 2, ammonia (NH3) emissions were evaluated in a closed soil column system. In Experiment 1, AN and LS biosolids increased soil ON (organic N) by three and two fold, respectively. Respective net N mineralization of ON from biosolids alone was 90% and 62% without urea, and 71% and 77%, respectively with added urea. Nitrogen leaching losses and residuals in amended soil did not account for all N inputs into the soil/biosolids system. In Experiment 2, NH3 emissions were not significantly different among treated soils with or without added urea, except LS amended soil receiving urea. Ammonia losses did not account for unaccounted N in Experiment 1. We concluded that deep placement and rapid mineralization of AN biosolids promoted anaerobic soil conditions and denitrification, in addition to the high denitrification potential of desert soil. LS biosolids showed greater potential than AN biosolids for safe and beneficial land application to desert soils regardless of biosolids placement and the inclusion of N rich irrigation water.  相似文献   

5.
Nitrate and water supplies in the United Kingdom   总被引:9,自引:0,他引:9  
Nitrate concentrations in UK waters are rising, with the highest levels occurring in the south and east of England, particularly Lincolnshire, Cambridgeshire and East Anglia. The source of the nitrate is arable agriculture where intensification in the last few decades has increased nitrate leaching from soils into both surface and underground waters. Concentrations in underground waters are expected to reach 150 to 200 mg litre(-1) nitrate (i.e. NO(3)) in the future, if agricultural losses remain stable. No widespread environmental deterioration due to nitrate has been observed in rivers or lakes. Excessive concentrations of nitrate in drinking waters can cause methaemoglobinaemia (blue-baby syndrome) in bottle-fed infants and the government Chief Medical Officer has recommended that a maximum concentration of 100 mg litre(-1) is appropriate for public water supplies in the UK. This level has not been exceeded in public water supplies in the UK, but maintaining it has cost approximately 15m pounds in borehole replacement and arrangements to blend high and low nitrate waters. Future capital costs are estimated as 37m pounds over the next 20 years. The European Economic Community (EEC) Drinking Water Directive (80/778/EEC) sets a maximum admissible concentration of 50 mg litre(-1) nitrate. Adherence to this standard will cost 199m pounds over the same period.  相似文献   

6.
Dairy farms comprise a complex landscape of groundwater pollution sources. The objective of our work is to develop a method to quantify nitrate leaching to shallow groundwater from different management units at dairy farms. Total nitrate loads are determined by the sequential calibration of a sub-regional scale and a farm-scale three-dimensional groundwater flow and transport model using observations at different spatial scales. These observations include local measurements of groundwater heads and nitrate concentrations in an extensive monitoring well network, providing data at a scale of a few meters and measurements of discharge rates and nitrate concentrations in a tile-drain network, providing data integrated across multiple farms. The various measurement scales are different from the spatial scales of the calibration parameters, which are the recharge and nitrogen leaching rates from individual management units. The calibration procedure offers a conceptual framework for using field measurements at different spatial scales to estimate recharge N concentrations at the management unit scale. It provides a map of spatially varying dairy farming impact on groundwater nitrogen. The method is applied to a dairy farm located in a relatively vulnerable hydrogeologic region in California. Potential sources within the dairy farm are divided into three categories, representing different manure management units: animal exercise yards and feeding areas (corrals), liquid manure holding ponds, and manure irrigated forage fields. Estimated average nitrogen leaching is 872 kg/ha/year, 807 kg/ha/year and 486 kg/ha/year for corrals, ponds and fields respectively. Results are applied to evaluate the accuracy of nitrogen mass balances often used by regulatory agencies to assess groundwater impacts. Calibrated leaching rates compare favorably to field and farm scale nitrogen mass balances. These data and interpretations provide a basis for developing improved management strategies.  相似文献   

