首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of HCB to interact with the receptor was investigated and . HCB, up to 1.0 μM, was not a potent competitor for the specific binding of [3H]-TCDD (0.3 nM) to rat hepatic cytosol. Administration of HCB (3000 ppm in the diet) to rats for up to 7 days resulted in a decrease in the specific binding of [3H]-TCDD to hepatic cytosol, as compared to pair-fed control rats. These results suggest that HCB may be able to interact, either directly or indirectly, with the hepatic receptor .  相似文献   

2.
Abstract

Cyclodiene insecticides, hexachlorocyclohexanes, pyrethroids, bicyclophosphates, the bicycloorthocarboxylate insecticides and some of their metabolites and environmental degradation products are central nervous system toxicants with high specific binding affinity to the chloride channel of the γ‐ aminobutyric acid (GABA)A receptor‐ionophore sites. [35S] tertiary‐butylbicyclophosphorothionate (TBPS) with specific activity higher than 60 Ci/mmole has a high binding affinity to the same sites and is now commercially available and can be used to label the GABAA receptor for the development of a radioreceptor assay technique. The GABA receptor was prepared by ultra centnfugation and dialysis of brain homogenates of either cow, goat, rat or catfish. The receptor was then labeled with [35S] TBPS and the assay was conducted by measuring the displacement of radioactivity following incubation with samples containing the analytes. A radioreceptor assay protocol was developed to measure the amount of the α‐endosulfan in blood samples. The assay was extremely sensitive, and can detect 0.2 nM of endosulfan at a level equivalent to 0.08 ppb or 8x10‐11 gm of endosulfan in each ml of the blood samples.  相似文献   

3.
Abstract

Central serotoninergic (5‐hydroxytryptamine, 5HT) pathways are believed to be involved in the mechanisms of anorexia and/or emesis evoked by the trichothecene mycotoxin deoxynivalenol (DON). Using an in vitro membrane receptor binding assay, the competitive potency of DON was investigated against several radioactive ligands that have a high affinity for selective 5HT‐receptor subgroups. Receptor site densities and displacement profiles in twelve selected regions of pig brain were investigated. Overall, DON possessed only minimal efficacy to competently block any of the 5HT‐ligands tested. IC50 values (50% inhibitory concentration) of at least 5 mM DON were required to inhibit binding, and in certain regions concentrations of 100 mM were ineffective. In comparison, several standard 5HT‐antagonists showed 103‐105 times greater capability than DON to displace binding of these ligands. Because these results indicated DON possesses only weak affinity for the 5HT‐receptor subtypes investigated here, this suggested that in vivo, unless relatively high concentrations of the toxin are present, its pharmacological effects may be mediated by mechanisms other than a functional interaction with serotoninergic receptors at the central level.  相似文献   

4.
Abstract

Five organophosphorous insecticides: Leptophos, EPN, Cyano‐fenphos, trichloronate and salithion proved to cause irreversible ataxia not only to chicken but also to mice and sheep. TOCP was included as a reference. Cyanofenphos blocked the catecholamine B‐receptor binding activity with 3H‐norepinephrine at a level similar to that of the specific inhibitor propranolol in the mouse heart preparation. In the lamb heart preparation, the B‐receptor was more sensitive to Leptophos, salithion and TOCP than to propranolol. The six compounds and their oxons were screened for their in‐vitro inhibition to monamine oxidase (MAO), acetyl cholinesterase (AChE) and neurotoxic esterase (NTE) in the brain of either mouse, lamb or chicken. It is believed that their AChE inhibition stands for their acute toxicity, while NTE inhibition is responsible for their paralytic ataxia.  相似文献   

5.
Abstract

Deltamethrin is a powerful neuroactive agent causing increased neurotransmitter release at the synapse. To understand the cause for such an action of this pyrethroid insecticide, we have studied its binding characteristics to the calcium channel by utilizing 3H‐verapamil as a specific ligand. It was found that deltamethrin is capable of competing at the same binding site as 3H‐verapamil. Also, it was found that nonlabeled verapamil could reduce the binding of 3H‐deltamethrin (tested at 1 nM) to its binding site. The EC50 value of verapamil to displace 50% of 3H‐deltamethrin was in the order of 0.3 μM, which coincides with the approximate KD value for this ligand to bind with calcium channels in the rat brain synaptosomal plasma membranes.  相似文献   

