首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental Science and Pollution Research - Conventional agriculture relies heavily on chemical pesticides and fertilizers to control plant pests and diseases and improve production....  相似文献   

2.
Nitrogen release from organic nutrient sources in soil is influenced by a range of factors such as soil temperature and moisture, and chemical composition of the organic material. Chemical composition can, to a certain degree, be controlled to increase the synchronization of nitrogen (N) release with plant N demand, whereas climatic factors cannot be controlled and so must be taken into account when planning management measures. In this paper, we discuss different ways to affect N release through manipulation of the chemical composition of fresh or pretreated plant materials and animal manures, timing of incorporation, and intentional distribution during application. We conclude by giving an overview of off-farm options that may need to be implemented to achieve improved use of N, especially in agricultural systems with surplus N.  相似文献   

3.
Production of seaweeds in Chile has fluctuated between 120,000 and 316,000 wet metric tons per year during the last ten years. The most important Phaeophyta are exploited for alginate production and as abalone feed. Among the Rhodophyta, Chilean production comes mainly from wild stocks, as at present cultivation on a commercial scale is restricted to Gracilaria. Large scale production of this species has been the result of a sharp increase in the number of farms. During the last five years an important trend towards diversification of seaweed exploitation and cultivation has developed. The demand for brown algal materials for the alginate industry, abalone cultivation, seaweed flour production for human and animal feeding and the development of novel food products has encouraged the farming of Macrocystis pyrifera and of red edible seaweeds, such as Chondracanthus chamissoi and Callophyllis variegata, is also promoting the development of cultivation activities.  相似文献   

4.
Environmental Science and Pollution Research - Waste mushroom substrate (WMS) generated in large quantities from mushroom production process has caused severe environmental pollution. As a...  相似文献   

5.
Measuring carbon in forests: current status and future challenges   总被引:30,自引:0,他引:30  
To accurately and precisely measure the carbon in forests is gaining global attention as countries seek to comply with agreements under the UN Framework Convention on Climate Change. Established methods for measuring carbon in forests exist, and are best based on permanent sample plots laid out in a statistically sound design. Measurements on trees in these plots can be readily converted to aboveground biomass using either biomass expansion factors or allometric regression equations. A compilation of existing root biomass data for upland forests of the world generated a significant regression equation that can be used to predict root biomass based on aboveground biomass only. Methods for measuring coarse dead wood have been tested in many forest types, but the methods could be improved if a non-destructive tool for measuring the density of dead wood was developed. Future measurements of carbon storage in forests may rely more on remote sensing data, and new remote data collection technologies are in development.  相似文献   

6.
7.
We investigated whether nitrate-N (NO3(-)-N) concentrations of shallow groundwater (< 30 m from the land surface) in a region of intensive agriculture could be predicted on the basis of land use information, topsoil properties that affect the ability of topsoil to generate nitrate at a site, or the 'leaching risk' at different sites. Groundwater NO3(-)-N concentrations were collected biannually for 3 years at 88 sites within the Waikato Region of New Zealand. The land use was classed as either the predominant land use of the farm where the well or bore was located, or the dominant land use within a 500 m radius of the well or bore. Topsoil properties that affect the ability of soil to generate nitrate were also measured at all the sites, and a leaching risk assessment model 'DRASTIC' was used to assess the risk of NO3(-)-N leaching to groundwater at each site. The concentration of NO3(-)-N in shallow groundwater in the Waikato Region varied considerably, both temporally and spatially. Nine percent of sites surveyed had groundwater NO3(-)-N concentrations exceeding maximum allowable concentrations of 11.3 ppm recommended by the World Health Organisation for potable drinking water which is accepted as a public health standard in New Zealand. Over half (56%) of the sites had concentrations that exceeded 3 ppm, indicating effects of human activities (commonly referred to as a human activity value). Very few trends in NO3(-)-N concentration that could be attributed to land use were identified, although market garden sites had higher concentrations of NO3(-)-N in underlying groundwater than drystock/sheep sites when the land use within 500 m radius of a sampling site was used to define the land use. There was also some evidence that within a district, NO3(-)-N concentrations in groundwater increased as the proportion of area used for dairy farming increased. Compared to pastoral land, market gardens had lower total C and N, potentially mineralisable N and denitrifying enzyme assay. However, none of these soil properties were directly related to groundwater NO3(-)-N concentrations. Instead, the DRASTIC index (which ranks sites according to their risk of solute leaching) gave the best correlation with groundwater NO3(-)-N concentrations. The permeability of the vadose zone was the most important parameter. The three approaches used were all considered unsuitable for assessing nitrate concentrations of groundwater, although a best-fit combination of parameters measured was able to account for nearly half the variance in groundwater NO3(-)-N concentrations. We suggest that non-point source groundwater NO3(-)-N contamination in the region reflects the intensive agricultural practices, and that localised, site-specific, factors may affect NO3(-)-N concentrations in shallow groundwaters as much as the general land use in the surrounding area.  相似文献   

