首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
北京夏冬季霾天气下气溶胶水溶性离子粒径分布特征   总被引:4,自引:11,他引:4  
黄怡民  刘子锐  陈宏  王跃思 《环境科学》2013,34(4):1236-1244
为研究北京夏、冬季霾粒子中水溶性离子的粒径谱分布,并进一步分析其来源及形成机制,于2009年夏季和冬季利用惯性撞击式8级采样器(Andersen)和石英微量振荡天平(TEOM)对北京城区大气气溶胶分别进行了为期2周的连续采样和监测,并用离子色谱(IC)对气溶胶中的水溶性离子进行了分析.结果表明,夏季霾天PM10和PM2.5的质量浓度分别为(245.5±8.4)μg.m-3和(120.2±2.0)μg.m-3,冬季霾天对应的数值分别为(384.2±30.2)μg.m-3和(252.7±47.1)μg.m-3,无论夏季还是冬季,霾天大气细粒子污染均十分严重.细粒子中总水溶性离子(TWSS)的浓度霾天远高于对照天,其中霾天浓度上升较快的是SO24-、NO3-和NH4+,二次无机离子对霾天气的形成过程扮演重要作用.除NO3-外,其余7种水溶性离子夏、冬季霾天粒径谱分布一致,即,SO24-、NH4+主要分布于PM1.0以下的细粒子模态,Mg2+、Ca2+主要分布于PM2.5以上的粗粒子模态,Na+、Cl-和K+呈双模态分布;夏季霾天NO3-呈双模态分布,而冬季则主要分布于细粒子中.夏季霾天SO24-的平均质量中值粒径(MMAD)为0.64μm,SO24-主要来自远程SO2的云内反应,并且SO2表观转化率(SOR)高于对照天,使得霾天光化学反应生成的细粒子远远高于对照天气过程;冬季霾天SO24-的MMAD增至0.89μm,冬季因局地SO2排放并被非均相化学反应过程氧化为SO24-亦为北京大气细粒子的重要来源.夏、冬季霾天NO3-的MMAD分别为2.85μm和0.80μm,受到温度的影响,NO3-夏、冬季节分别以硝酸钙和硝酸铵的形式存在于粗、细粒子中.  相似文献   

2.
石家庄秋季一次典型霾污染过程水溶性离子粒径分布特征   总被引:9,自引:8,他引:1  
为研究石家庄秋季典型霾污染过程中颗粒物水溶性离子的粒径谱分布,并进一步分析其来源及形成机制,于2013年10月15日到11月14日利用惯性撞击式8级采样器(Andersen)对石家庄城区大气颗粒物进行了为期一个月的连续采样,并使用离子色谱仪对观测期间一次霾污染过程颗粒物中8种水溶性无机离子(Na~+、NH_4~+、K~+、Mg~(2+)、Ca~(2+)、Cl~-、NO_3~-、SO_4~(2-))进行了分析.结果表明,石家庄秋季颗粒物污染严重,采样期间PM10和PM2.5日均值分别达到(361.2±138.7)μg·m~(-3)和(175.6±87.2)μg·m-3,PM_(2.5)日均值达到国家环境空气质量二级标准的2.3倍.此次污染过程,优良天、轻/中度污染天和重度污染天总悬浮颗粒物中总水溶性无机离子(TWSII)浓度日均值分别为(64.4±4.6)、(109.9±22.0)和(212.9±50.1)μg·m-3,由优良天过渡到重度污染天,总水溶性无机离子中二次无机离子(SO_4~(2-)、NO_3~-和NH_4~+)的比例由44.9%上升至77.6%,此次的霾污染过程主要来源于二次无机离子的生成和积累.优良天,SO_4~(2-)、NO_3~-和NH_4~+呈现双模态分布,峰值分别出现在0.43~0.65μm和4.7~5.8μm,而在轻/中度污染天和重度污染天,逐渐转变为单模态分布,峰值出现在0.65~1.1μm,随着高湿度下液相反应的加剧,二次无机离子由凝结模态向液滴模态转移的迹象明显.Na+、Mg~(2+)和Ca~(2+)这3种离子在优良天、轻/中度污染天和重度污染天的粒径分布相似,均以粗模态形式存在,在4.7~5.8μm出现峰值;K~+、Cl~-在优良天、轻/中度污染天和重度污染天均为双峰分布,但峰值出现的粒径段有所改变.  相似文献   

