共查询到20条相似文献,搜索用时 0 毫秒
1.
Effects of diurnal variation in phytoplankton photosynthesis on estimating daily primary production (DPP) were examined using field data from Sagami Bay, Japan. DPP at 5 m depth was calculated from the continuous data of chlorophyll a (Chl a) and light intensity monitored by a natural fluorescence sensor with and without considering time-dependent changes in the photosynthesis–irradiance (P–E) relationship. Chl a could be estimated from natural fluorescence examining the variations in the quantum yield of fluorescence (φ
f) and Chl a-specific light absorption coefficient (a*ph), and relating them to Chl a. The P–E relationship was determined by water sampling three times daily. A distinct diurnal pattern was observed for the maximum photosynthetic rate (P*max), being maximal at noon, while periodicity of the maximum light utilization coefficient (α*) was less obvious. The actual DPP was calculated by interpolating the P–E parameters from those obtained at dawn, noon, and dusk. For comparison, DPP was calculated by fixing the P–E parameters as the constants measured at dawn, noon or dusk for a day. The difference from the actual DPP was small when the P–E parameters measured at dawn (3% on average) and noon (5%) were used as the constants for a day. The difference was largest when the values at dusk were used (−43%). The medium values of P*max at dawn, its low values at dusk, and the fact that a major part of the DPP was produced around noon were responsible for these results. The present study demonstrates that measurement of the P–E parameters at dawn or noon can give a good estimation of DPP from natural fluorescence. 相似文献
2.
G. Savidge 《Marine Biology》1988,100(1):127-133
An investigation was carried out to determine the relationships between the principal photosynthetic parameters of natural marine phytoplankton and the properties of the irradiance of the preceding five days and the intra-daily ambient irradiance. Samples used in the study were collected from Strangford Lough, Northern Ireland during both winter and summer between 1979 and 1981. Photosynthetic parameters were determined for both constant and ambient incubation light fields. The fluctuation properties of the irradiance field exerted little influence on the photosynthetic parameters. In summer populations, the parameters obtained from morning samples were strongly influenced by the total irradiance recorded on the fourth day previous to experimentation, irrespective of the incubation irradiance. In contrast, the corresponding parameters from afternoon samples were most influenced by the total irradiance received during incubation. The influence of these two separate factors over a day may contribute to variability in the magnitude of diel changes in marine phytoplankton photosynthesis. 相似文献
3.
S. Taguchi 《Marine Biology》1976,37(3):197-207
Harmonic regression analysis has been used to determine the short-term variability in the photosynthetic rate (mgC/mg chlorophyll a/h) of phytoplankton in three inlets of Japan. In natural water without large zooplankton present, the photosynthetic rate [log P=log (100xmgC/mg chlorophyll a/h)] can be expressed as (B+A cos T). Factor B represents the average photosynthetic rate, of which the maximum is usually designated as P
max, and Factor A corresponds to the slope of the regression line. The phase of the periodicity, represented by T, is adjusted to give the highest correlation: usually T is expressed as [360/24 x (local time + 4)] in degrees. The correlation between Factors A and B is very high (r=0.95, P<0.001), indicating that Factor A may depend upon Factor B (potential activity of chlorophyll a). Both Factors A and B decrease with decreasing irradiance, but the slope of each regression between Factor A and irradiance varies with season. Continuous darkness reduces the phase of the periodicity to one cycle a day when phytoplankton has multiple cycles of photosynthetic rate per day. Adequate nutrient supply from zooplankton regeneration may cause an increase in Factor B; however, excess density of zooplankton decreases Factor A. 相似文献
4.