6.
The interaction of the phototoxic alkaloid coralyne with bovine and human serum albumins (BSA, HSA) was investigated. Absorbance and fluorescence quenching experiments revealed the formation of strong complexes. Based on the binding parameters calculated from Stern-Volmer quenching method, coralyne has higher affinity to BSA (∼105 M−1) compared to HSA (∼104 M−1). Forster resonance energy transfer studies showed that the specific binding distances between Trp (donor) of the proteins and coralyne (acceptor) were 2.95 and 3.10 nm, respectively. The bindings were favored by negative enthalpy and a stronger favorable entropy contribution. The heat capacity values for binding to BSA and HSA were similar, indicating the involvement of similar molecular forces in the complexation. Competitive binding experiments using site markers demonstrated that coralyne binds to site I (subdomain IIA) of both proteins. The secondary structure of the proteins was altered, suggesting a small but definitive partial unfolding on complexation.  相似文献   

7.

Purpose

The interaction between triclosan (TCS) and human serum albumin (HSA) was investigated in order to obtain the binding mechanism, binding constant, the type of binding force, the binding distance between the donor and acceptor, and the effect of TCS on the conformation change of HSA.

Methods

A HSA solution was added to the quartz cell and then titrated by successive addition of TCS. The fluorescence quenching spectra and synchronous spectra were recorded with the excitation and emission slits of the passage of band set at 10 and 20 nm. Three-dimensional fluorescence spectra of HSA were recorded before and after the addition of TCS. The capillary electrophoresis was conducted with the pressure injection mode at 0.5 psi for 5 s, separation under 25 kV, and detection at 214 nm.

Results

Fluorescence data indicated the fluorescence quenching of HSA by TCS was static quenching, and the quenching constants (K a ) were 1.14?×?105, 8.75?×?104, 6.67?×?104, and 5.00?×?104 at 293, 298, 303, and 309 K, respectively. The thermodynamic parameters, enthalpy change (??H) and entropy change (??S) for the interaction were calculated to be ?37.9 kJ mol?1 and 32.6 J?mol?1 K?1. The binding distance between TCS and tryptophan residues of HSA was obtained to be 1.81 nm according to F??rster nonradioactive energy transfer theory. The UV-Vis absorption spectroscopy, the synchronous fluorescence spectroscopy, three-dimensional fluorescence spectroscopy, and circular dichroism spectroscopy revealed the alterations of HSA secondary structure in the presence of TCS. Finally, the interaction between TCS and HSA was further confirmed by capillary electrophoresis.

Conclusions

TCS was bound to HSA to form the TCS-HSA complex, with the binding distance of 1.81 nm. Hydrophobic interaction and hydrogen bond were dominated in the binding. TCS could change the secondary conformation of HSA. This work provides an insight into noncovalent interaction between emerging pollutants and protein, helping to elucidate the toxic mechanism of such pollutants.  相似文献   