8.
9.
Macro-porosity and leaching of atrazine in tilled and orchard loamy soils   总被引:1,自引:0,他引:1  
Atrazine is the most commonly detected herbicide in the groundwater. Leaching of atrazine largely depends on soil management practices. The aim of this study was to examine leaching of atrazine in tilled and orchard silty loam soils. The experimental objects included: conventionally tilled field (CT) with main tillage operations including pre-plow (10 cm) + harrowing, mouldboard ploughing (20 cm), and a 35 year-old apple orchard (OR) with a permanent sward. To determine leaching of atrazine soil columns of undisturbed structure were taken with steel cylinders of 21.5 cm diameter and 20 cm high from the depth of 0–20 cm. All columns were equilibrated at water content corresponding to field capacity (0.21 kg kg−1). Atrazine suspended in distilled water was dripped uniformly onto the surface of each column. Then water was infiltrated and breakthrough times of leachates were recorded. Atrazine concentration in the leachates was determined by means of HPLC Waters. Macro-porosity and percolation rate were higher in OR than CT soil. Cumulative recovery % of the atrazine applied was 1.267% for OR and approximately one third more from the CT soil but the rate of leaching (per unit of time) was greater from the OR soil. The lower leaching under OR than CT can be due to a greater SOM and the presence of earthworm burrows with organic burrow linings that could adsorb atrazine and contribute to preferential flow allowing solutes to bypass parts whereas the greater rate of leaching due to a greater infiltration rate.The results indicate potential of management practices for minimizing atrazine leaching.  相似文献   

10.
Nutrient enrichment from nonpoint source pollution is one of the main causes of poor water quality and biotic impairment in many streams and rivers worldwide. The establishment of reference nutrient conditions in a river system is an essential but difficult task for water quality control. In the present study, the reference concentrations of total nitrogen (TN) and total phosphorus (TP) were estimated in an intensive agricultural watershed, the Cao-E River system of Eastern China. Based on a 3-year water quality monitoring data in the river system, three approaches were adopted to establish the reference concentrations of TN and TP, those are the 75th percentile of frequency distribution of nutrient concentrations in reference streams, the 25th percentile of frequency distribution of nutrient concentration in general streams (including reference and non-reference streams) and regression modeling. Results showed that the nutrient reference concentrations were slightly different from different approaches. By the three approaches, the average reference concentrations for TN and TP in the study system were 1.73?±?0.13 mg l?1 and 55.23?±?4.77 μg l?1 with CV of 7.39 % and 8.63 %, respectively. Accordingly, the reference concentrations for TN and TP were recommended to be 1.70 mg l?1 and 55 μg l?1, respectively. In the mountainous and intensive agricultural watershed, the major anthropogenic impacts to river water quality were the urban area percentage cover, cropland area with slopes 0–8°, and livestock and poultry waste loads density. These variables could account for 89.7 % and 80.3 % of the total variations for TN and TP concentration, respectively.  相似文献   

11.
12.
The presence of elevated concentration of arsenic (As) in natural hydrologic systems is regarded as the most formidable environmental crisis in the contemporary world. With its substantial presence in the drinking water of more than thirty countries worldwide, and with an affected population of more than 100 million, it has been termed as the largest mass poisoning in human history. In this special issue, we have tried to provide the most recent research advances on controls and challenges of this severe groundwater contaminant. The articles in this issue, originally presented in the 2006 Geological Society of America Annual Meeting, address the distribution of As in various geologic and geographic settings, the controls of redox and other geochemical parameters on its spatial and temporal variability, the influence of sedimentology and stratigraphy on its occurrence, and mechanisms controlling its mobility. The knowledge available from these studies should provide a roadmap for future research in arsenic contamination hydrology.  相似文献   