7.
Goal, Scope and Background Transport of P from agricultural land contributes to the eutrophication of surface waters. Soil amendment is considered one of the best management practices (BMPs) to reduce P loss from sandy soils. Laboratory column leaching experiments were conducted to evaluate the effectiveness of different soil amendments in reducing P leaching from a typical sandy soil in Florida. Methods The tested amendments were CaCl2, CaCO3, Al(OH)3, cellulose, and mill mud, and applied at the rate of 15 g/kg for a single amendment and each 7.5 g/kg if two amendments were combined. Leaching was conducted every four days for 32 days, 250 mL of deionized water being leached for each column per leaching event. Leachates were collected from each leaching event and analyzed for reactive P, PO4-P, and macro and micro-elements. Results and Discussion Except for the soils amended with CaCl2, or CaCl2+CaCO3, reactive P and PO4-P leaching losses mainly occurred in the first three leaching events. Phosphorus leaching from the soils amended with CaCl2 or CaCl2+CaCO3 was less but more persistent than that of other amendments. Reactive Pleaching loss was reduced by 36.0% and 40.4% for the amendments of CaCl2, and CaCl2+CaCO3, respectively, as compared with chemical fertilizer alone, and the corresponding values for PO4-P were 70.8% and 71.9%. The concentrations of K, Mg, Cu, and Fe in leachate were also decreased by CaCl2 or CaCl2+CaCO3 amendment. Among the seven amendments, CaCl2, CaCO3, or their combination were most effective in reducing P leaching from the sandy soil, followed by cellulose and Al(OH)3, the effects of mill mud and mill mud + Al(OH)3 were marginal. Conclusions These results indicate that the use of CaCl2, CaCO3, or their combination can significantly reduce P leaching from sandy soil, and should be considered in the development of BMPs for the sandy soil regions. Recommendations and Outlook Most agricultural soils in south Florida are very sandy with minimal holding capacities for moisture and nutrients. Repeated application of fertilizer is necessary to sustain desired yield of crops on these soils. However, eutrophication of fresh water systems in this area has been increasingly concerned by the public. Losses of P from agricultural fields by means of leaching and surface runoff are suspected as one of the important non-point contamination sources. The benefits and effectiveness of soil amendment in reducing P losses from cropping production systems while sustaining desired crop yield need to be demonstrated. Calcium chloride, CaCO3, or their combination significantly reduce Pleaching from sandy soil, and should be considered in the development of BMPs for the sandy soil regions.  相似文献   

8.
《Chemosphere》2013,90(11):1467-1471
When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants or microbes, as well as to the question of whether biochar soil amendment may enhance or reduce the leaching of nutrients. In this work, a range of laboratory experiments were conducted to determine the effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. A total of thirteen biochars were tested in laboratory sorption experiments and most of them showed little/no ability to sorb nitrate or phosphate. However, nine biochars could remove ammonium from aqueous solution. Biochars made from Brazilian pepperwood and peanut hull at 600 °C (PH600 and BP600, respectively) were used in a column leaching experiment to assess their ability to hold nutrients in a sandy soil. The BP600 biochar effectively reduced the total amount of nitrate, ammonium, and phosphate in the leachates by 34.0%, 34.7%, and 20.6%, respectively, relative to the soil alone. The PH600 biochar also reduced the leaching of nitrate and ammonium by 34% and 14%, respectively, but caused additional phosphate release from the soil columns. These results indicate that the effect of biochar on the leaching of agricultural nutrients in soils is not uniform and varies by biochar and nutrient type. Therefore, the nutrient sorption characteristics of a biochar should be studied prior to its use in a particular soil amendment project.  相似文献   

9.
When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants or microbes, as well as to the question of whether biochar soil amendment may enhance or reduce the leaching of nutrients. In this work, a range of laboratory experiments were conducted to determine the effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. A total of thirteen biochars were tested in laboratory sorption experiments and most of them showed little/no ability to sorb nitrate or phosphate. However, nine biochars could remove ammonium from aqueous solution. Biochars made from Brazilian pepperwood and peanut hull at 600 °C (PH600 and BP600, respectively) were used in a column leaching experiment to assess their ability to hold nutrients in a sandy soil. The BP600 biochar effectively reduced the total amount of nitrate, ammonium, and phosphate in the leachates by 34.0%, 34.7%, and 20.6%, respectively, relative to the soil alone. The PH600 biochar also reduced the leaching of nitrate and ammonium by 34% and 14%, respectively, but caused additional phosphate release from the soil columns. These results indicate that the effect of biochar on the leaching of agricultural nutrients in soils is not uniform and varies by biochar and nutrient type. Therefore, the nutrient sorption characteristics of a biochar should be studied prior to its use in a particular soil amendment project.  相似文献   