8.
This study reported the use of UV–visible and fluorescence spectroscopy and partial-least-square (PLS) multivariate regression for accurate and simultaneous quantifications of two widely used herbicides, propanil, 3′,4′-dichloropropionanilide (PPL) and bromoxynil, 3,5-dibromo-4-hydroxybenzonitrile (BXL) in human serum albumin (HSA) at physiological conditions. The binding affinity and thermodynamic properties of PPL-HSA and BXL-HSA complexes were also investigated. Partial-least-square (PLS) regression was used to collate the variability in the absorption or emission spectra of PPL-HSA and BXL-HSA complexes with PPL and/or BXL concentrations in HSA samples. The binding constants of 7.66× 108 M?1 for PPL-HSA and 4.88× 106 M?1 for BXL-HSA complexes were calculated at physiological conditions (temperature, 310 K; pH 7.4). Thermodynamic parameter values: enthalpy (ΔH) (13.99 kJ mol?1), entropy (ΔS) (0.078 kJ mol?1 K?1), and Gibbs free energy (ΔG) (?10.19 kJ mol?1) were determined for PPL-HSA complexation at physiological conditions. However, differences in thermodynamic property values of: ΔH (?214.3 kJ mol?1), ΔS (?0.563 kJ mol?1 K?1), and ΔG (?39.70 kJ mol?1) were observed for BXL–HSA complexes. The binding constants and negative ΔG values indicated strong binding affinity and thermodynamically favorability of PPL–HSA and BXL–HSA complex formation. Results of the PLS regression calibration showed good linearity (R2 ≥ 0.998289), high sensitivity, and impressive low limit-of-detections (LODs) of 1.38× 10?8 M for PPL and 1.68× 10?8 M for BXL that are comparable and/or lower than many previously reported LODs for herbicide and pesticide analyses. Most importantly, PLS regression is capable of simultaneous quantifications of PPL and BXL concentrations in HSA samples with good accuracy and low errors of 3.66%. UV–visible spectrophotometers and spectrofluorometers are fairly inexpensive, easy to use, and are readily available in almost every laboratory, making this protocol excellent and affordable for routine analysis of weed/pest control chemical residues in humans. The results of this study are significant and remarkable that will provide critical insight into the binding mechanism of herbicide toxicity in humans and non-target organisms, which are of special interest in the area of biomedical study, environmental risk assessment, and ecotoxicology.  相似文献   

9.
Methyl-triclosan (MTCS), a transformation product and metabolite of triclosan, has been widely spread in environment through the daily use of triclosan which is a commonly used anti-bacterial and anti-fungal substance in consumer products. Once entering human body, MTCS could affect the conformation of human serum albumin (HSA) by forming MTCS–HSA complex and alter function of protein and endocrine in human body. To evaluate the potential toxicity of MTCS, the binding mechanism of HSA with MTCS was investigated by UV–vis absorption, circular dichroism and Fourier transform infrared spectroscopy. Binding constants, thermodynamic parameters, the binding forces and the specific binding site were studied in detail. Binding constant at room tempreture (T = 298 K) is 6.32 × 103 L mol−1; ΔH0, ΔS0 and ΔG0 were 22.48 kJ mol−1, 148.16 J mol−1 K−1 and −21.68 kJ mol−1, respectively. The results showed that the interactions between MTCS and HSA are mainly hydrophobic forces. The effects of MTCS on HSA conformation were also discussed. The binding distance (r = 1.2 nm) for MTCS–HSA system was calculated by the efficiency of fluorescence resonance energy transfer. The visualized binding details were also exhibited by molecular modeling method and the results could agree well with that from the experimental study.  相似文献   

10.
Samples of humic substances were obtained from a waterworks at Fuhrberg, Germany. The material had a bimodal molecular size distribution with 40% of the total carbon in the 50,000–100,000-D (nominal molecular weight, NMW, in daltons) size fraction and 50% of the carbon in the <10,000-D (NMW) size fraction. The fulvic and humic acids isolated from the bulk humic substances were low in nitrogen content and had low H/C atomic ratios. Furthermore, the fulvic and humic acids had very similar elemental, spectral and copper binding characteristics. Over 70% of the carbon in both the fulvic and humic acids was present in aromatic or aliphatic groups, with 13C NMR analyses indicating approximately even distribution among the two types. Competitive elemental binding studies indicated that Ca2+, Mg2+, Al3+ and Fe3+ do not effectively compete for copper binding sites on these compounds. In humic acids, these cations are predominantly bond by carboxylic groups.  相似文献   

