首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
近年来,工业企业挥发性有机物(VOCs)污染日益严重。各管理部门需加快推进VOCs排放企业的综合整治工作,家具行业是我国VOCs整治的重点行业之一,需严格控制其VOCs排放总量,因此VOCs排放总量的精确计算尤为重要。本文针对现行家具VOCs排放量的计算方法进行分析研究,重新梳理各计算要素,对VOCs排放量的计算方法提出初步优化建议,最终将优化后计算方法与传统方法进行验证比较,结果表明优化后VOCs计算准确率相对较高,证明该计算方法可行,可为精确计算家具行业企业VOCs排放量提供新思路,对于制定相关污染控制对策也具有实际参考意义。  相似文献   

2.
佛山市顺德区工业VOCs污染问题突出,以中小企业为主的家具行业排放是第二大来源(17%),因此,顺德区率先在广东省开展了家具行业VOCs排污权交易试点工作.本文以区内木质家具行业为例,研究了排污权交易定价方法,得到VOCs平均污染治理成本(5363.26元·t~(-1)·a~(-1))并将其作为排污权交易的初始价格,之后运用多级模糊综合评价法计算的地区调整系数(γ=1.47)进行修正,得到最终参考交易价格(7883.99元·t~(-1)·a~(-1)).该价格与2016年交易底价(8000元·t~(-1)·a~(-1))偏差较小(1.45%).本文还开发了内置核心算法的挥发性有机物排污权交易辅助定价工具,综合利用数据库中企业基本信息、挥发性有机物排放数据等,为排污权交易定价提供辅助决策服务.  相似文献   

3.
中国工业源挥发性有机物排放清单   总被引:8,自引:5,他引:8  
以工业源挥发性有机物(VOCs)为研究对象,在前期建立的工业源典型污染源分类系统基础上,对污染源系统和重要污染源排放系数进行修正和更新,采用排放系数法建立了2018年我国工业源VOCs排放清单.结果表明,2018年我国工业源VOCs排放量为12698 kt.含VOCs产品的使用环节贡献最大,占工业源排放总量的59%.工业涂装、印刷和包装印刷、基础化学原料制造、汽油储存与运输和石油炼制是排放量贡献最大的5大污染源,占工业源排放总量的54%;广东、山东、浙江和江苏是工业VOCs贡献最大的4个省份,排放总量占工业源VOCs总量的41%.海南、宁夏、西藏、黑龙江和新疆这5个省单位工业增加值VOCs排放强度最大,均超过了80 t ·(亿元)-1.大多数省份工业VOCs排放主要来自含VOCs产品的使用环节;采用Monte Carlo模拟2018年我国工业源VOCs排放清单95%置信区间不确定度为[-32%,48%].  相似文献   

4.
杭州市工业源VOCs排放清单及排放特征   总被引:12,自引:12,他引:0  
卢滨  黄成  卢清  杨强  井宝莉  夏阳  唐伟  顾泽平 《环境科学》2018,39(2):533-542
杭州市作为2016年国际峰会、2022年亚运会等一系列重大活动的举办地,对VOC源排放清单的研究,尤其是工业源VOCs的影响越来越受到管理部门和当地居民的重视.通过采取自下而上的方式,首次对杭州市涉及VOCs排放的30多个行业的3 518家企业逐一进行了详细的调查和估算,并在此基础上建立了杭州市工业源VOCs排放清单.从区域排放、排放强度、空间分布等不同角度对杭州市工业源VOCs排放特征进行了系统分析.研究结果表明,2015年杭州市工业源VOCs排放量为36 839.5 t;印刷和记录媒介复制、化学原料和化学制品制造、金属制品、纺织、橡胶和塑料制品行业是杭州市工业源VOCs排放量最大的五个行业;排放总量最大是萧山区,其次是富阳区和大江东产业集聚区;工业源VOCs排放强度最高的区域为富阳区、建德市和临安市;工业源VOCs排放主要集中在萧山区、大江东、富阳区、余杭区等工业企业较为密集的区域.  相似文献   