Decomposition of urea in seawater was studied in Mikawa Bay, a shallow eutrophic bay on the southern coast of central Japan. The urea concentration in seawater ranged from 1.3 to 5.9 μg-at. N/1 and comprised 12 to 40% of the dissolved organic nitrogen. Using 14C labelled urea, the rate of CO2 liberation from urea and the incorporation rate of urea carbon into the particulate organic matter were determined. For the surface samples, high rates of CO2 liberation from urea as well as the incorporation of urea carbon into the particulate organic matter were observed in the light, while much lower rates were obtained in the dark. Incubation experiments with exposure to different light intensities revealed that the rate of CO2 liberation from urea and the incorporation of urea carbon into particulate organic matter changed with light intensity, showing a pattern similar to that of photosynthesis. The highest liberation and incorporation rates were observed at 12,000 lux. Incubation in light and in dark produced marked decreases and increases, respectively, in urea and ammonia, while no appreciable changes were observed for nitrate and nitrite. It is suggested that urea decomposition associated with photosynthetic activity of phytoplankton is one of the major processes of urea decomposition, and that it plays a significant role in the nitrogen supply for phytoplankton in coastal waters. 相似文献
5.
Y. Collos C. Descolas-Gros M. Fontugne A. Mortain-Bertrand M. J. Chrétiennot-Dinet M. G. Frikha 《Marine Biology》1992,112(3):491-496
Under conditions of natural irradiance, the development and decline of a flagellate-dominated phytoplankton population was followed in a coastal North Atlantic pond over a 3 d period in summer 1986. Irradiance negatively affected phytoplankton biomass estimated as chlorophyll a, which decreased during the day at photosynthetically available radiation (PAR) levels above 600 to 1000 mol m-2s-1; chlorophyll a increased at PAR values below this threshold. In addition, an inverse relationship was found between changes in chlorophyll a and changes in dissolved inorganic nitrogen, indicating synthesis of nitrogenous biomass mainly at night and degradation mainly during the day, with intense exchanges of material between the particulate and dissolved nitrogen fractions. The natural abundance of 13C in particulate matter increased initially, and then remained constant, and was controlled mainly by the ratio -carboxylases activity: ribulose biphosphate carboxylase activity. The hypothesis that the latter enzyme is broken down under high irradiance and is partly responsible for increases in external dissolved nitrogen was rejected. 相似文献
6.
Phytoplankton assemblages were collected during spring blooms in 1982 in Washington State and in Hawaii. Sinking rate responses of these assemblages were examined under nitrate, phosphate, and silicate depletion. Ambient nutrient concentrations, chlorophyll concentrations, photosynthetic rates, sinking rates, and floristic compositions were determined. Under nutrient-replete conditions, the temperate assemblage, composed primarily of large centric diatoms, had a sinking rate of 0.96 m d-1; sinking rates did not change appreciably over 4 d without nitrate. Without phosphate or silicate, the sinking rates remained constant for 3 d and then increased after biomass indices began to decline. These findings illustrate the potential importance of phosphate or silicate depletion to the sedimentation of spring-bloom diatom populations. The subtropical assemblage, composed primarily of diatoms, coccolithophorids, and dinoflagellates, had an initial sinking rate of 0.22 m d-1 and did not display substantial sinking rate changes in the absence of nitrate, phosphate or silicate. Floristic data consistently showed a proliferation of pennate diatoms, which had lower settling rates than centric diatoms. Growth and sedimentation patterns indicated a competitive advantage for pennate diatom components of subtropical assemblages; this in turn may limit phytoplankton sedimentation losses in such ecosystems. 相似文献
7.
8.
Diel oscillations in the photosynthesis-irradiance (P-I) relationship are described for marine phytoplankton assemblages at 6 stations in an upwelling area off the southern California coast (USA) between May and August 1980. The initial slope () and asymptote (P
max) of P-I curves changed significantly over the day; both parameters were in phase and had similar changes in amplitude. The diel oscillations in photosynthesis appeared unrelated to changes in chlorophyll a concentrations. Amplitudes of daily variations in photosynthesis ranged from approximately 3 to 9, as measured by the maximum to minimum ratio for photosynthetic capacity (P
max). Diatom-rich samples collected during an upwelling event and those dominated by dinoflagellates both had midday to early afternoon maxima in and P
max. Samples from other locations had peak photosynthetic activity later in the afternoon. The relationship between and P
max was consistent in all phytoplankton samples analyzed, with a surprisingly high correlation considering the spatial and temporal scales encompassed in this study. These results indicate that the photosynthesis-irradiance (P-I) relationship is time-dependent and, moreover, that changes in and P
max are closely coupled for a variety of natural phytoplankton assemblages. 相似文献
9.