11.
Residential interior door positions influence the pollutant concentrations that result from short-term indoor sources, such as cigarettes, candles, and incense. To elucidate this influence, we reviewed past studies and conducted new experiments in three residences: a single-story 714 m3 ranch-style house, a 510 m3 two-story split-level house, and a 200 m3 two-story house. During the experiments, we released sulfur hexafluoride or carbon monoxide tracer gas over short periods (≤30 min) and measured concentrations in the source room and at least one other (receptor) room for various interior door opening positions. We found that closing a door between rooms effectively prevented transport of air pollutants, reducing the average concentration in the receptor room relative to the source room by 57–100% over exposure periods of 1–8 h. When intervening doors were partially or fully open, the reduction in average concentrations ranged from 3% to 99%, varying as a function of door opening width and the distance between source and receptor rooms.  相似文献   

12.
The interactions between metals (Ca2+ and Hg2+) and extracellular polymeric substances (EPS) extracted from the aerobic and anaerobic sludge in wastewater treatment reactors were investigated using a combination of zeta potential measurement and 3-dimensional excitation–emission matrix (EEM) fluorescence spectroscopy with parallel factor (PARAFAC) analysis. Results show that Ca2+ had no substantial effects on the EEM fluorescence spectra of the EPS, but their zeta potentials increased with the increasing Ca2+ dosage. However, Hg2+ had a significant effect on the EEM fluorescence spectra of the EPS, while their zeta potentials seemed not to be affected by the dose of Hg2+. The interactions between Hg2+ and EPS were elucidated using the fluorescence quenching with PARAFAC analysis, while the interactions between Ca2+ and EPS were evaluated by the zeta potential technique. The binding constants for Hg2+ and EPS were two orders of magnitude higher than those for Ca2+ and EPS, suggesting that the binding mechanisms between Ca2+ and EPS were different from those between Hg2+ and EPS. The results might be useful for understanding the roles of EPS in bacterial self-protection against heavy metals and the aggregate formation mechanisms through ionic bridging interactions.  相似文献   

13.
The purpose of this study was to examine the kinetics and equilibrium properties of freshwater algae with Cu2+. This was a model system to explore using algae as biosensors for water quality. Methods included making luminescence measurements (fluorescence) and copper ion-selective electrode (CuISE) measurements vs. time to obtain kinetic data. Results were analyzed using a pseudo-first-order model to calculate the rate constants of Cu2+ uptake by algae: k p(Cu?Calgae)?=?0.0025?±?0.0006?s?1 by CuISE and k p(Cu?Calgae)?=?0.0034?±?0.0011?s?1 by luminescence. The binding constant of Cu?Calgae, K Cu?Calgae, was 1.62?±?0.07?×?107?M?1. Fluorescence results analyzed using the Stern?CVolmer relationship indicate that algae have two types of binding sites of which only one appears to affect quenching. The fluorescence-based method was found to be able to detect the reaction of algae with Cu2+ quickly and at a detection limit of 0.1?mg?L?1.  相似文献   

14.
Metal mobilization in soil by two structurally defined polyphenols   总被引:2,自引:0,他引:2  
Polyphenols including tannins comprise a large percentage of plant detritus such as leaf litter, and affect soil processes including metal dynamics. We tested the effects of tannins on soil metal mobilization by determining the binding stoichiometries of two model polyphenols to Al(III) and Fe(III) using micelle-mediated separation and inductively coupled plasma optical emission spectroscopy (ICP-OES). By fitting the data to the Langmuir model we found the higher molecular weight polyphenol (oenothein B) was able to bind more metal than the smaller polyphenol (epigallocatechin gallate, EGCg). For example, oenothein B bound 9.43 mol Fe mol?1, while EGCg bound 4.41 mol of Fe mol?1. Using the parameters from the binding model, we applied the Langmuir model for competitive binding to predict binding for mixtures of Al(III) and Fe(III). Using the parameters from the single metal experiments and information about polyphenol sorption to soils we built a model to predict metal mobilization from soils amended with polyphenols. We tested the model with three natural soils and found that it predicted mobilization of Fe and Al with r2 = 0.92 and r2 = 0.88, respectively. The amount of metal that was mobilized was directly proportional to the maximum amount of metal bound to the polyphenol. The secondary parameter in each model was the amount of weak organically chelated Fe or Al that was in the soil. This study provides the first compound-specific information about how natural polyphenols interact with metals in the environment. We propose a model that is applicable to developing phytochelation agents for metal detoxification, and we discuss how tannins may play a role in metal mobilization from soils.  相似文献   