5.
秦皇岛市工业行业挥发性有机物排放特征   总被引:6,自引:3,他引:3  
虎啸宇  刘航  王乃玉  王灿  揣莹 《环境科学》2018,39(2):543-550
根据2016年收集的秦皇岛全市609家工业企业的产品产量、原料使用量、挥发性有机物(VOCs)排放浓度、排放流量、排放方式等活动水平数据,采用直接测量法和排放因子法建立秦皇岛市工业源VOCs排放清单,结果表明,秦皇岛市全年的工业源VOCs排放总量为8 420.07 t,其中,经济技术开发区为秦皇岛市VOCs排放的主要区域,VOCs排放量为4 120.51 t,占总排放量的48.9%;石油加工、炼焦和核燃料加工业,化学原料和化学制品制造业是秦皇岛重点VOCs排放的主要行业,分别占总排放量的30.35%和14.42%;从VOCs种类分析,不同行业中苯类,脂类与烷烃,酮类相对较多,其他几种成分均含量较少;溶剂使用是VOCs排放环节中的主要环节,排放贡献率达到37%;在调研609家企业中共有109家企业有VOCs控制设施,其中吸附法占比最大,占69%.  相似文献   

6.
山西省人为源VOCs排放清单及其对臭氧生成贡献   总被引:2,自引:2,他引:2  
闫雨龙  彭林 《环境科学》2016,37(11):4086-4093
根据统计年年鉴中主要的人为挥发性有机物(VOCs)排放源的行业活动水平和文献中查阅到的VOCs排放因子和组分特征,计算了山西省2013年的人为源VOCs的排放量,计算了臭氧生成潜势.计算结果显示山西省2013年人为源VOCs排放量为72.37万t,最主要的排放行业是工业排放源和移动源,分别占总排放量的36.47%和24.28%;在工业源中,焦炭生产和化学品生产的VOCs排放量分别为19.06万t和3.88万t,分别占工业排放行业总排放量的72.22%和14.72%,是工业排放行业中最大的排放源;2013年山西省各个排放源排放的臭氧前驱VOCs共43.59万t,所产生的臭氧生成潜势总量为176.99万t,对总臭氧生成潜势贡献最大的是移动源、燃烧源和工业排放,分别占总臭氧生成潜势总量的40.35%、26.43%和24.95%.结果表明:煤化工行业VOCs排放量显示了山西省独特的以煤为主的单一化、重型化的产业结构;机动车保有量快速增长导致了机动车的VOCs排放量巨大;移动源和工业排放源排放的VOCs所产生的臭氧生成潜势巨大.总之控制山西省的VOCs排放及其带来的臭氧污染应主要关注于控制工业排放和机动车排放.  相似文献   

7.
制药行业生产工艺复杂,VOCs排放显著,是实施工业VOCs减排的重点行业.为落实制药行业VOCs减排策略,需准确识别重点排放企业和工艺过程.基于精细化工园区典型化学合成制药企业VOCs污染源成分谱,结合特征选择、分类分析、聚类分析等机器学习手段,进行了VOCs特征因子识别.结果表明:该企业VOCs排放的特征因子为甲苯、...  相似文献   

8.
工业VOCs排放源废气排放特征调查与分析   总被引:17,自引:5,他引:17       下载免费PDF全文
在大量调研工业挥发性有机物(VOCs)排放源案例的基础上,将工业VOCs排放源分为溶剂产品使用源、化工产品生产源、废物处理源和存储输送源4类,并对不同类型工业VOCs源的废气排放特征进行了分析.结果表明,大多数有组织排放的工业VOCs源的废气流量>1000m3/h,总挥发性有机物(TVOC)浓度100000m3/h的VOCs源以溶剂产品使用源为主;流量10000mg/m3或<100mg/m3的工业VOCs源,均以化工产品生产源为主.在工业VOCs源排放的各种VOCs组分中,以苯系物最为常见  相似文献   