3.
使用MARGA离子在线分析仪ADI 2080对2017年12月27日~2018年1月5日南京市PM2.5化学组分进行连续采样分析,结合气象要素和大气环境监测数据,探讨了霾污染过程中水溶性离子的时间分布特征及其来源特征.结果表明:霾日中南京水溶性离子浓度为121.41μg/m3,是洁净日的3.2倍.霾污染过程中水溶性离子平均浓度大小顺序为NO3- > SO42- > NH4+ > Cl- > K+ > Ca2+ > Mg2+,SNA离子占总水溶性离子浓度的91.97%.霾日中水溶性离子日变化均为三峰型,洁净日中Cl-、SO42-和NH4+的日变化为单峰型,Ca2+为双峰型,K+、Mg2+为三峰型.随着空气污染状况的加重,总水溶性离子在PM2.5中的占比不断减少,空气质量为优时占比95.93%,严重污染时为63.25%.霾日中随着污染加重,NH4+占总离子的比例稳定在23%左右,SO42-占比缓慢减小,NO3-占比不断增大.NOR、SOR的日变化在霾日呈双峰型分布,洁净日则较为平稳.观测期间的水溶性离子主要来源有二次转化、煤烟尘、扬尘以及生物质燃烧.  相似文献   

4.
为研究天津冬季重污染天气过程中颗粒物水溶性离子的粒径谱分布及二次离子生成机制,于2014年1月利用Anderson撞击式分级采样器在中国气象局天津大气边界层观测站内采集颗粒物样品,并使用离子色谱仪分析Na~+、NH_4~+、K~+、Mg~(2+)、Ca~(2+)、Cl~-、NO_3~-、SO_4~(2-)等8种水溶性无机离子(TWSII).结果表明,采样期间PM_(2.5)和PM_(10)质量浓度均值分别为(138±100)μg·m~(-3)和(227±142)μg·m~(-3),粗、细粒子中TWSII的平均浓度分别为(34.07±6.16)μg·m~(-3)和(104.16±51.76)μg·m~(-3).细粒子中SO_4~(2-)、NO_3~-和NH_4~+这3种离子的浓度远高于其他离子,且相关性较好,粗粒子中NO_3~-、SO_4~(2-)、Cl~-浓度较高.随着污染程度加剧,细粒子中TWSII浓度增加明显,粗粒子中则变化不大.水溶性离子的粒径谱分布显示,SO_4~(2-)以单模态分布,优良天峰值出现在0.43~0.65μm,NO_3~-在优良日呈现三模态分布,峰值分别出现在0.43~0.65、2.1~3.3和5.8~9.0μm,NH_4~+呈双模态分布,优良日峰值出现在0.43~0.65μm和4.7~5.8μm,污染日3种二次离子峰值均以0.65~1.1μm的单模态分布为主,与三者之间的热动力平衡过程有关.细粒子中NH_4~+除与SO_4~(2-)和NO_3~-结合外,还与部分Cl~-结合,粗粒子中NH_4~+全部与NO_3~-和SO_4~(2-)结合后,剩余的NO_3~-和SO_4~(2-)与其他阳离子结合.  相似文献   

5.
霾天气南京市大气PM_(2.5)中水溶性离子污染特征   总被引:5,自引:1,他引:5  
为了讨论南京市大气细颗粒物(PM2.5)及水溶性组分在霾天气下的污染水平和污染特征,2007年6月10日至2008年5月29日对南京市大气细粒子PM2.5进行了采样,用PM2.5在线监测浓度、离子色谱法等分别测得PM2.5的质量浓度、水溶性离子组成,初步研究了南京市大气细粒子(PM2.5)及水溶性组分在霾天气下的污染水平和污染特征。结果表明,南京市大气细颗粒物污染严重,霾天气下PM2.5中总水溶性离子质量浓度为54.28μg/m3,为非霾天气的1.6倍。分析的6种离子中SO42-、NO3-、NH4+是PM2.5的主要组成成分。灰霾期间PM2.5与NO3-、SO42-、NH4+的相关性较高,PM2.5中颗粒物的主要存在形式可能为NH4Cl、NH4NO3,(NH)42SO4或NH4HSO4。对比不同季节不同天气下的SOR(SO2转化率)和NOR(NOx转化率),发现霾天气下SO2和NOX转化率高于正常天气,表明SO2、NO2在霾天气更容易转化为二次粒子。  相似文献   