10.
Nitrogen leaching from boreal and temporal forests, where normally most of the nitrogen is retained, has the potential to increase acidification of soil and water and eutrophication of the Baltic Sea. In parts of Sweden, where the nitrogen deposition has been intermediate to high during recent decades, there are indications that the soils are close to nitrogen saturation. In this study, four different approaches were used to assess the risk of nitrogen leaching from forest soils in different parts of Sweden. Nitrate concentrations in soil water and C:N ratios in the humus layer where interpreted, together with model results from mass balance calculations and detailed dynamic modelling. All four approaches pointed at a risk of nitrogen leaching from forest soils in southern Sweden. However, there was a substantial variation on a local scale. Basing the assessment on four different approaches makes the assessment robust.  相似文献   

11.
Yu QG  Chen YX  Ye XZ  Tian GM  Zhang ZJ 《Chemosphere》2007,69(5):825-831
The application of nitrogen fertilizers leads to various ecological problems such as nitrate leaching. The use of nitrification inhibitors as nitrate leaching retardants is a proposal that has been suggested for inclusion in regulations in many countries. In this study, using a multi-layer soil column device, the influence of new nitrification inhibitor DMPP (3,4-dimethyl pyrazole phosphate) was studied for understanding the nitrogen vertical transformation and lowering the nitrate leaching at different soil profile depths. The results indicated that, within 60 d of experiment, the regular urea added 1.0% DMPP can effectively inhibit the ammonium oxidation in the soil, and improve the ammonium concentration in soil solution over the 20cm depths of soil profile, while decline the concentrations of nitrate and nitrite. No obvious difference was found on ammonium concentrations in soil solution collected from deep profile under 20cm depths between regular urea and the urea added 1.0% DMPP. There was also no significant difference for the nitrate, ammonium and nitrite concentrations in the soil solution under 40cm depths of soil profile with the increasing nitrogen application level, among the treatments of urea added 1.0% DMPP within 60 d. It is proposed that DMPP could be used as an effective nitrification inhibitor in some region to control ammonium oxidation and decline the ion-nitrogen leaching, minimizing the shallow groundwater pollution risk and being beneficial for the ecological environment.  相似文献   

12.
Leaching rates of the herbicide dichlorprop [(+/--2-(2,4-dichlorophenoxy)propanoic acid] and nitrate were measured together in field lysimeters containing undisturbed clay and peat soils. The purpose of the study was to investigate the leaching pattern of the two solutes in structured soils under different precipitation regimes. Spring barley (Hordeum distichum L.) was sown on each monolith and fertilized with 100 kg N ha(-1). Dichlorprop was applied at a rate of 1.6 kg active ingredient (a.i.) ha(-1). Each soil type received supplemental irrigation at two levels ('average' and 'worst-case'), giving total water inputs (irrigation and precipitation) of 664 and 749 mm year(-1), respectively. The larger water input approximately doubled the nitrate loads, from, on average, 11.6 to 21.8 kg N ha(-1) year(-1) in the clay soil and from 37.6 to 65.4 kg N ha(-1) year(-1) in the peat soil. In contrast, dichlorprop leaching was reduced by more than one order of magnitude when the water input was increased, from average amounts of 3.22 to 0.26 g a.i. ha(-1) during an S-month period in the clay and from 28.9 to 2.67 g a.i. ha(-1) in the peat. This leaching pattern of dichlorprop was explained in terms of preferential flow. The dried-out topsoil of 'average' watered monoliths may have allowed water flow in cracks, thus moving some of the herbicide rapidly through the topsoil to the subsoil. Once the compound reached the subsoil, degradation rates would be reduced and the herbicide residues would be stored for later leaching. Nitrate was presumably more evenly distributed in the soil matrix; therefore, water rapidly moving through macropores would not carry significant amounts of nitrate. In contrast, leaching would occur more evenly through the soil matrix, causing larger nitrate loads in the 'worst-case' watered monoliths. These results show that wet years may constitute a worst case scenario in terms of nitrate leaching, but not pesticide leaching, if macropore flow exerts a significant influence on leaching.  相似文献   

13.
We investigated the effects of different concentrations of nitrate and ammonium in irrigation water on the mobilization of Zn and Cu in repacked soil columns with a metal-polluted topsoil and unpolluted subsoils over two and a half years. Soil solution samples were collected by suction cups installed at vertical distances of a few centimeters and analyzed for dissolved organic carbon (DOC), Cu, and Zn (total and labile). During high N treatments the pH decreased and the presence of exchangeable cations resulted in Zn mobilization from the surface soil. The nitrogen input stimulated the biological activity, which affected both concentration and characteristics of DOC and consequently Cu speciation. Metal leaching through the boundary between the polluted topsoil and the unpolluted subsoils increased soil-bound and dissolved metals within the uppermost 2 cm in the subsoils. Our study shows that agricultural activities involving nitrogen fertilization can have a strong influence on metal leaching and speciation.  相似文献   

