首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduction in the surface tension of groundwater, prior to air sparging for removal of volatile organic contaminant from aquifer, can greatly enhance the air content and the extent of influence when air sparging is implemented. However, detailed information on the functional relationship between water saturation, air-water contact area induced by air sparging and the surface tension of water has not been available. In this study, the influence of adding water-soluble anionic surfactant (sodium dodecyl benzene sulfonate) into groundwater before air sparging on the air-water interfacial area and water saturation was investigated using a laboratory-scale sand packed column. It was found that water saturation decreases with decreasing surface tension of water until it reaches a point where this trend is reversed so that water saturation increases with further decrease in the surface tension. The lowest water saturation of 0.58 was achieved at a surface tension of 45.4 dyn/cm, which is considered as the optimum surface tension for maximum de-saturation for the initially water-saturated sand used in this study. The air-water contact area generated in the sand column due to air sparging was measured using a gaseous interfacial tracer, n-decane, and was found to monotonically increase with decreasing water saturation. The results of this study provide useful design information for surfactant-enhanced air sparging removal of volatile contaminants from aquifers.  相似文献   

2.
This study was conducted to determine the significance of bromacil transport as a function of water and carbon content in soils and to explore the implications of neglecting sorption when making assessments of travel time of bromacil through the vadose zone. Equilibrium batch sorption tests were performed for loamy sand and sandy soil added with four different levels of powdered activated carbon (PAC) content (0, 0.01, 0.05, and 0.1%). Column experiments were also conducted at various water and carbon contents under steady-state flow conditions. The first set of column experiments was conducted in loamy sand containing 1.5% organic carbon under three different water contents (0.23, 0.32, and 0.41) to measure breakthrough curves (BTCs) of bromide and bromacil injected as a square pulse. In the second set of column experiments, BTCs of bromide and bromacil injected as a front were measured in saturated sandy columns at the four different PAC levels given above. Column breakthrough data were analyzed with both equilibrium and nonequilibrium (two-site) convection-dispersion equation (CDE) models to determine transport and sorption parameters under various water and carbon contents. Analysis with batch data indicated that neglect of the partition-related term in the calculation of solute velocity may lead to erroneous estimation of travel time of bromacil, i.e. an overestimation of the solute velocity by a factor of R. The column experiments showed that arrival time of the bromacil peak was larger than that of the bromide peak in soils, indicating that transport of bromacil was retarded relative to bromide in the observed conditions. Extent of bromacil retardation (R) increased with decreasing water content and increasing PAC content, supporting the importance of retardation in the estimation of travel time of bromacil even at small amounts of organic carbon for soils with lower water content.  相似文献   

3.
We analyze reactive transport during in-situ bioremediation in a nonuniform flow field, involving multiple extraction and injection wells, by the method of transfer functions. Gamma distributions are used as parametric models of the transfer functions. Apparent parameters of classical transport models may be estimated from those of the gamma distributions by matching temporal moments. We demonstrate the method by application to measured data taken at a field experiment on bioremediation conducted in a multiple-well system in Oak Ridge, TN. Breakthrough curves (BTCs) of a conservative tracer (bromide) and a reactive compound (ethanol) are measured at multi-level sampling (MLS) wells and in extraction wells. The BTCs of both compounds are jointly analyzed to estimate the first-order degradation rate of ethanol. To quantify the tracer loss, we compare the approaches of using a scaling factor and a first-order decay term. Results show that by including a scaling factor both gamma distributions and inverse-Gaussian distributions (transfer functions according to the advection-dispersion equation) are suitable to approximate the transfer functions and estimate the reactive rate coefficients for both MLS and extraction wells. However, using a first-order decay term for tracer loss fails to describe the BTCs at the extraction well, which is affected by the nonuniform distribution of travel paths.  相似文献   

4.
Chang CM  Wang MK  Chang TW  Lin C  Chen YR 《Chemosphere》2001,43(8):1133-1139
The predictive accuracy of using the one-dimensional advection–dispersion equation to evaluate the fate and transport of solute in a soil column is usually dependent on the proper determination of chemical retardation factors. Typically, the distribution coefficient (Kd) obtained by fitting the linear sorption isotherm has been extensively used to consider general geochemical reactions on solute transport in a low-concentration range. However, the linear distribution coefficient cannot be adequately utilized to describe the solute fate at a higher concentration level. This study employed the nonlinear equilibrium-controlled sorption parameters to determine the retardation factor used in column leaching experiments. Copper and cadmium transportation in a lateritic silty-clay soil column was examined. Through the explicit finite-difference calculations with a third-order total-variation-diminishing (TVD) numerical solution scheme, all results of the theoretical copper and cadmium breakthrough curves (BTCs) simulated by using the Freundlich nonlinear retardation factors revealed good agreement with the experimental observations.  相似文献   

