首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (DL-PCBs) contained in the smoke generated from rice straw burning in post-harvest paddy fields in Japan were analyzed to determine their congener profiles. Both the apportionment of toxic equivalent (TEQ) by using indicative congeners and the comparison of the homolog profiles showed that the PCDDs/PCDFs/DL-PCBs present in the rice-straw smoke were greatly influenced by those present as impurities in pentachlorophenol (PCP) and chlornitrofen (CNP, 4-nitrophenyl-2,4,6-trichlorophenyl ether) formulations that had been widely used as herbicides in paddy fields in Japan. Further, in order to investigate the effects of paddy-field soil on the PCDDs/PCDFs/DL-PCBs present in rice-straw smoke, PCDD/PCDF/DL-PCB homolog profiles of rice straw, rice-straw smoke and paddy-field soil were compared. Rice-straw smoke was generated by burning rice straw on a stainless-steel tray in a laboratory. The results suggested that the herbicides-originated PCDDs/PCDFs/DL-PCBs and the atmospheric PCDDs/PCDFs/DL-PCBs contributed predominantly to the presence of PCDDs/PCDFs/DL-PCBs in the rice-straw smoke while the contribution of PCDDs/PCDFs/DL-PCBs formed during rice straw burning was relatively minimal. The major sources of the PCDDs/PCDFs/DL-PCBs found in the rice-straw smoke were attributed primarily to the paddy-field soil adhered to the rice straw surface and secondarily to the air taken by the rice straw. The principal component analysis supported these conclusions. It is concluded that rice straw burning at paddy fields acts as a driving force in the transfer of PCDDs/PCDFs/DL-PCBs from paddy-field soil to the atmosphere.  相似文献   

2.
Effects of riboflavin on the phototransformation of benzo[a]pyrene   总被引:3,自引:0,他引:3  
Zhao X  Hu X  Hwang HM 《Chemosphere》2006,63(7):1116-1123
Riboflavin (Vitamin B2) is a natural dye-sensitizer habitually present in natural waters. Effects of riboflavin as photosensitizer on the transformation of benzo[a]pyrene (BaP) (10 microM) in the aqueous-organic solvent (water/acetonitrile/methanol 50/40/10) were investigated in this study. The photolysis half life of BaP in solution containing 50 microM riboflavin was 5 min, compared to 98 min in the absence of riboflavin. The rate of phototransformation of BaP increased as the concentration of riboflavin was raised from 10 microM to 100 microM under both natural sunlight and UVA irradiation. The half life of BaP in the presence of 50 microM riboflavin was 10.6 min and 43.1 min when exposed to visible range of natural sunlight and UVA irradiation respectively. Riboflavin decomposes under natural sunlight. Lumichrome, a principal photoproduct of riboflavin, was shown to photosensitize BaP under natural sunlight after photolysis of riboflavin. Our study indicated that other photoproducts from riboflavin, such as lumiflavin, were also involved in the phototransformation of BaP under sunlight when riboflavin diminished. The major photoproducts in the photolysis of BaP were identified as 1,6-benzo[a]pyrene-dione, 3,6-benzo[a]pyrene-dione, 6,12-benzo[a]pyrene-dione by using high performance liquid chromatography (HPLC). All these products were detected in the samples which were irradiated under different light sources and in the presence or absence of riboflavin. The possible phototransformation mechanism was discussed.  相似文献   

3.
Greater understanding of the mobility of polychlorinated aromatic compounds in soils is needed to investigate contamination and design suitable remediation strategies for sites contaminated with wood-preserving oil. The objectives of this study were (1) to develop a suitable aqueous batch extraction method for soil containing wood-preservative residues; (2) to determine partition coefficients for the primary contaminants [pentachlorophenol (PCP), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFS)] in oil, soil, and aqueous phases; and (3) to evaluate the potential soil migration of the primary contaminants. In a three-phase oil-soil-water mixture, PCP, PCDDs, and PCDFs were partitioned to the greatest extent in the oil phase. These results suggest that the migration of contaminants can occur in a saturated subsurface soil zone containing an oil phase at a wood-preserving site. In the absence of a free oil phase, PCDDs and PCDFs were highly partitioned onto soil and were considered non-leachable in the aqueous phase. However, PCP was considered highly leachable from contaminated soil containing only an aqueous liquid phase. Results from this study indicate that removal of any free oil phase present in subsurface soil should have highest priority during the cleanup of contaminated wood-preserving sites.  相似文献   