Products of photosynthesis in natural populations of marine phytoplankton from the Gulf of Maine 总被引:4,自引:0,他引:4
We have measured the photosynthetic assimilation of 14C-carbon dioxide into (1) ethanol-soluble, (2) hot-trichloroacetic acid (TCA)-soluble (polysaccharide), and (3) protein fractions of natural populations of marine phytoplankton. Diurnal studies showed a continuing incorporation of carbon-14 into the protein fraction during hours of darkness. This was accompanied by a concomitant decrease in the proportion assimilated into polysaccharide. When incorporation was measured under constant experimental conditions, the pattern of photosynthesis did not vary from one time of day to another. At one station approximately 12 km south of Boothbay Harbor, the proportion of carbon entering protein showed marked seasonal changes. During the winter, approximately 10 to 20% of the fixed carbon was incorporated into protein. During the summer the value increased to 22 to 35%. Between these times, a transient high value of 37 to 47% of the fixed carbon entering protein coincided with the spring bloom. The increases in proportion incorporated into protein were largely paralleled by equivalent decreases in the polysaccharide fraction. The proportion of carbon incorporated into protein during photosynthesis also increased markedly at reduced light intensities. This increase occurred both when populations were incubated in neutral-density filters and when incubated at increasing depths in the photic zone. There was little consistent and significant difference between the neutral-density filters and depth in the water column, suggesting a minimal role for light quality. The extent of the increased relative rate of protein synthesis at the lower light intensities depended on the nutritional state of the phytoplankton. For example, summer populations from water containing low concentrations of inorganic nutrients responded less dramatically to reduced light intensities than did populations from nutrient-rich waters. 相似文献
10.
The effects of three oils on marine phytoplankton photosynthesis 总被引:4,自引:0,他引:4
The effects of 3 oils (Venezuelan crude, No. 2 fuel, and No. 6 fuel) on the photosynthesis of natural phytoplankton communities from Bedford Basin, Nova Scotia (Canada), and the northwest Atlantic Ocean between Halifax and Bermuda were examined using a radiocarbon method. The 3 oils can inhibit photosynthesis, and the degree of inhibition depends upon oil type and concentration. The No. 2 fuel oil was the most toxic. Under certain conditions, low concentrations of Venezuelan crude oil can stimulate photosynthesis. On the basis of these results, it is concluded that present levels of oil contamination in Bedford Basin could be inhibiting photosynthesis by a few percent, while present levels in open ocean water have no apparent deleterious effect on photosynthesis.Bedford Institute of Oceanography Contribution. 相似文献
11.
Effects of light intensity on photosynthesis and dark respiration in six species of marine phytoplankton 总被引:4,自引:0,他引:4
Using an oxygen polarographic electrode, the shapes of photosynthetic curves and the effects of light on dark respiration in 6 species of marine phytoplankton wer examined. The species used were Skeletonema costatum, Ditylum brightwellii, Cyclotella nana (Thalassiosira pseudonana) (all Bacillariophyceae), Dunaliella tertiolecta (Chlorophyceae), Isochrysis galbana (Haptophyceae), and Gonyaulax tamarensis (Dinophyceae). A hysteresis was observed in all species examined with respect to increasing and decreasing light. Compensation light intensities varied by over 4 orders of magnitude, suggesting that the 1% light depth is an ambiguous measure of the euphotic zone. The data suggest that dark respiration accounts for ca. 25% of gross photosynthesis, but is species-dependent. In addition, respiration versus cell size does not describe an inverse exponential function over the size scales examined.This research was performed under the auspices of the United States Energy Research and Development Administration under Contract No. EY-76-C-02-0016. 相似文献
12.