5.
Tracer tests were conducted in three laboratory columns to study changes in the hydraulic properties of a porous medium due to bioclogging. About 30 breakthrough curves (BTCs) for each column were obtained. The BTCs were analyzed using analytical equilibrium and dual-porosity models, and estimates of the hydrodynamic dispersion and mass transfer coefficients were obtained by curve fitting. The change in transport properties developed in three stages: an initial phase (I) with no significant changes in transport properties, phase II with growth of biomass near the inlet of the columns causing changes in dispersivity, and phase III with added growth of micro-colonies deeper in the columns causing mass transfer of solutes from the water phase to the biophase. Tracer transport changed from being uniform to more non-uniform with increase in mass transfer of the tracer between the mobile phase and the immobile biomass. An increase in the bulk dispersivity value of up to one order of magnitude was observed. Numerical simulations suggest that local dispersivity values may be as much as 40 times higher in the more severe clogged areas inside the column. The bulk hydraulic conductivities of the columns decreased by up to three orders of magnitude. The hydraulic conductivity and dispersivity parameters were almost recovered after disinfection of the columns. Different models relating the changes of the hydraulic conductivity to the changes in the mobile porosity due to bioclogging were reviewed, and the micro-colony relation of Thullner et al. [Thullner, M., Zeyer, J., Kinzelbach, W., 2002. Influence of microbial growth on hydraulic properties of pore networks, Transport in Porous Media, 49, 99-122.] was found to best describe the relation between the bulk hydraulic parameters.  相似文献   

6.
Solute travel time distributions were derived from breakthrough curves (BTCs) of bromide concentrations, which were measured during a large-scale tracer experiment in a quaternary fluviatile aquifer at Krauthausen. Travel time distributions to a specific point in the aquifer were derived from locally measured BTCs, using averaged absolute concentrations ?abs(x1,t), normalized concentrations ?norm(x1,t), and velocity-weighted normalized concentrations ?vw(x1,t). The travel time distributions were characterized in terms of equivalent convective-dispersive transport parameters: the equivalent solute velocity and equivalent dispersivity. Parameters were derived from BTCs using moment analyses and least-squares fits of the 1-D convection-dispersion equation (CDE). Both local and averaged BTCs showed pronounced tailing which was not well described by the 1-D CDE and which indicates the presence of macroscopic regions with low velocities in the aquifer. Therefore, dispersivities derived from CDE fits were significantly smaller than those derived from time moments. The BTCs of ?abs(x1,t) were dominated by only a few local BTCs with high concentrations and were less representative for the travel time distribution than BTCs of averaged normalized concentrations. Dispersivities derived from ?norm(x1,t) and ?vw(x1,t) were very similar. Finally, estimates of dispersivities and vertical correlation length of lnK, gamma 3, from BTCs were in agreement with a first-order estimate of the dispersivity and gamma 3 based on grain size data and flow meter measurements.  相似文献   

7.
The paper describes the results of a laboratory study on the effects of macropore tortuosity on breakthrough curves BTCs and solute distribution in a Forman loam (fine loamy-mixed Udic Haploborolls) soil. BTC were obtained using 2-D columns (slab) containing artificial macropores of five different tortuosity levels. The BTCs were run under a constant hydraulic head of 0.08 m over an initially air dry soil. The input solutions contained 1190 mg l−1 of potassium bromide, 10 mg l−1 of Rhodamine WT, and 100 mg l−1 of FD&C Blue #1. A soil column without macropores served as a control. The displacement of a non-adsorbed tracer was not affected by the tortuosity level. An increase in macropore tortuosity progressively increased the breakthrough time, increased the apparent retardation coefficient (R′), decreased the depth to the center of mass of a given adsorbed tracer, and increased the anisotropy in tracer distribution profile. The relative importance of macropore tortuosity increased with an increase in the adsorption coefficient of the tracer. Compared to macropore continuity, the macropore tortuosity had greater impact on solute distribution profile than in its leaching.  相似文献   

8.
Two natural-gradient pulse tracer tests were conducted in a petroleum-contaminated aquifer to evaluate the potential for benzene, toluene, ethylbenzene, and xylenes (BTEX) biodegradation under enhanced nitrate-reducing conditions. Addition of nitrate resulted in loss of toluene, ethylbenzene, and m,p-xylenes (TEX) after an initial lag period of approximately 9 days. Losses of benzene were not observed over the 60-day monitoring period. Tracer breakthrough curves (BTCs) were analyzed to derive transport and biodegradation parameters, including advective velocities, retardation factors, dispersion coefficients, biodegradation rate constants, and nitrate utilization ratios. Using the parameters derived from the BTC analysis, numerical simulations of one of the tracer experiments were conducted using BIONAPL/3D [Molson, J., BIONAPL/3D User Guide, A 3D Coupled Flow and Multi-Component Reactive transport model. University of Waterloo, Waterloo, Ontario, Canada]. Simulations using the BTC-derived transport and biodegradation parameters successfully reproduced benzene, TEX, and nitrate concentrations measured during the tracer experiment. Comparisons of observed and simulated nitrate concentrations indicate that the mass ratio of nitrate-N utilized to TEX degraded increased over time during the experiment, reaching values many times that expected based on stoichiometry of TEX oxidation coupled to nitrate reduction. Excess nitrate loss is likely due to oxidation of other organics in addition to TEX.  相似文献   