9.
我国工业源VOCs排放的源头追踪和行业特征研究   总被引:15,自引:1,他引:15       下载免费PDF全文
按照“源头追踪”思路,采用排放因子法,对我国工业源VOCs排放量进行了计算.工业VOCs污染产生于4个环节:VOCs的生产,储存和运输,以VOCs为原料的工艺过程,含VOCs产品的使用和排放.结果表明, 2009年我国工业源VOCs排放量约为1206万t.4个环节的污染排放贡献分别为18.1%、6.8%、24.7%和50.3%.合成材料生产、石油炼制和石油化工、机械设备制造等17个排放源的年排放量达20万t以上,其排放量之和占全国总排放量的94.9%.2007~2009年我国工业源VOCs排放量分别为1023,1079,1206万t,年均增长率8.6%.  相似文献   

10.
以工业密集的珠江三角洲地区为研究对象,通过建立2010~2017年主要工业源VOCs排放趋势清单和成分谱数据集,识别了VOCs总量排放趋势和组分结构变化特征,并探讨了典型工业行业VOCs排放结构与组分特征变化的原因.结果显示,2010~2013年珠三角主要工业源VOCs排放量从38万t上升至41万t,而后由于VOCs减排政策的落实持续下降,2017年降至32万t.VOCs组分以间对二甲苯、甲苯、乙苯等芳香烃、乙酸乙酯、丁酮等含氧VOCs和异丁烷等烷烃组分为主.水性涂料替代和末端治理设施等控制政策对工业源VOCs排放与组分结构均有一定程度的影响,排放结构上,金属表面涂装、家具制造、橡胶与塑料制品等行业排放贡献有所下降,组分结构上,芳香烃组分总体下降显著,而烷烃和OVOCs组分占比上升.  相似文献   

11.
以工业密集的珠江三角洲地区为研究对象,通过建立2010~2017年主要工业源VOCs排放趋势清单和成分谱数据集,识别了VOCs总量排放趋势和组分结构变化特征,并探讨了典型工业行业VOCs排放结构与组分特征变化的原因.结果显示,2010~2013年珠三角主要工业源VOCs排放量从38万t上升至41万t,而后由于VOCs减排政策的落实持续下降,2017年降至32万t.VOCs组分以间对二甲苯、甲苯、乙苯等芳香烃、乙酸乙酯、丁酮等含氧VOCs和异丁烷等烷烃组分为主.水性涂料替代和末端治理设施等控制政策对工业源VOCs排放与组分结构均有一定程度的影响,排放结构上,金属表面涂装、家具制造、橡胶与塑料制品等行业排放贡献有所下降,组分结构上,芳香烃组分总体下降显著,而烷烃和OVOCs组分占比上升.  相似文献   

12.
2011~2019年中国工业源挥发性有机物排放特征   总被引:3,自引:2,他引:1  
为阐明近年来我国工业源挥发性有机物(volatile organic compounds,VOCs)排放特征,对排放源分类体系进行完善并采用动态排放因子法,建立了2011~2019年中国工业源VOCs排放清单.结果表明,全国工业源VOCs排放量从2011年11122.7 kt增长到2017年13397.9 kt,而后增长势头得到遏制并略有下降,到2019年下降至13247.0 kt.4个环节的排放结构发生改变,基础化学原料制造、汽油储运、涂料、油墨、颜料及类似产品和工业防护涂料涂装等排放源对相应环节的排放贡献不断上升,相反汽车、集装箱制造与石油和天然气加工等行业排放贡献有所下降.2019年全国工业源VOCs排放中,工业涂装、印刷和基础化学原料制造排放量大(共占总量的39.2%),且近9年排放占比不断增加,是今后需关注的重点排放源;空间上,华东和华南地区VOCs排放最多,山东、广东、江苏和浙江是贡献最大的4个省份,合计占总量的40.6%.  相似文献   

13.
深圳地区臭氧污染来源的敏感性分析   总被引:2,自引:0,他引:2  
利用美国EPA开发的区域多尺度空气质量模式CMAQ对2008年8月发生在深圳地区的臭氧污染过程进行模拟,运用源敏感性识别工具DDM-3D分析深圳本地排放源及周边地区排放源对深圳地区臭氧污染形成的敏感性.研究表明,VOCs人为源排放对深圳臭氧形成敏感度高,控制深圳臭氧污染的关键在于控制VOCs人为源排放,控制重点应放在化学品/橡胶/塑胶、印刷、电子产品制造、家具、玩具、制鞋、建筑涂料使用、家用溶剂等方面;深圳的臭氧污染具有区域特征,在不利天气条件下,需与周边城市协调控制才能达到8h平均浓度120μg/m3的目标.  相似文献   