6.
青岛大气气溶胶水溶性无机离子的粒径分布特征   总被引:7,自引:0,他引:7       下载免费PDF全文
为了解大气颗粒物中水溶性离子的来源及环境效应,利用安德森采样器连续采集青岛近海2008年1~12月大气颗粒物分级样品,用离子色谱法分析其中主要的水溶性离子,并讨论其粒径分布特征.结果表明, NH4+、K+、Cl-、NO3-、PO43-、SO42-主要存在于粒径小于2.1μm的细粒子中,Na+、Mg2+、Ca2+、F-则主要存在于粒径大于2.1μm的粗粒子中.各离子的粒径分布存在明显的季节变化.NH4+、K+和SO42-四季均主要分布于细粒子中,而Mg2+和Ca2+则主要分布在粗粒子中,两者均在3.3~4.7μm出现峰值;Na+在春、夏、秋3个季节主要存在于粗粒子中,集中分布在3.3~7.0μm粒径范围内,而在冬季则集中分布于0.43~1.1μm且细粒子含量高于粗粒子;春季Cl-在粗粒子中分布较多,尤以2.1~3.3μm范围内的最为突出,而其他3个季节均是细粒子比例明显偏高;NO3-春、夏两季在粗、细粒子中的含量各占50%,秋、冬季节均为细粒子占多数;PO43-夏季只出现在0.65~1.1μm以及>11μm的粒径范围内,粗粒子占95%,其他3个季节则是细粒子含量较高;春季F-在3.3~4.7μm出现峰值,夏季各粒径均未检出,而秋、冬两季粗、细粒子各占50%.K+、NH4+、F-、Cl-、NO3-、SO42-和PO43-受供暖期燃煤取暖的影响较大.K+和NH4+在供暖期和非供暖期峰值均出现在0.43~0.65μm粒径范围;F-供暖期在0.43~0.65μm和3.3~4.7μm粒径段出现峰值;供暖期Cl-的峰值出现在0.43~0.65μm粒径段,而在非供暖期,则出现在2.1~3.3μm的粗粒径段;SO42-和NO3-在供暖期和非供暖期的峰值均出现在0.43~0.65μm和3.3~4.7μm粒径段;供暖期PO43-的最大峰值出现在0.43~0.65μm粒径段,而在非供暖期其最大峰值出现在3.3~4.7μm粒径段.  相似文献   

7.
北京大气气溶胶中水溶性离子的粒径分布和垂直分布   总被引:26,自引:20,他引:26  
2004-09在北京325 m气象塔的8、80、240 m 3个不同高度,利用Andersen分级采样器同步进行了大气气溶胶采样.样品用离子色谱(IC)进行了分析.结果表明,SO42-, NH+4、NO-3、K+的浓度在0.43~1.1 μm出现峰值;Ca2+、Mg2+的浓度在4.7~5.8 μm出现峰值;Na+,Cl-的浓度在0.65~1.1 μm和4.7~5.8 μm出现峰值.观测期间,二次离子(SO42-, NH+4、NO-3)的峰值从“凝结模态"向“液滴模态"移动,高湿度可能是形成液滴模态的重要原因.二次离子(SO42-,NH+4、NO-3)随着高度升高,浓度有增加的趋势;Ca2+、Mg2+在80 m出现高值;K+、Na+、Cl-的垂直分布比较均匀.  相似文献   