14.
Around 76% of the world's population lives in developing countries where more fertilizer-N is currently applied than in developed countries. Fertilizers are applied preferentially in regions where irrigation is available, and soil and climatic conditions are favorable for the growth of crop plants. Due to low N application rates during the last 3 or 4 decades, negative N balances in the soil are a characteristic feature of the crop production systems in developing countries. In the future, with increasing fertilizer-N application rates, the possibility of nitrate pollution of groundwater in developing countries will be strongly linked with fertilizer-N use efficiency. A limited number of investigations from developing countries suggest that, in irrigated soils of Asia or in humid tropics of Africa, the potential exists for nitrate pollution of groundwater, especially if fertilizer-N is inefficiently managed. In a large number of developing countries in West and Central Asia and North Africa, the small amount of fertilizer applied to soils (mostly Aridisols) that remain dry almost all the year, do not constitute a major threat for nitrate pollution of groundwater, except possibly when soils are irrigated. In Asia and the Pacific regions, where 70% of the fertilizers are used to grow wetland rice on soils with low percolation rates, leaching of nitrates is minimal. Climatic water balance and soil moisture conditions do not favor leaching of nitrates from the small amount of fertilizer-N applied to Oxisols and Ultisols in Latin America. In developing countries located in the humid tropics, attempts have not been made to correlate fertilizer-N use with nitrate level in groundwater; however, fertilizers are being increasingly used. Besides high rainfall, irrigation is becoming increasingly available to farmers in the humid tropics and substantial leaching of N may also increase.  相似文献   

15.
Metribuzin, a triazine herbicide, is poorly sorbed in the soils, therefore leaches to lower soil profile. Fly ash amendment, which enhanced metribuzin sorption in soils, may play a significant role in reducing the downward mobility of herbicide. Therefore, the present study reports the effect of Inderprastha fly ash amendment on metribuzin leaching in three soil types. Fly ash was amended at 1, 2 and 5% levels in the upper 15 cm of 30 cm long packed soil columns. Results suggested a significant reduction in the leaching losses of metribuzin in fly ash-amended columns of all the three soil types and effect increased with increase in the level of fly ash. Even after percolating water equivalent to 362 mm rainfall no metribuzin was recovered in the leachate of 5% fly ash-amended columns. Fly ash application affected both metribuzin breakthrough time and its maximum concentration in the leachate. Further, it resulted in greater retention of metribuzin in the application zone and better effect was observed in the organic carbon poor soils.  相似文献   

16.
Soil pollution with antimony is of increasing environmental concern worldwide. Measures for its control and to attenuate the risks posed to the ecosystem are required. In this study the application of several iron and aluminium oxides and oxyhydroxides as soil amendments was evaluated in order to assess their feasibility to stabilize Sb in mining polluted soils. Mine soils with different pollution levels were amended with either goethite, ferrihydrite or amorphous Al oxide at various ratios (0–10%). The effectiveness of such treatments was assessed by both batch and column leaching tests. The use of ferrihydrite or amorphous Al oxide proved to be highly effective to stabilize Sb. Immobilization levels of 100% were found when doses of 5% ferrihydrite or 10% amorphous Al oxide were applied, regardless of the soil Sb load. Column leaching studies also showed a high Sb leaching reduction (>75%) when soils were amended with 1% ferrihydrite or 5% amorphous Al oxide. Moreover, such treatments proved to simultaneously immobilize As and Pb in a great extent when soils were also polluted with such toxic elements.  相似文献   

17.
Emissions of CH4 and N2O related to private pig farming under a tropical climate in Uvéa Island were studied in this paper. Physicochemical soil parameters such as nitrate, nitrite, ammonium, Kjeldahl nitrogen, total organic carbon, pH and moisture were measured. Gaseous soil emissions as well as physicochemical parameters were compared in two private pig farming strategies encountered on this island on two different soils (calcareous and ferralitic) in order to determine the best pig farming management: in small concrete pens or in large land pens. Ammonium levels were higher in control areas while nitrate and nitrite levels were higher in soils with pig slurry inputs, indicating that nitrification was the predominant process related to N2O emissions. Nitrate contents in soils near concrete pens were important (≥55 μg N/g) and can thus be a threat for the groundwater. For both pig farming strategies, N2O and CH4 fluxes can reach high levels up to 1 mg N/m2/h and 1 mg C/m2/h, respectively. CH4 emissions near concrete pens were very high (≥10.4 mg C/m2/h). Former land pens converted into agricultural land recover low N2O emission rates (≤0.03 mg N/m2/h), and methane uptake dominates. N2O emissions were related to nitrate content whereas CH4 emissions were found to be moisture dependent. As a result relating to the physicochemical parameters as well as to the gaseous emissions, we demonstrate that pig farming in large land pens is the best strategy for sustainable family pig breeding in Uvéa Islands and therefore in similar small tropical islands.  相似文献   