14.
挥发性有机物(VOCs)是一类重要的大气污染物质,通过工业源VOCs动态更新平台对其进行管控是十分必要的.对比分析国内外VOCs动态更新机制的发展状况,结合天津市建立的工业源VOCs排放申报平台,提出了包括建立涵盖全行业的统一申报系统、建立规范的申报和审核流程、确定统一的总量核算办法、形成工业源VOCs排放清单、建立VOCs动态更新机制在内的动态更新平台建立思路,用于指导工业源VOCs的污染防治工作.  相似文献   

15.
为更好地掌握北京市电子工业挥发性有机物(VOCs)排放特征及其与其他溶剂使用行业的排放差异,为工业结构调整提供启发和建议,通过实际监测,识别电子工业有组织和无组织VOCs排放水平,采用产污系数法并结合集气效率和去除效率,核算得到2019年北京市电子工业VOCs排放量及各子行业的排放贡献,并与其他典型溶剂使用行业的VOCs排放强度进行了对比.结果表明:电子工业VOCs产生主要集中在光刻、清洗、剥离、显影等环节,使用的有机溶剂主要包括光刻胶、稀释剂、清洗剂和去除剂,分别约占3%、81%、6%和10%,其中约16%以废气形式排入大气.核算得到2019年北京市电子工业VOCs排放量为1 542 t,主要来自显示器件和集成电路行业,分别贡献了71%和18%,与其产量和有机溶剂使用量较大有关,电子专用材料制造和其他行业则分别贡献了3.2%和7.8%.通过与其他典型溶剂使用行业排放强度对比发现,电子工业单位产值VOCs排放强度较低,是家具制造、印刷等传统溶剂使用行业的1/2 750和1/3 250,说明北京市工业结构调整和优化对于减少污染排放具有重要作用.研究显示,可综合城市发展及经济水平,逐步限制发展高排放工业类别,鼓励发展如电子工业等技术密集型和附加值高的行业类别,从而促进城市空气质量的改善.   相似文献   

16.
珠江三角洲印刷行业VOCs组分排放清单及关键活性组分   总被引:5,自引:1,他引:4  
根据珠江三角洲地区印刷行业活动数据和不锈钢罐采样-气质联用技术,获取了印刷工艺VOCs成分谱,建立了该地区2010年印刷行业VOCs组分排放清单,研究了不同工艺排放的臭氧生成潜势. 结果表明:该地区2010年印刷行业VOCs排放总量达8591.26t,深圳、东莞、佛山排放量较大.凹印是印刷行业主要VOCs排放工艺,排放量达5762.01t;平印和凸印次之,分别为1954.01和37.82t.不同工艺排放的VOCs组分差异较大,平印工艺排放的VOCs成分中异丙醇含量最多(306.58t),其次为正庚烷(115.87t);苯和甲苯是凸印工艺排放的VOCs成分中含量最大的2种化合物,分别达5.58和4.83t;乙酸乙酯是凹印工艺排放的VOCs成分中的首要化合物,达2482.85t.凸印工艺排放的VOCs单位浓度臭氧潜势最大,达1.30μg/m3,平印和凹印较小,分别为0.89和0.72μg/m3,各工艺排放的含氧有机物对臭氧生成潜势的贡献均为最大.   相似文献   