8.
华南地区大气气溶胶中EC和水溶性离子粒径分布特征   总被引:1,自引:0,他引:1  
利用1988~2010年在华南地区广州、深圳、海口等多地采得的126组样品,初步分析了华南地区不同时段不同地区和水溶性离子成分的浓度变化及其粒径分布特征.结果表明:各站的AEC(等效元素碳)浓度和水溶性无机离子浓度差异较大,Na+和Cl-基本表现为海岛站点>海岸站点>乡村站点>城市站点,其余主要离子成分和AEC则表现为城市站点>乡村站点>海岸站点>海岛.城市站点、乡村站点、海岸站点和海岛站点AEC质量浓度在不同年段随粒径分布的变化趋势比较一致的,基本呈双峰结构,主峰主要位于0.43~0.65mm,次峰主要位于4.7~5.8mm.根据各离子的粒径分布的相似性可以将各种离子的垂直分布形态分为3类:二次离子(SO42-、NO3-和NH4+)呈现明显的三峰分布形态;F-、Ca2+、Mg2+、Na+和Cl-呈双峰分布形态;K+和AEC呈单峰分布形态,主峰位于细粒子模态.各成分浓度随高度的变化则呈现不同的变化规律.降水对气溶胶粒子的清除作用是显著的,尤其是粒径大于1μm的颗粒,而1.1~2.1μm的粒子段是降水清除的关键区.局地污染中,AEC质量浓度随粒径的分布呈现出了很明显的“单峰”结构,且主要集中在次微米段粒径范围内.  相似文献   

9.
2013年12月1-9日利用常规气象观测资料和NCEP再分析资料,结合气态污染物和颗粒物化学组分外场观测,对2013年1月11-16日南京冬季一次持续重霾天气过程与颗粒物污染特征进行分析。结果表明,此次重霾过程,南京地面相对湿度较高且伴随静小风,近地层的水平输送条件较差,污染物不易扩散;天气环流形势稳定,地面受高压控制且处于均压场内,垂直方向存在明显逆温,为霾的形成提供有利的气象条件;大气PM10和PM2.5的小时最大浓度分别高达433μg/m3和325μg/m3,水平能见度低于1 km。PM2.5平均占PM10的72.4%,PM1平均占PM2.5的50.6%,颗粒物以细粒子为主,且PM2.5对能见度的影响随相对湿度的增加而减弱。水溶性离子SO42-、NO3-、NH4+是PM2.5中的主要成分,其占总浓度61%,同时SO2转化率(SOR)和NO2转化率(NOR)分别为0.35和0.31,表明霾天更有利于二次气溶胶转化。此外,PM2.5中无机盐的主要存在形式有(NH4)2SO4、NH4NO3以及少量NH4Cl。水溶性离子浓度与能见度呈现明显负相关性,说明PM2.5中水溶性离子对能见度的降低起主要作用。  相似文献   

10.
秋季南通近海大气气溶胶水溶性离子粒径分布特征   总被引:1,自引:0,他引:1  
2012年10~11月在南通近海设立观测点,利用Anderson分级采样器采集大气气溶胶样品,用离子色谱仪(Metrohm IC)分析其中10种水溶性离子组成.结果表明,南通秋季近海PM10和PM2.1中水溶性离子浓度分别为59.70,45.96μg/m3.PM2.1中主要离子质量浓度排列依次为SO42-NO3-NH4+Ca2+.SO42-,NO3-和NH4+占PM10中离子浓度的80%以上,二次离子为近海区域气溶胶的主要成分.SO42,NH4+和NO3-均表现出单峰型分布,峰值区间均为0.43~1.1μm,Ca2+,Na+和Cl-表现为双峰型.Ca2+高浓度峰值出现4.7~5.8μm粒径段内;Na+和Cl-峰值出现在0.43~1.1μm和3.3~5.8μm内,但最大峰值浓度区间不一致.PM10中nss-SO42-/SO42-比值均高于90%,陆地源对近海硫酸盐的影响显著.nss-SO42-/NO3-的比值在2.1μm的粒径段内均大于1,表明该区域固定源是大气细粒子中离子的重要贡献源,但移动源对粗粒子的影响值得重视.个例分析显示,稳定的天气系统,高污染排放内陆地区的污染物传输,是造成10月27日的严重污染过程的主要原因.  相似文献   