Diel periodicity of photosynthesis in marine phytoplankton 总被引:3,自引:0,他引:3
Short-term changes in photosynthesis were documented for 17 of 24 marine phytoplankton species, representing a range of taxonomic groups. Periodicity in phytoplankton photosynthesis on light-dark cycles (diel periodicity) was widespread but not universal for the species studied. The centric diatoms Lauderia borealis, Ditylum brightwellii, Stephanopyxis turris, Coscinodiscus rex, Chaetoceros gracile, and Biddulphia mobiliensis had strong diel periodicity in photosynthetic capacity (P
max). Amplitudes of the daily variations ranged from 2.9 to >50, with maxima in the morning or near midday, and with minima during the dark period, and these variations were not dependent on changes in cell pigmentation. There was some evidence for sustained photosynthetic periodicity in constant conditions in several diatoms, and an endogenous rhythm may have been present. The photosynthesis-irradiance (P-I) relationship was time-dependent for representative marine diatoms, with both the initial slope () and the asymptote (P
max) of P-I curves exhibiting significant synchronous diel oscillations. Moreover, detailed studies of the amplitude and timing of photosynthetic periodicity for the diatoms L. borealis and D. brightwellii demonstrated large temporal variations in photosynthesis with morning maxima. These P-I oscillations are discussed with reference to models of primary production which use the relationship between photosynthesis and light as a component of predictive equations for phytoplankton growth in the sea. 相似文献
13.
Carbon flow into the end-products of photosynthesis in short and long incubations of a natural phytoplankton population 总被引:4,自引:0,他引:4
During a cruise to the eastern Canadian Arctic (Northern Baffin Bay) in the summer of 1980, we took advantage of the 24-h photoperiod to conduct a 32-h time course experiment of 14C accumulation under natural solar radiation. The degree of non-linearity in the time course was judged against a time-dependent curve of radioactivity constructed by cumulatively adding the amount of 14C taken up in sequential short (2 h) incubations of plankton held in a replicate bottle but left unlabelled until removed for assay. Departure from linearity was due first to decreasing rates of 14C incorporation into polysaccharides and then into lipids. There was a close correspondence between 14C incorporation into proteins in the 32-h incubation and in the sequence of short incubations. These observations are consistent with patterns in utilization of photosynthetic end-products established from laboratory studies of unicellular algal cultures. Based on parallel or independent control experiments, it was judged that complicating factors such as diel light changes, nitrogenous nutrient exhaustion, bottle size effects or inhibitory conterminants in NaH14CO3 stock solutions would not seriously affect our interpretation that non-linearity resulted from catabolic loss of radiocarbon. 相似文献
14.
The effect of solar UV radiation (UVR: 290–400 nm) on the 32P-phosphate uptake rates of natural phytoplankton from a southern Atlantic Ocean coastal lagoon was studied during two consecutive summers at one station located in the marine-influenced area. Due to the shallowness of this lagoon and also to the generally high UV water transparency in this area, phytoplankton are exposed to high UV irradiances. The 32P-phosphate uptake rates measured at several phosphate concentrations were inhibited up to 59.2% by UVR, although uptake stimulation was also observed in four of nine experiments (up to 28%). The effect of UVR on the apparent maximum velocity of 32P-phosphate uptake (V
uptake) ranged from an inhibition of 49% to a stimulation of 31%. Although the highest inhibition values were associated with the maximum registered incident UV irradiance, a significant correlation between these two parameters was not observed. Changes in microalgal community structure were not related to the observed UV effect; however, a significant relationship was found between the inhibition of 32P-phosphate uptake rates and V
uptake used as a proxy for phosphate deficiency. This relationship suggests that the phytoplankton phosphorus nutritional status modulates their sensitivity to UV exposure. Overall, our results suggest that solar UVR has the potential to affect phosphorus cycling.Communicated by O. Kinne, Oldendorf/Luhe 相似文献
15.