17.
根据收集厦门市所辖6个区的工业源活动水平数据和厦门市环境统计数据等相关资料,运用排放因子法计算得到2019年厦门市6个辖区的8个行业的工业源VOCs排放清单,分析了厦门市各辖区VOCs排放强度的空间分布格局.在工业源VOCs排放清单的基础上结合企业调研,分析排放清单企业VOCs污染处理技术情况并提出相应的控制对策建议.结果表明,2019年厦门市工业源VOCs产生总量为16027.88 t,排放总量为5514.58 t,其中厦门岛外的海沧区、同安区、翔安区和集美区VOCs排放量分别为1648.35、2111.13、667.52和750.48 t,岛内的湖里区和思明区VOCs排放量较少,分别为292.42 t和44.68 t.除了湖里区,厦门市排放强度呈现岛外大于岛内的空间分布特点.厦门市8个行业中,VOCs排放主要来自于涂装、印刷、化工和橡胶行业,分别占厦门市总排放量的51.21%、20.18%、13.63%和10.67%.厦门市VOCs废气处理工艺情况分析结果表明,从源头控制层面,企业使用低(无)产生VOCs的原辅材料,可有效地从源头控制VOCs产生和排放;从末端处理工艺层面,UV光解/光催化、吸附处理、低温等离子体和生物法的实际处理效率均低于80%,吸附与催化燃烧等组合工艺以及燃烧法的实际处理效率均高于90%.  相似文献   

18.
我国VOCs的排放特征及控制对策研究   总被引:11,自引:7,他引:4  
王铁宇  李奇锋  吕永龙 《环境科学》2013,34(12):4756-4763
挥发性有机物(volatile organic compounds,VOCs)是一类具有刺激性、致畸、致癌、致突变作用、易燃易爆的有机物,对人体和生态系统健康有很大危害.本文从工业固定源、机动车尾气排放源和日常生活源等角度分析不同排放源的VOCs排放特征,绘制并分析了我国重点区域重点行业VOCs排放的空间分布格局,甄别出东部沿海地区VOCs 2010年总量和单位面积均高于中西部地区,且工业产生源有明显差异.进一步归类分析了欧美等发达国家针对VOCs排放控制的政策法规,对比分析我国目前治理VOCs的有关法规和标准,提出了现阶段我国VOCs管理存在的问题,并提出了相应的控制对策建议.  相似文献   

19.
江门市人为源挥发性有机物排放清单   总被引:8,自引:7,他引:8  
将江门市人为源挥发性有机物(VOCs)排放分为工业源、移动源、生活源和农业源四大类,以2014年为基准年,根据江门市的统计数据和实地调研结果,采用"自上而下"和"自下而上"结合的排放因子法建立了江门市人为源VOCs排放清单.结果显示江门市2014年人为源VOCs排放总量约为75.09 kt,工业源、移动源、农业源和生活源VOCs排放量为41.37、19.16、11.07和3.50 kt,占比分别为55.09%、25.51%、14.74%和4.65%.工业源中摩托车制造、集装箱制造、涂料、油墨、颜料及类似产品制造、印刷及包装印刷、塑料及橡胶制品、人造革制造、皮革鞣制加工、化石燃料燃烧、基础化学原料制造、电子制造、胶黏剂制造、家具制造等行业的VOCs排放量均超过1 000 t,为江门市重点VOCs排放行业.江门市蓬江区、江海区、鹤山市这3地以工业源排放为主,占比均超过50%,而恩平市、台山市等地则以农业源排放为主.各区和县级市在进行VOCs减排政策制定时要针对本土化的VOCs清单特征,进行精细化管控,才能取得较好减排效果.  相似文献   

20.
挥发性有机物(volatile organic compounds, VOCs)是细颗粒物(PM2.5)与臭氧(O3)的重要前体物,对我国城市复合污染的形成有重要影响,京津冀区域大气污染问题严峻,VOCs排放源类别复杂,且排放量基数大,亟需形成有效的VOCs管控策略.因此选取京津冀区域人为源VOCs排放为研究对象,建立2018年分行业分物种VOCs排放清单,并基于实测与文献调研的行业VOCs成分谱数据,获取各排放源臭氧生成潜势(ozone formation potential, OFP)与二次有机气溶胶生成潜势(secondary organic aerosol formation potential, SOAP),同时构建VOCs排放源优先控制分级技术方法,计算各排放源分级指数,明确优先控制排放源目标.结果表明:(1)京津冀区域2018年人为源VOCs排放总量为214.0×104 t,其中芳香烃、烷烃与含氧有机物为主要物种.(2)小型客车、工业防护涂料、重型货车、焦化行业是OFP与SOAP的最主要来源.(3)工业防护涂料、小型客车、重型货...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号