11.
长江三角洲地区1980~2009年灰霾分布特征及影响因子   总被引:4,自引:0,他引:4       下载免费PDF全文
选取中国长江三角洲地区38个观测站1980~2009年的地面观测资料和2001~2009年国家环境保护总局公布的空气污染指数(API)数据,统计分析了长江三角洲地区近30年灰霾分布情况.计算了观测站点的消光系数并进行了两次订正,给出了其季均值和年均值分布情况,讨论了3个典型站(南京、杭州和合肥)的能见度与灰霾日数、干消光系数和API之间的关系.结果表明,近30年来,长江三角洲地区的灰霾日数整体呈增长趋势,有71%的站点灰霾日数的年平均增长率大于零.订正后的消光系数冬季高,夏季低.南京、杭州和合肥灰霾日数与干消光系数的增长趋势一致,在霾日,南京、杭州和合肥三地,能见度与API呈负相关,其相关性随相对湿度的增加而增强.  相似文献   

12.
长江三角洲地区霾判别方法的对比分析   总被引:3,自引:1,他引:3  
为对比霾判别方法的差异,探讨霾观测标准的再完善性,文中从空间分布与单点时间序列两方面分别分析研究了4种霾判别方法的特征与适用性.选取中国长江三角洲地区1980~2009年38个地面观测站的气象资料,根据使用日均值的方法 1、2和使用14:00观测值的方法 3分别统计各站点的霾日,分析3种方法的异同.发现这些方法都能够反映出霾的长期变化趋势,但存在差异,这种差异随着年代际变化逐渐减小.由方法 1得到的霾日数最多,方法 3考虑了天气现象,比方法 1和2更合理.依据南京北郊2012年5月~2013年4月的逐时PM2.5浓度、相对湿度和能见度等资料,分析比较了方法 4(霾的观测和等级预报,QX/T 113-2010)与方法 1、2、3的不同.结果表明,由方法 3统计出的霾日少于其他方法,由方法 4统计出的霾日数介于方法 1与方法 3的结果;方法 3不能分辨出霾的严重程度,而其他方法能较好地分辨出霾的严重程度.  相似文献   

13.
长江三角洲城市群霾的演变特征及影响因素研究   总被引:1,自引:0,他引:1       下载免费PDF全文
史军  崔林丽 《中国环境科学》2013,33(12):2113-2122
重建了长江三角洲1961~2007年霾气候数据序列,分析了霾日数的时空变化特征及城乡差异,并探讨了大气污染以及地面和近地层气象条件对霾发生的影响.结果表明,利用湿度—能见度指数参与霾气候序列重建的方法具有一定的合理性和科学性.过去47a间,长江三角洲霾日数总体上呈逐渐增多的趋势,并且四季霾日数都增加.空间上,整个长江三角洲霾日数基本上都呈增加趋势,并以杭州和南京增加最多.近30a来长江三角洲大城市、中等城市和城镇乡村站间霾日数变化具有明显差异.地面气象要素中风速和最长连续无降水日数与霾发生具有较好的对应关系.在霾天气过程和对应的清洁过程,近地层温度、位势高度和风场也都具有明显的差异.长江三角洲霾变化趋势与我国京津冀、珠江三角洲等地的变化一致.区域大气污染物排放量的增加,尤其是细颗粒物的增加是霾出现频率增加的可能原因,全球气候变化以及区域城市化造成的气象条件改变也有利于霾日的增加.  相似文献   