15.
This paper studies the partitioning and bioaccumulation of ten target metals (53Cr, Mn, Co, 60Ni, 65Cu, 66Zn, As, 88Sr, 95Mo and Ba) from oil sands tailings pond water (TPW) by indigenous Parachlorella kessleri. To determine the role of extracellular and intracellular bioaccumulation in metal removal by P. kessleri, TPW samples taken from two oil sands operators (Syncrude Canada Ltd. and Albian Sands Energy Inc.) were enriched with nutrient supplements.Results indicate that intracellular bioaccumulation played the main role in metal removal from TPW; whereas extracellular bioaccumulation was only observed to some extent for Mn, Co, 60Ni, 65Cu, 88Sr, 95Mo and Ba. The FTIR scan and titration of functional groups on the cell surface indicated low metal binding capacity by indigenous P. kessleri. However, it is believed that the dissolved cations and organic ligand content in TPW (such as naphthenic acids) may interfere with metal binding on the cell surface and lower extracellular bioaccumulation. In addition, the total bioaccumulation and bioconcentration factor (BCF) varied during the cultivation period in different growth regimes.  相似文献   

16.
A new algorithm has been derived for trajectory models to determine the transfer coefficient of each source along or adjacent to a trajectory and to calculate the concentrations of SO2, NOx, sulfate, nitrate, fine particulate matter (PM) and coarse PM at a receptor. The transfer coefficient tf (s m−1) is defined to be the ratio between the contributed concentration ΔC (μg m−3) to the receptor from a ground source and the emission rate of the source q (μg m−2 s−1) at a grid, i.e. tf≡ΔC/q. The model is developed by combining with a backward trajectory scheme and a circuit-type's parameterization. First, the transfer coefficients of grids along or adjacent a back-trajectory are calculated. Then, the contributed concentration of each emission grid is determined by multiplying its emission rate with the transfer coefficient of the grid. Finally, the concentration at the receptor is determined by the summation of all the contributed concentrations within the domain of simulation.  相似文献   

17.

Introduction

Microcystins (MCs; cyclic heptapeptides) are produced by freshwater cyanobacteria and cause public health concern in potable water supplies. There are more than 60 types of MCs identified to date, of which MC-LR is the most common found worldwide. For MC-LR, the WHO has established a threshold value of 1???g?L?1 for drinking water. The present MCs removal methods such as coagulation, flocculation, adsorption, and filtration showed low efficiency for removing dissolved MC fraction from surface waters to the stipulated limit prescribed by WHO based on MC health impacts. The search for cost-effective and efficient removal method is still warranted for remediation of dissolved MC-LR-contaminated water resources.

Materials and methods

Molecularly imprinted polymer (MIP) adsorbent has been prepared using non-covalent imprinting approach. Using MC-LR as a template, itaconic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross-linking monomer, a MIP has been synthesized. Computer simulations were used to design effective binding sites for MC-LR binding in aqueous solutions. Batch binding adsorption assay was followed to determine binding capacity of MIP under the influence of environmental parameters such as total dissolved solids and pH.

Results and discussion

The adsorptive removal of MC-LR from lake water has been investigated using MIPs. The MIP showed excellent adsorption potential toward MC-LR in aqueous solutions with a binding capacity of 3.64???g?mg?1 which is about 60% and 70% more than the commercially used powdered activated carbon (PAC) and resin XAD, respectively. Environmental parameters such as total organic carbon (represented as chemical oxygen demand (COD)) and total dissolved solids (TDS) showed no significant interference up to 300?mg?L?1 for MC-LR removal from lake water samples. It was found that the binding sites on PAC and XAD have more affinity toward COD and TDS than the MC-LR. Further, the adsorption capacity of the MIP was evaluated rigorously by its repeated contact with fresh lake water, and it was found that the adsorption capacity of the MIP did not change even after seven adsorption/desorption cycles. The contaminated water of MC-LR (1.0???g?L?1) of 3,640?L could be treated by 1?g of MIP with an estimated cost of US $1.5.