13.
Antibiotics are frequently used in agricultural systems to promote livestock health and to control bacterial contaminants. Given the upsurge of the resistant fecal indicator bacteria (FIB) in the surface waters, a novel statistical method namely, microbial risk assessment (MRA) was performed, to evaluate the probability of infection by resistant FIB on populations exposed to recreational waters. Diarrheagenic Escherichia coli, except E. coli O157:H7, were selected for their prevalence in aquatic ecosystem. A comparative study between a typical E. coli pathway and a case scenario aggravated by antibiotic use has been performed via Crystal Ball® software in an effort to analyze a set of available inputs provided by the US institutions including E. coli concentrations in US Great Lakes through using random sampling and probability distributions. Results from forecasting a possible worst-case scenario dose-response, accounted for an approximate 50% chance for 20% of the exposed human populations to be infected by recreational water in the U.S. However, in a typical scenario, there is a 50% chance of infection for only 1% of the exposed human populations. The uncertain variable, E. coli concentration accounted for approximately 92.1% in a typical scenario as the major contributing factor of the dose-response model. Resistant FIB in recreational waters that are exacerbated by a low dose of antibiotic pollutants would increase the adverse health effects in exposed human populations by 10 fold.  相似文献   

14.
Sardar D  Kole RK 《Chemosphere》2005,61(9):1273-1280
A laboratory experiment was conducted to study the persistence and metabolism of chlorpyrifos in Gangetic Alluvial soil of West Bengal and also to evaluate their effect on the availability of the major plant nutrients (N, P and K) in soil following the application of chlorpyrifos @ 1 kg (T1), 10 kg (T2) and 100 kg (T3) a.i.ha(-1). The dissipation followed first order kinetics and the calculated half-life (T1/2) values ranged from 20 to 37 days. The primary metabolite of chlorpyrifos, 3,5,6-trichloropyridinol (TCP) was detected from 3rd day after application and was at maximum on 30th day which decreased progressively to non-detectable level (NDL) on 120th day for all the treatment doses. The secondary metabolite 3,5,6-trichloro-2-methoxy pyridine (TMP) was detected on 30th, 15th and 7th day in T1, T2 and T3 doses respectively which decreased to NDL during 90-120th day. ANOVA study revealed significant decrease in the available N and P content in soil treated with chlorpyrifos in comparison to the control set. The inhibitory effect on available N was attributable to TMP and for P it was due to the presence of TCP and TMP rather than chlorpyrifos itself as revealed by the step wise multiple regression technique. In the later stage of incubation, however the average N and P status was recovered significantly at 120 days which might be due to the disappearance of the metabolites. The variation due to time of observations or treatment doses was minimum in case of available K in soil.  相似文献   

15.
Agricultural land use is transforming rapidly in Southeast Asia, often supported by development policies aiming primarily at economic growth. However, the socioeconomic outcomes of these changes for smallholder farmers remain unclear. Here, we systematically review cases of agricultural land use change in Southeast Asia to assess their socioeconomic outcomes and potential trade-off and synergies in these outcomes. Of the 126 reviewed cases, we find mostly positive outcomes for income (SDG 1, 100 cases) and employment (SDG 8, 11 cases), while outcomes on health (SDG 3, 9 cases) were mixed, and outcomes for food security (SDG 2, 44 cases), gender equality (SDG 5, 13 cases), and economic equality (SDG 10, 14 cases) were mostly negative. Studies describing multiple outcomes show indications of synergies between income and food security, and between income and employment, but also potential trade-offs between income and economic equality. In addition, we find that economic land concessions result in multiple negative outcomes more often than other types of land governance regimes. The results provide evidence that economic gains from agricultural land use change often come at a cost of other dimensions of sustainable development.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-022-01712-4.  相似文献   

16.
Environmental Science and Pollution Research - The rapid economic development in China places a large demand for energy, and as a result, thermal power plants in China are producing an enormous...  相似文献   