14.
为总结出霾天气发生时的相关影响因子、特征共性,选取长三角地区8个主要城市,2016~2019年秋冬季发生的7次典型霾天气过程,对比分析了3次霾天气过程中AQI、PM2.5浓度、气象要素、天气形势、边界层特征的变化以及污染物来源.结果表明:不利的气象条件及高低空配置的静稳天气型导致霾天气的形成.3次过程AQI指数峰值分别为247、306及272,与PM2.5浓度变化趋于一致.PM2.5浓度和能见度呈明显负相关关系,且污染过程发生时能见度普遍偏低,2、3次过程能见度谷值均低于50m.高相对湿度、稳定的气温及静风与霾过程的形成有着紧密的联系.总体上混合层高度与AQI呈现负相关关系,混合层高度较低抑制垂直对流,从而使污染物在低空区域性积聚,3次污染过程混合层高度最低值均小于100m.逆温层的出现利于霾污染过程中污染物的累积,近地层的贴地逆温将污染物集聚在地表,第1次过程贴地逆温强度高达8.2℃;脱地逆温导致污染物在边界层内堆积并抑制其扩散,均易导致高浓度污染发生,第2次过程脱地逆温为主,强度高达4.8℃.气溶胶类型多为沙尘、大陆型污染物、污染型沙尘及烟粒.污染发生通常受局地排放、区域输送及长距离输送的共同影响,气团携带的因人为产生的细粒子也是造成污染的主要原因之一.  相似文献   

15.
珠江三角洲一次大范围灰霾天气下的空气污染特征分析   总被引:1,自引:0,他引:1  
利用粤港珠江三角洲区域空气监控网络的监测结果,对2006年10月珠江三角洲一次大范围灰霾过程进行分析,研究灰霾天气下珠江三角洲的空气污染特征。研究表明:灰霾引起空气质量恶化,细颗粒物在可吸入颗粒物中比重上升,多项污染物发生超标,臭氧是首要污染物。时间分布上,PM2.5和O3日均值浓度出现峰值相比SO2、NO2、PM10滞后数日,各站污染物的逐时变化曲线随着各自的主要影响因素不同而表现出不同的特征。空间分布上,珠三角空气污染的区域性特征比较明显,其中佛山-广州-东莞一带是珠三角的污染核心区。  相似文献   

16.
春季是长三角地区对流层O3污染的高峰期之一,高浓度的O3暴露会影响冬小麦生长导致减产.利用长三角地区各城市2014年春季逐时ρ(O3)观测数据,研究了长三角地区春季O3污染特征,并结合O3暴露指数(M7指数和AOT40指数)和剂量-响应关系模型,详细评估了长三角地区O3污染对冬小麦产量的影响.结果表明:长三角地区春季ρ(O3)空间上总体呈南低北高的分布,长三角地区北部江苏和上海的ρ(O3)明显高于南部的浙江地区,在浙江北部、江苏和上海等地区,整个春季日最大8 h ρ(O3)平均值超过107 μg/m3,最高值出现在5月,超过128 μg/m3;一半以上的城市ρ(O3)超标[超过GB 3095-2012《环境空气质量标准》中8 h滑动平均ρ(O3)的二级标准限值(160 μg/m3)]日数在10 d以上,其中南京和扬州超标日数最多,分别为27和20 d;相应地,O3暴露指数也呈南低北高的分布,其中苏北地区O3暴露指数最高,导致长三角地区平均冬小麦相对损失达5.7%(M7)~25.5%(AOT40),造成的产量损失为7.85×105 t(M7)~4.49×106 t(AOT40),其中,苏北地区为5.8%(M7)~25.9%(AOT40),造成的产量损失为6.77×105 t(M7)~3.86×106 t(AOT40),占长三角地区冬小麦产量损失的86%以上.研究显示,当前长三角地区O3污染及其对冬小麦产量的影响已相当严重,特别是对苏北地区,而苏北地区是我国重要的冬小麦产地之一,因此,应当科学有效地治理O3污染以缓解粮食安全问题.   相似文献   

17.
长江三角洲地区冬季能见度特征及影响因子分析   总被引:4,自引:0,他引:4  
利用Micaps提供的2013和2014年冬季长江三角洲地区(以下简称长三角)28个站点的地面常规观测资料、NCEP FNL再分析资料和国家环境保护部发布的PM2.5质量浓度自动检测数据,分析了长三角冬季大气能见度特征,以及空气污染物和气象条件对能见度的影响.2013年冬季长三角霾天发生频率为53.4%.多元非线性回归分析表明,PM2.5质量浓度、地表10m风速、500~850hPa水平风垂直切变、相对湿度、925~1000hPa垂直温差、850~925hPa假相当位温差这6个因子能够解释能见度变化的81.6%.气象条件对能见度的作用与污染物浓度相当,热力因子的贡献大约是动力因子的2倍.PM2.5质量浓度越低,空气质量越好,以及相对湿度大于70%时,相对湿度通过气溶胶吸湿增长对能见度的作用越强.考虑PM2.5质量浓度的影响时,相对湿度对能见度的贡献提高了1倍.利用2014年冬季资料验证多元拟合方程,效果较好.  相似文献   