The influence of different nutrient sources on the seasonal variation of nutrients and phytoplankton was assessed in the northern area of the Perth coastal margin, south–western Australia. This nearshore area is shallow, semi-enclosed by submerged reefs, oligotrophic, nitrogen-limited and receives sewage effluent via submerged outfalls. Analysis of 14 year of field observations showed seasonal variability in the concentration of dissolved inorganic nitrogen and phytoplankton biomass, measured as chlorophyll-a. For 2007–2008, we quantified dissolved inorganic nitrogen inputs from the main nutrient sources: superficial runoff, groundwater, wastewater treatment plant effluent, atmospheric deposition and exchange with surrounding coastal waters. We validated a three-dimensional hydrodynamic-ecological model and then used it to assess nutrient-phytoplankton dynamics. The model reproduced the temporal and spatial variations of nitrate and chlorophyll-a satisfactorily. Such variations were highly influenced by exchange through the open boundaries driven by the wind field. An alongshore (south–north) flow dominated the flux through the domain, with dissolved inorganic nitrogen annual mean net-exportation. Further, when compared with the input of runoff, the contributions from atmospheric-deposition, groundwater and wastewater effluent to the domain’s inorganic nitrogen annual balance were one, two and three orders of magnitude higher, respectively. Inputs through exchange with offshore waters were considerably larger than previous estimates. When the offshore boundary was forced with remote-sensed derived data, the simulated chlorophyll-a results were closer to the field measurements. Our comprehensive analysis demonstrates the strong influence that the atmosphere–water surface interactions and the offshore dynamics have on the nearshore ecosystem. The results suggest that any additional nutrient removal at the local wastewater treatment plant is not likely to extensively affect the seasonal variations of nutrients and chlorophyll-a. The approach used proved useful for improving the understanding of the coastal ecosystem. 相似文献
16.
Parameters derived from photosynthesis-irradiance (P-I) models, although often empirical in nature, are useful indicators of the photoadaptive state of phytoplankton in culture and in situ. However objective criteria for determining significant changes in P-I curves are rarely provided, because confidence intervals for parameters of non-linear models are not estimated easily. Examination of least-squares residuals in parameter space and Monte Carlo approaches have been used to estimate confidence regions around parameter values, but the computationally intensive nature of these methods has prevented their routine application. We present an alternative method of estimating confidence intervals for parameters of P-I curves that runs quickly on a microcomputer and is easily combined with common parameter-estimation routines. This algorithm was tested using a 3-parameter P-I model and curves describing a wide range of photoadaptive states, with different numbers of observations and different amounts of inherent variability. The method produced results comparable to the Monte Carlo technique. This analysis makes it possible to specify the sample size required to define parameters with acceptable confidence as a function of data variance and photoadaptive state. In most reasonable situations, 25 observations are sufficient. 相似文献
17.
D. A. Kiefer 《Marine Biology》1973,22(3):263-269
The cellular fluorescence of chlorophyll a in natural phytoplankton was measured during vertical profiling in marine coastal waters. The ratio of in situ fluorescence to chlorophyll a concentration, which was considered as an index of cellular fluorescence, varied over a wide range, with large changes occurring both within the water column and between profiling sites. The variations were caused in part by an inhibition in the fluorescence of cells exposed to intense sunlight. The inhibition, which occurred at irradiances exceeding 0.15 langley (ly)/min, led to diel fluctuations in the fluorescence of those phytoplankton near the sea surface. The remaining variations were independent of changes in temperature, but were unexplained. Both light-dependent and light-independent variations in cellular fluorescence will affect the accuracy of the continuous, fluorometric measurement of in vivo chlorophyll. 相似文献
18.