4.
Greater understanding of the mobility of polychlorinated aromatic compounds in soils is needed to investigate contamination and design suitable remediation strategies for sites contaminated with wood-preserving oil. The objectives of this study were (1) to develop a suitable aqueous batch extraction method for soil containing wood-preservative residues; (2) to determine partition coefficients for the primary contaminants [pentachlorophenol (PCP), polychlorinated dibenzo-p-dloxins (PCDDs), and polychlorinated dibenzofurans (PCDFS)] in oil, soil, and aqueous phases; and (3) to evaluate the potential soil migration of the primary contaminants. In a three-phase oil-soil-water mixture, PCP, PCDDs, and PCDFs were partitioned to the greatest extent in the oil phase. These results suggest that the migration of contaminants can occur in a saturated subsurface soil zone containing an oil phase at a wood-preserving site. In the absence of a free oil phase, PCDDs and PCDFs were highly partitioned onto soil and were considered non-leachable in the aqueous phase. However, PCP was considered highly teachable from contaminated soil containing only an aqueous liquid phase. Results from this study Indicate that removal of any free oil phase present in subsurface soil should have highest priority during the cleanup of contaminated wood-preserving sites.  相似文献   

5.
The photochemical persistence of quinalphos, one of the most widely used organophosphorous insecticides, was investigated in a variety of environmental matrices such as natural waters and soils of different composition. Simulated solar irradiation was obtained using a xenon arc lamp (Suntest CPS+ apparatus) giving an irradiation intensity of 750 W m(-2) equivalent to a light dose per hour of irradiation of 2,700 kJ m(-2). The phototransformation rates were determined using solid-phase microextraction (SPME) and ultrasonic extraction (USE) coupled to GC-FTD, while the identification of photoproducts was carried out by GC-MS. In water samples, the degradation kinetics followed a pseudo-first-order reaction and photolysis half-lives ranged between 11.6 and 19.0 h depending on the constitution of the irradiated media. Dissolved organic matter (DOM) has a predominant retarding effect, while nitrate ions accelerated the photodegradation kinetics. In soil samples, the degradation kinetics was monitored on 1mm soil layer prepared on glass TLC plates. The kinetic behaviour of quinalphos was complex and characterized by a double step photoreaction, fast in the first 4h of irradiation followed by a slow degradation rate up to 64 h. The photolysis half-life of quinalphos was shorter in sandy soil compared to the rest of the soil samples, varying between 16.9 and 47.5 h, and showing a strong dependence on the composition of the irradiated media. Among the transformation products formed mainly through photohydrolysis and photoisomerization processes, some photoproduct structures were proposed according to their mass spectral information.  相似文献   

6.
Effects of soil type upon metolachlor losses in subsurface drainage   总被引:1,自引:0,他引:1  
A field experiment at La Bouzule (Lorraine, France) investigated metolachlor movement to subsurface drains in two soil types, a silt loam and a heavy clay soil, under identical agricultural management practices and climatic conditions. Drainage volumes and concentrations of metolachlor in the soil plough layer and drainwater were monitored after herbicide application from May 1996 to February 1997, and from May to August 1998. Total losses in drainwater were 0.08% and 0.18% of the amount applied to the silt loam compared with 0.59% and 0.41% for the clay soil, in 1996/97 and 1998, respectively. In 1996/97, 32% of total metolachlor loss from the silt loam and 91% from the clay soil occurred during the spring/summer period following treatment. Peak concentrations were 18.5 and 171.6 microg l(-1) for the silt loam and 130.6 and 395.3 microg l(-1) for the clay soil during the spring/summer periods of 1996/97 and 1998, respectively. During the autumn/winter period, concentrations did not exceed 2.2 microg l(-1) for the silt loam and 2.6 microg l(-1) for the clay soil. The experimental results indicate that metolachlor losses in drainwater were primarily caused by preferential flow (macropore flow) which was greater in the clay soil than in the silt loam, and occurring mainly during the spring/summer periods.  相似文献   