18.
基于PM、10nm~10μm气溶胶数谱、水溶性离子和气象要素数据,分析了2017年5月3日~8日一次沙尘远距离输送过程中长三角地区气溶胶粒径分布及其化学组成的污染特征.结果表明,此次沙尘伴随天气系统由北往南的传输过程中,PM的浓度逐渐降低,但是高浓度PM持续时间逐渐增加.沙尘在呼和浩特市影响时间为38h,而在南京的影响时间超过60h.沙尘期间气溶胶数浓度谱的峰值向大粒径段偏移,沙尘和非沙尘期间峰值分别位于33和26nm.表面积浓度谱在非沙尘期间为三峰型分布,但是在沙尘期间为四峰型分布.在沙尘期间PM2.5和PM10中水溶性离子的排序为Ca2+ > NH4+ > SO42- > NO3- > Mg2+ > Na+ > Cl- > NO2- > K+ > F-,非沙尘期间为NH4+ > SO42- > NO3- > Mg2+ > Ca2+ > Cl- > NO2- > K+ > Na+ > F-.沙尘期间不同水溶性离子的浓度变化不同,沙尘天PM2.5和PM10中Ca2+浓度分别是非沙尘天的9.5和13.7倍,Na+分别是非沙尘天的4.4倍和4.6倍.沙尘天PM2.5和PM10中Ca2+占总离子的比例分别为24.7%和24.9%,是非沙尘天的4.9和5.7倍.NO3-在PM10中的占总离子的比例为18.7%,高于非沙尘天(13.9%),但是在PM2.5中占总离子的比例仅为7.9%,低于非沙尘天(13.2%).沙尘天F-、Cl-、SO42-、NH4+和K+离子在PM2.5和PM10中所占总离子的比例均低于非沙尘天.  相似文献   

19.
长三角地区灰霾天气特征分析及防治对策研究   总被引:1,自引:0,他引:1  
随着长三角地区城市化进程的迅速发展,区域大气污染加剧,灰霾天气也随之增多,且日趋严重与复杂。综述了长三角地区主要城市灰霾天气的年际变化与月际变化、大气颗粒物特性、灰霾成因,指出长三角地区的灰霾呈现明显的区域性,并提出了健全法律法规、建立联防联控、实施区域灰霾预警机制、加强工业污染源防治、加大机动车尾气治理等灰霾防治对策,政府、企业与公众都必须参与到灰霾天气的防治中来,只有通过全民参与才能从根本上改善区域的大气质量。  相似文献   

20.
秋冬季区域性大气污染过程对长三角北部典型城市的影响   总被引:7,自引:7,他引:0  
本文基于空气质量及气象监测数据,运用层次聚类分析法、后向轨迹法、潜在源贡献分析等方法,选取长三角北部地区2018~2019年秋冬季的典型污染过程进行分析,并选取该区域代表性的城市(蚌埠)进行深入分析.结果表明,长三角北部地区大气污染受地面弱气压、高湿、低温和静小风等不利气象条件及传输的影响较大.长三角秋冬季区域性污染具有影响范围广和持续时间长等特征,污染类型主要为区域外传输型与区域内累积型.在EP1和EP2两次污染过程中,长三角北部城市PM2.5浓度均值分别达到131.6μg·m-3和115.4μg·m-3,前者污染过程较短,但污染物浓度累积较快造成的污染强度大和范围广.利用PSCF和CWT对PM2.5潜在源定性和定量分析表明,EP1过程PM2.5由临沂、徐州、宿迁和连云港等污染轨迹密集区域传输到受体城市蚌埠,CWT值处于80以上,最高可达200以上,区域传输实际浓度值较高;EP2过程PM2.5浓度受宿迁、宿州和徐州等区域内部邻近城市影响,CWT值处于60...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号