Primary production as influenced by diel periodicity of phytoplankton photosynthesis 总被引:4,自引:0,他引:4
Diel periodicity in parameters of photosynthesis-irradiance (P-I) curves was incorporated into calculations of integral daily phytoplankton production for the Santa Barbara Channel off southern California (USA). Model equations of the relationship between photosynthesis and light were used in combination with observed slope () and asymptote (P
max) values presented in the preceding paper. Primary production was always 19 to 39% less than comparable estimates obtained with the assumption of constant maximum daily and P
max values. Regardless of which P-I formulation was used of 6 tested, observed production (using a temporal series of simulated in situ incubations) ranged from 13% less to 25% more than estimates from constant midday and P
max values. The amplitude and timing of diel oscillations differed somewhat among 3 field stations. Maximum to minimum ratios ranged from approximately 3 to 5 for , and 4 to 6 for P
max. The differences in amplitude and timing of oscillations in P-I curves both contributed to errors in calculating phytoplankton production. Thus, photosynthetic periodicity in the upwelling area of the Santa Barbara Channel influences phytoplankton production. There were oscillations in both and P
max, and the time-dependence of these parameters should be considered to improve the accuracy of predictive models of primary productivity. 相似文献
19.
Cell growth of a coastal marine diatom, Phaeodactylum tricornutum (stock cultures), and two red tide marine flagellates, Heterosigma akashiwo and Gymnodinium mikimotoi (stock cultures), in the presence of soluble chelated Fe(III)-EDTA (1:2) and of four different phases of ferric oxide colloids were experimentally measured in culture experiments at 20°C under 3000 lux fluorescent light. Soluble Fe(III)-EDTA induced the maximal growth rates and cell yields. The short-term uptake rate of iron by H. akashiwo in Fe(III)-EDTA medium was about eight times faster than that in solid amorphous hydrous ferric oxide (Fe2O3·xH2O) medium. In culture experiments supplied with four different ferric oxide forms, the orders of cell yields are amorphous hydrous ferric oxide>-FeOOH (lepidocrocite)>Fe5O7(OH)·4H2O (hydrated ferric oxyhydroxide polymer >-FeOOH (goethite). The specific growth rates () at logarithmic growth phase in Fe(III)-EDTA, amorphous hydrous ferric oxide and -FeOOH media were significantly greater than those in Fe5O7 (OH)·4H2O and -FeOOH media. The thermodynamically stable forms such as Fe5O7(OH)·4H2O and -FeOOH supported a little or no phytoplankton growth. The iron solublities and/or proton-promoted iron dissolution rates of these colloidal ferric oxides in seawater at 20°C were determined by simple filtration techniques involving -activity measurements of 59Fe. The orders of solubilities and estimated dissolution rate constants of these ferric oxides in seawater were consistent with that of cell yields in the culture experiments. These results suggest that the availability of colloidal iron to provide a source of iron for phytoplankton is related to the thermodynamic stability and kinetic lability of the colloidal ferric oxide phases, which probably control the uptake rate of iron by phytoplankton. 相似文献
20.
Buoyancy of natural populations of marine phytoplankton 总被引:1,自引:0,他引:1
C. Lännergren 《Marine Biology》1979,54(1):1-10
Buoyancy of natural populations of marine phytoplankton was studied in a fjord in western Norway during the diatom bloom and in autumn. The study was carried out under approximate in situ conditions by means of an apparatus described in the paper. During the spring bloom, positive buoyancy was observed only once. Sinking rates of individual fractions ranged from 0 to more than 9 m day-1, and the mean sinking rates of the total chlorophyll content from 0 to at least 2. 2 m day-1. The highest rates occurred in the post-bloom period, while sinking appeared negligible from the onset of the bloom up to its culmination. In autumn, the population was dominated by small, flagellated cells. Positive buoyancy, or upward migration, was then observed in two out of three experiments. 相似文献