7.
Pu X  Cutright TJ 《Chemosphere》2006,64(6):972-983
Pentachlorophenol (PCP) contamination is a severe environmental problem due to its widespread occurrence, toxicity and recalcitrance. In order to gain a better understanding of the fate of PCP in soils, the role of the soil organic matter (SOM) and clay minerals in the PCP sorption-desorption was studied on two bulk field soils, two subsoils (i.e., SOM or clay-removed soil) and two artificial soils. The two field soils used were a silty loam from New Mexico (NM) containing 10% clay and a sandy-clay-loam from Colombia (CO) South America comprised of 18% clay minerals. The bulk CO soil containing kaolinite sorbed significantly less PCP than the NM soil. All soils depicted an apparent hysteresis during sorption. The CO bulk and subsoils desorbed 14-20% and 15-26% of the sorbed PCP respectively whereas the NM bulk and subsoils desorbed only 4-12% and 5-16%, respectively. Experiments conducted with pure clay and artificial soils indicated that the expandable clay minerals were key sorbent material. Additional studies to investigate the interaction between SOM and clay minerals are needed to fully understand sorptive phenomena.  相似文献   

8.
Determination photostability of selected agrochemicals in water and soil.   总被引:5,自引:0,他引:5  
The photolysis of selected pesticides in aqueous solutions has been investigated. The photolysis produced different intermediate substances, which were also found to be soil and microbial degradation products. The phototransformation in the presence of TiO2 and humic substances leads to a disappearance of these compounds. The reaction rate is dependent on the semiconductor oxide and concentration. Photoproducts were isolated and characterized by different spectroscopic methods. Results from this study indicate that degradation products of isoproturon are more toxic on Daphnia magna than on the parent compound.  相似文献   

9.
In order to understand the long-term behaviors of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), pentachlorophenol (PCP), and 2,4,6-trichlorophenyl-4′-nitrophenyl ether (chlornitrofen, CNP) in paddy soil, we measured their concentrations in paddy soil samples collected in 1982 and 1984 (1980s) and in 2000 and 2002 (2000s) from the Yoneshiro River basin, Japan. The concentrations of PCP and CNP decreased from the 1980s to the 2000s, whereas the concentrations of PCDD/Fs and their toxic equivalency (WHO2006-TEQ) remained. The major sources of PCDD/Fs in the paddy soil samples were attributed to impurities in PCP and CNP as a result of comparisons of homologue and congener profiles and principal component analysis. Based on the results of comparison of total input and remaining amount, it is estimated that more than 99% of PCP and CNP applied to the paddy fields had disappeared, whereas most of the applied PCDD/Fs and TEQ remained.  相似文献   

10.
11.
Thirteen soils collected from 11 provinces in eastern China were used to investigate the butachlor adsorption. The results indicated that the total organic carbon (TOC) content, clay content, amorphous Fe2O3 content, silt content, CEC, and pH had a combined effect on the butachlor sorption on soil. Combination of the data obtained from the 13 soils in the present study with other 23 soil samples reported by other researchers in the literature showed that Koc would be a poor predictive parameter for butachlor adsorption on soils with TOC content higher than 4.0% and lower than 0.2%. The soils with the ratio of clay content to TOC content (RCO) values less than 60 adsorbed butachlor mainly by the partition into soil organic matter matrix. The soils with RCO values higher than 60 apparently adsorbed butachlor by the combination of the partition into soil organic matter matrix and adsorption on clay surface.  相似文献   

12.
In order to examine the input of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs) from various airborne sources to environmental sinks, the atmospheric deposition of congener-specific PCDDs/PCDFs was investigated. Homologue and congener profiles of atmospheric depositions were compared with those of sources and environmental sinks to identify the relationship among atmospheric depositions, sources, and environmental sinks. Moreover, factor analysis was used to detect similarities, differences, and relationships of the variations in deposition fluxes among congeners within the same and different homologues. The results showed that the congener profiles of the atmospheric depositions were primarily determined by those of combustion emissions. Several congeners in some specific samples showed higher proportions within each homologue compared with representative depositions. This result can be partly explained by the influence of impurities in herbicides, 1,3,5-trichloro-2-(4-nitrophenoxy) benzene (CNP) and pentachlorophenol (PCP). The congener profiles of combustion emissions, representative depositions, and urban soils were very similar although their homologue profiles varied. This implied that PCDDs/PCDFs in the urban soils originate from the deposition of combustion emissions and that all congeners within each homologue behave identically in air and soil. Although the congener profiles of the representative depositions were different from those of the sediments in Tokyo Bay and the soil of a paddy field, the combination of congener profiles of the representative depositions and of the impurities in herbicides. CNP and PCP, can explain the congener profiles of the sediments and the paddy field. This study showed that congener-specific data are useful for source identification.  相似文献   