Conclusions

The adsorption capacity of the MIP is 40% more than commercially used PAC and resins and also the polymer showed reusable potential which is one of the important criteria in selection of cyanotoxins remediation methods.  相似文献   

18.

Humic acids (HAs) determine the distribution, toxicity, bioavailability, and ultimate fate of heavy metals in the environment. In this work, ten HA fractions (F1–F10) were used as adsorbent, which were sequentially extracted from natural sediments of Lake Wuliangsuhai, to investigate the binding characteristics of Cu2+ to HA. On the basis of the characterization results, differences were found between the ten extracted HA fractions responding to their elemental compositions and acidic functional groups. The characterization results reveal that the responses of ten extracted HA fractions to their elemental compositions and acidic functional groups were different. The O/C and (O + N)/C ratio of F1–F8 approximately ranged from 0.66 to 0.53 and from 0.72 to 0.61, respectively; the measured results showed that the contents of phenolic groups and carboxyl groups decreased from 4.46 to 2.60 mmol/g and 1.60 to 0.58 mmol/g, respectively. The binding characteristics of Cu2+ to the ten HA fractions were well modeled by the bi-Langmuir model; the binding behavior of Cu2+ to all the ten HA fractions were strongly impacted by pH and ionic strength. The FTIR and SEM-EDX image of HA fractions (pre- and post-adsorption) revealed that carboxyl and phenolic groups were responsible for the Cu2+ sorption on the ten sequentially extracted HA fractions process, which is the same with the analysis of the ligand binding and bi-Langmuir models Accordingly, the adsorption capacity of the former HA fractions on Cu2+ were higher than the latter ones, which may be attributed to the difference of carboxyl and phenolic group contents between the former and latter extracted HA fractions. Additionally, the functional groups with N and S should not be neglected. This work is hopeful to understand the environmental effect of humic substances, environmental geochemical behavior, and bioavailability of heavy metals in lakes.

  相似文献   

19.
Cryogenic time-resolved laser-induced fluorescence spectroscopy was successfully used to identify uranium binding forms in selected German mineral waters of extremely low uranium concentrations (<2.0 μg/L). The measurements were performed at a low temperature of 153 K. The spectroscopic data showed a prevalence of aquatic species Ca2UO2(CO3)3 in all investigated waters, while other uranyl–carbonate complexes, viz, UO2CO3(aq) and UO2(CO3)2 2?, only existed as minor species. The pH value, alkalinity (CO3 2?), and the main water inorganic constituents, specifically the Ca2+ concentration, showed a clear influence on uranium speciation. Speciation modeling was performed using the most recent thermodynamic data for aqueous complexes of uranium. The modeling results for the main uranium binding form in the investigated waters indicated a good agreement with the spectroscopy measurements.  相似文献   

20.
As a part of a receptor model study of the Philadelphia, PA atmosphere, particulate samples were collected from seven air pollution sources in the area: two oil-fired power plants, a coal-fired power plant, a fluidized catalytic cracker, a refuse incinerator, a secondary aluminum smelter and an antimony ore roaster. Samples were collected In two size fractions with a dilution source sampler connected to a modified dichotomous sampler. Masses of collected material were determined gravlmetrlcally. Samples were analyzed for elements by x-ray fluorescence followed by Instrumental neutron activation analysis of some samples. Other samples were analyzed by chemical methods for volatile and nonvolatile carbon, SO4 2? and NH4 +. Data are presented for up to 46 elements and species on fine (<2.5-μm aerodynamic equivalent diameter) and coarse (2.5 μm < diam < 7-10 μm) particles from each source. Although the data were collected for use in Philadelphia, they should be of value for receptor modeling of other areas having similar sources. The most unexpected results were the large amounts of rare earth elements on particles from the catalytic cracker (e.g., 0.31 percent La In fine fraction) and the oil-fired power plants (120 and 420 ppm La in fine fraction). Substantial amounts of primary SO4 2? are released from the oil-fired plants, the SO4 2? concentrations accounting for 40-45 percent of the fine particulate mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号