18.
Leaching of nitrate contributes to the deterioration of groundwater and can consequently have a negative influence on the quality of our drinking water. Critical threshold values for nitrogen leaching are established to preserve groundwater quality. A critical threshold value for nitrate leaching of 50 mg 1−1 (11.3 mg N 1−1), similar to the drinking water standard, serves as a threshold value for European countries. However, the temporal aggregation scale on which this threshold value should be considered is unknown. A well tested simulation model was used to evaluate the exceedance of the threshold value at different time aggregation levels, ranging from one day till 30 yr. For three different soil structure types within one soil type and a selected fertilisation regime, the aggregated nitrogen leaching over 30 yr was 11.4, 19.2 and 10.6 mg 1−1. Considering an aggregation level of one day, the critical threshold value of 11.3 mg N 1−1 was exceeded 2973, 5801 and 2556 times, respectively, for the three structure types during 30 yr. By considering other time aggregation levels, a clear relation resulted between time aggregation level and the number of time elements during which the critical level was exceeded. Results strongly indicate that a critical threshold value for leaching should include an associated time-aggregation level.  相似文献   

19.
Subsurface drip irrigation systems apply effluent from onsite wastewater systems in a more uniform manner at a lower rate than has been possible with other effluent dispersal methods. The effluent is dispersed in a biologically active part of the soil profile for optimal treatment and where the water and nutrients can be utilized by landscape plants. Container tests were performed to determine the fate of water and nitrogen compounds applied to packed loamy sand, sandy loam, and silt loam soils. Nitrogen removal rates measured in the container tests ranged from 63 to 95% despite relatively low levels of available carbon. A Hydrus 2D vadose zone model with nitrification and denitrification rate coefficients calculated as a function of soil moisture content fit the container test results reasonably well. Model results were sensitive to the denitrification rate moisture content function. Two-phase transport parameters were needed to model the preferential flow conditions in the finer soils. Applying the model to generic soil types, the greatest nitrogen losses (30 to 70%) were predicted for medium to fine texture soils and soils with restrictive layers or capillary breaks. The slow transport with subsurface drip irrigation enhanced total nitrogen losses and plant nitrogen uptake opportunity.  相似文献   

20.
Losses by leaching of chlorotoluron, isoproturon and triasulfuron from small intact columns of a structured clay loam and an unstructured sandy loam soil were measured in five separate field experiments. In general, losses of all three herbicides were greater from the clay loam than from the sandy loam soil and the order between herbicides was always triasulfuron > isoproturon > chlorotoluron. Differences between experiments were also consistent for every soil/herbicide combination. There was no relationship between total loss and either total rainfall or cumulative leachate volume. When weighting factors were applied to the rainfall data to make early rainfall more important than later rainfall, there were significant positive relationships between cumulative weighted rainfall and total losses. Also, there were significant negative correlations between total losses and the delay to accumulation of 25 mm rainfall (equivalent to one pore volume of available water) in the different experiments. In laboratory incubations, there was a more rapid decline in aqueous (0.01 M calcium chloride) extractable residues than in total solvent extractable residues indicating increasing sorption with residence time. However, the rate of change in water extractable residues could not completely explain the decrease in leachability with ageing of residues in the field. Short-term sorption studies with aggregates of the two soils indicated slower sorption by those of the clay loam than by those of the sandy loam suggesting that diffusion into and out of aggregates may affect availability for leaching in the more structured soil. Small scale leaching studies with aggregates of the soils also demonstrated reductions in availability for leaching as residence time in soil was increased, which could not be explained by degradation. These results therefore indicate that time-dependent sorption processes are important in controlling pesticide movement in soils, although the data do not give a mechanistic explanation of the changes in leaching with ageing of residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号