13.
He Y  Xu J  Wang H  Zhang Q  Muhammad A 《Chemosphere》2006,65(3):497-505
Sorption of pentachlorophenol (PCP) by pure minerals and humic acids were measured to obtain additional perspective on the potential contributions of both clay minerals and soil organic matter (SOM) to contaminants retention in soils. Four types of common soil minerals and two kinds of humic acids (HAs) were tested. The sorption affinity for PCP conformed to an order of HAs > K-montmorillonite > Ca-montmorillonite > goethite > kaolinite. Such a difference in sorption capacity could be attributed to the crucial control of HAs. Clay minerals also had their contribution, especially K-montmorillonite, which played an important, if not dominant, role in the controlling process of PCP sorption. By removing 80% (on average) of the organic carbon from the soils with H(2)O(2), the sorption decreased by an average of 50%. The sorption reversibility had been greatly favored as well. Considering the uncharged mineral fractions in soil before and after H(2)O(2)-treated, the main variation in sorption behavior of the soil might thus be related to the removed organic carbon and the reduced pH. This testified rightly the interactive effect of SOM and clay minerals on PCP sorption as a function of pH.  相似文献   

14.
15.
Two racemic herbicides, mecoprop (R,S-MCPP) and dichlorprop (R,S-DCPP), as well as their enantiopure R-forms, were incubated in three calcareous soils at 15 degrees C and 80% of their field capacity to try to elucidate their behaviour in soil and compare the dissipation rates when racemic and enantiopure compounds are used. Quantitation of pesticides is made by HPLC and the R/S ratio by GC-MS. The inactive S-enantiomer from the racemic forms persists longer than the R-forms in silt and sandy loam soils, but for shorter time in the clay loam soil. The pure R-enantiomers, both for MCPP and DCPP, after incubation in soil, are partially converted into their S-forms. In all cases, the dissipation of racemic and pure enatiomeric forms is lower in the clay loam soil than in the silt and sandy loam soils. The R-forms' peristence, in the three soils, is approximately two times lower when they are incubated alone than when they are incubated as racemic compounds. When peat is added, the persistence of these herbicides in the silt and sandy loam soils increases, while in the clay loam soil it decreases. Besides, in the clay loam soil, the enantiomeric ratio (ER) changes from its S-preferential degradation to a preferential degradation of its R-form, so an increase in the persistence of the inactive S-form occurs.  相似文献   

16.
The influence of soil and sediment composition on sorption and photodegradation of the herbicide napropamide [N,N-diethyl-2-(1-naphthyloxy)propionamide] was investigated. Five soils and one sediment were selected for this study and the clay fractions were obtained by sedimentation. Sorption-desorption was studied by batch equilibration technique and photolysis in a photoreactor emitting within 300-450 nm wavelength with a maximum at 365 nm. Sorption increased with clay content and was not related to organic matter content. High irreversibility of sorption was related to the greater montmorillonite content. The presence of soil or sediment reduced photolysis rate due to screen effect and this process did not depend on solid composition but on particle size distribution.  相似文献   

17.
Mechanochemistry, a technique concerning with milling contaminated samples for prolonged times, induces massive degradation of pollutants by grinding them in ball mills with different soil components or additives. In the present study, laboratory experiments were conducted to evaluate the effect of aging on the mechanochemical efficiency of the Mn-oxide birnessite in degrading pentachlorophenol (PCP). A comparative study on an aged birnessite (KBiA), used after 3 years from synthesis, and a fresh birnessite (KBiF), employed immediately after synthesis, was carried out. The differences between the two birnessites, evidenced by spectroscopic and diffractometric techniques, are mainly relative to reduction of the Mn(IV) centered at the MnO6 octahedra layers from the birnessite structure, which represent the most reactive sites for PCP degradation. The long term air drying at room temperature, by favouring reduction of Mn(IV) to Mn(III), produces an inorganic substrate that offers paucity of the less reactive sites for PCP degradation, thus reducing the oxidative potential of the KBiA. Accordingly, the more reactive fresh birnessite was employed in the experiment with a polluted soil. Adding a small amount of KBiF to soil only induces a light increase in PCP removal, probably due to the mechanically induced PCP adsorption and transformation onto clay minerals present in the soil. Besides, adding a higher dose of birnessite causes a stronger degradation of PCP.  相似文献   