17.
美英  郝勇  高龙 《环境工程学报》2023,17(6):2037-2051
植物滞留系统作为一种低影响开发 (LID) 雨水管理措施,能有效去除雨水径流中的各种污染物。为探究磷污染物在介质中的运移机理尤其是介质中磷形态的运移,通过对填料层土壤介质施加不同添加剂对磷的去除效果,以及介质中各形态磷转化机理进行研究。结果表明:土壤介质添加剂为葡萄糖、淀粉时,加入淀粉的混合介质对磷的去除率比土壤介质高,对介质中稳定有机磷及中等稳定有机磷含量变化情况没有明显影响,但介质中铁磷有一定增加。与土壤介质相比,土壤与粉煤灰混合介质对磷的去除率明显提高,且混合介质中的水溶性磷、钙磷、铝磷增加量明显增大。改变人工模拟雨水pH的实验结果显示,在含氧量高的土壤介质表层,当模拟雨水pH为7~12,介质中的无机磷中水溶性磷的增加量明显;然而,当pH小于7时,介质中的无机磷中水溶性磷 (Ads-P) 的增加量微弱。柱实验表明,在植物滞留系统深度为40 cm处开始,随着深度的增加,雨水径流的出水中各类磷的质量分数降低趋势变得缓慢。其中,每组实验柱对磷去除率的平均值由大到小的顺序为:粉煤 灰+砂土>砂土>淀粉+砂土。随着深度的增加,这3组实验柱介质中的铝磷和中等活性有机磷均减少。该研究成果可为植物滞留系统磷污染物的迁移转化提供参考。  相似文献   

18.
A first step towards understanding and controlling the fate and dissemination of radioactive waste is to create a concise and comprehensive theoretical framework for the rather non-linear processes involved--hence, the need for geochemical models. Two classes of geochemical models are commonly used, i.e., static and hydrodynamic models. In contrast to static models, hydrodynamic models combine geochemical reactions with hydrogeological processes such as ground-water flow, diffusion and dispersion. In this review, we examine the present state of geochemical models in terms of included processes, thermodynamic databases, missing phenomena, numerical behavior and performance. It is shown that over the past decade, significant progress has been made with respect to modeling of geochemistry in hydrodynamic systems: this is illustrated by describing several applications. Finally, we focus on the perspectives of geochemical modeling in the assessment of the safety of nuclear waste disposal.  相似文献   

19.
Luoto M  Rekolainen S  Aakkula J  Pykälä J 《Ambio》2003,32(7):447-452
The drastic loss of seminatural grasslands and the decrease in species diversity in Europe during the 20th century are closely linked to social-economic factors. Development in agricultural production drives land-use changes, and thus controls the capacity of landscapes to maintain biodiversity. In this study, we link agricultural production changes to landscape fragmentation and species diversity. Our results show that the termination of grazing on seminatural grassland caused significant changes in landscape structure and a decline in the number of vascular plant species. The decline of grazed grasslands has been driven mainly by farm-level economic efficiency and profitability interests, which have been connected with agricultural policy measures. Since 1995, when Finland joined the European Union, the area of grazed patches in our study area has again increased as a result of a support scheme for the management of seminatural grasslands.  相似文献   

20.
An evaluation of the green energy potential generated from biogas and solar power, using agricultural manure waste and a photovoltaic (PV) system, was conducted in a large geographical area of a rural county with low population density and low pollution. The studied area, Shoufeng Township in Hualien County, is located in eastern Taiwan, where a large amount of manure waste is generated from pig farms that are scattered throughout the county. The objective of the study is to assess the possibility of establishing an integrated manure waste treatment plant by using the generated biogas incorporated with the PV system to produce renewable energy and then feed it back to the incorporated farms. A filed investigation, geographic information system (GIS) application, empirical equations development, and RETScreen modeling were conducted in the study. The results indicate that Shoufeng Township has the highest priority in setting up an integrated treatment and renewable energy plant by using GIS mapping within a 10-km radius of the transportation range. Two scenarios were plotted in assessing the renewable energy plant and the estimated electricity generation, plus the greenhouse gas (GHG) reduction was evaluated. Under the current governmental green energy scheme and from a long-term perspective, the assessment shows great potential in establishing the plant, especially in reducing environmental pollution problems, waste treatment, and developing suitable renewable energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号