18.
以建筑黄砂为对照,采用排水管道清通作业产生的管道沉砂作为提高土壤渗透性能的改良材料,通过模拟土柱实验考察了雨水花园对路面径流污染的控制效果.实验结果表明,在装置初始运行阶段,模拟柱中污染物的淋出浓度迅速降低,污染地下水的风险很低;当污染物淋失达到稳定时,掺加同比例管道沉砂与建筑黄砂的模拟柱在提高土壤渗透速率方面效果相近,而对COD、TP、TSS、NH4+-N、NO3--N、重金属等污染物的去除两者效果则相差不大.结果表明,以管道沉砂作为土壤改良材料,在降低南方粘性土壤地区雨水花园的建造成本、实现废弃物的再利用方面具有良好前景.  相似文献   

19.
Hirai Y  Sakai S  Watanabe N  Takatsuki H 《Chemosphere》2004,54(10):1383-1400
Intake fractions (iFs) for emissions to air, water, and soil for 17 PCDDs/DFs and 12 Co-PCBs were calculated with a level III multimedia model and a food-chain exposure model in succession. The two integrated models were tested by comparing the predicted and measured concentrations in the environment and by comparing intakes through food. Measurement-based iFs were also calculated and compared with the model-based iFs. The air concentrations predicted by the fate model were close to the median of the observed concentrations, whereas the predicted soil and water concentrations were one-third to one-tenth the observed concentrations. This difference was large in case of PCDDs and Co-PCBs, which was explained by the past pollution such as commercial PCB products and PCDD impurities in chloronitrofen (CNP) and pentachlorophenol (PCP). For fish, the predicted and observed exposures agreed well each other. For meat and milk, the predicted exposures were about 10 times the observed exposures for PCDDs/DFs, whereas the predicted and observed values agreed well for Co-PCBs. When the model was modified to consider feeding of fish meal to livestock and geographic bias in feed-grass production, the predicted congener profile was comparable to the measured profile. The comparison also suggested that chickens should be modeled separately from other terrestrial livestock. The model-based iFs for air emission of OCDD and 2378-TCDD were 0.001% and 0.1%, respectively. The iFs of most Co-PCBs were higher than those of PCDDs/DFs. These iF differences suggest the importance of the fate factor in assessing emissions of the 29 congeners.  相似文献   

20.
The major sources of dioxins (polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (DL-PCBs)) in the environment in Japan have been considered to be combustion by-products, pentachlorophenol (PCP) formulations, chlornitrofen (CNP, 4-nitrophenyl-2,4,6-trichlorophenyl ether) formulations, and PCB products. Data on PCDDs, PCDFs and DL-PCBs from the four sources were analyzed, and indicative congeners whose concentrations were highly correlated with WHO-2006 toxic equivalencies (TEQs) were identified for each source sample. The indicative congeners for combustion by-products, PCP formulations, and CNP formulations were 2,3,4,7,8-pentachlorodibenzofuran, 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin, and 1,2,3,7,8-pentachlorodibenzo-p-dioxin, respectively; for PCB products, the indicative congeners were IUPAC Nos. #126- and #105-pentachlorobiphenyls. Moreover, using the data on PCDDs, PCDFs and DL-PCBs, we developed a set of equations for estimating the apportionment of TEQs from the four sources by using only the concentrations of the above-mentioned five indicative congeners. The equations were used along with the analysis results of different types of environmental samples collected from Japan, to determine the TEQ contributions of the four sources. The obtained values of TEQ contributions seemed to be reasonable. The estimation method was developed by using the data on major dioxin sources in Japan, and therefore, it is generally adaptable to environmental samples from any part of Japan. The method may be usable for regions outside Japan if source identification is carried out and the estimation equations are modified appropriately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号