9.
We are experimentally studying, by means of short-pulse injection, the transport and deposition kinetics of suspended particles (silts of the order of 10 microm) in a highly permeable medium consisting of a column of gravel. In our experiments, the breakthrough curves (BTCs) are well described by analytical solutions of a convection/dispersion model with first-order deposition kinetics. All the transport parameters calculated by the model for both particles and dissolved tracer depend on the flow rate. We demonstrate the existence of a critical flow rate, determined experimentally, beyond which the transfer time for the particles is longer than that for the tracer. This phenomenon is unusual in comparison with the results available in the literature. The increase in transfer time of particles in comparison to tracer leads us to assume a purely mechanical phenomenon, that is, collision between particles and grains of the medium with instantaneous reset in motion when the flow rate is sufficient to avoid settling. Thanks to the polydispersivity of the injected suspension and the control of grain size at the outlet, it can also be determined that the coarser particles are recovered before the finer particles, as expected when one considers the size-exclusion effect.  相似文献   

10.
In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due to higher preferential flow and lower fraction of equilibrium sorption sites.  相似文献   

11.
12.
This paper investigates the effects of pore-water velocity on chemical nonequilibrium during transport of Cd, Zn, and Pb through alluvial gravel columns. Three pore-water velocities ranging from 3 to 60 m/day were applied to triplicate columns for each metal. Model results for the symmetric breakthrough curves (BTCs) of tritium (3H2O) data suggest that physical nonequilibrium components were absent in the uniformly packed columns used in these studies. As a result, values of pore-water velocity and dispersion coefficient were estimated from fitting 3H2O BTCs to an equilibrium model. The BTCs of metals display long tailing, indicating presence of chemical nonequilibrium in the system, which was further supported by the decreased metal concentrations during flow interruption. The BTCs of the metals were analysed using a two-site model, and transport parameters were derived using the CXTFIT curve-fitting program. The model results indicate that the partitioning coefficient (beta), forward rate (k1), and backward rate (k2) are positively correlated with pore-water velocity (V); while the retardation factor (R), mass transfer coefficient ((omega), and ratio of k1/k2 are inversely correlated with V. There is no apparent relationship between the fraction of exchange sites at equilibrium (f) and V. The influence of Von k2 is much greater than on R, beta, omega, and k1. A one-order-of-magnitude change in V would cause a two-order-of-magnitude change in k2 while resulting in only a one order-of-magnitude change in R, beta, omega, and k1. The forward rates for the metals are found to be two to three orders-of-magnitude greater than the corresponding backward rate. However, the difference between the two rates reduces with increasing pore-water velocity. Model results also suggest that Cd and Zn behave similarly, while Pb is much more strongly sorbed. At input concentrations of about 4 mg/l and pore-water velocities of 3-60 m/day in the groundwater within alluvial gravel, this study suggests retardation factors of 26-289 for Cd, 24-255 for Zn, and 322-6377 for Pb.  相似文献   

13.
Movement of metolachlor and terbuthylazine in core and packed soil columns   总被引:2,自引:0,他引:2  
Singh N  Kloeppel H  Klein W 《Chemosphere》2002,47(4):409-415
Movement of metolachlor and terbuthylazine including a bromide tracer was studied in core and packed soil columns in PVC pipes (80 mm diameter, 15 mm depth) with two German soil types viz: silt loam and loamy silt. The breakthrough curves (BTCs) for bromide indicated some preferential flow of water both under conventional tillage (CN) and no-till (NT) simulation with silt loam soil. The herbicides leached to a greater extent in NT columns than in CN columns. Leaching was higher in loamy silt soil than in silt loam soil under CN conditions. This result is in agreement with the higher sorption capacity of silt loam having higher organic carbon compared to loamy silt having low organic carbon. Adsorption strength of the herbicides did not affect their breakthrough time, but was reflected in the slope and maximum height of the BTCs. The BTCs showed the expected inverse relationship between leaching and adsorption with greater mobility of the weakly-sorbed metolachlor than the more strongly sorbed terbuthylazine. Maximum amounts of the applied herbicides were recovered from the top soil layer in intact columns. Metolachlor was more mobile in packed columns than in core columns.  相似文献   

14.
It is known that under unsaturated conditions, the transport of solutes can deviate from ideal advective-dispersive behaviour even for macroscopically homogeneous porous materials. Causes may include physical non-equilibrium, sorption kinetics, non-linear sorption, and the irregular distribution of sorption sites. We have performed laboratory experiments designed to identify the processes responsible for the non-ideality of radioactive Sr transport observed under unsaturated flow conditions in an Aeolian sandy deposit from the Chernobyl exclusion zone. Miscible displacement experiments were carried out at various water contents and corresponding flow rates in a laboratory model system. Results of our experiments have shown that breakthrough curves of a conservative tracer exhibit a higher degree of asymmetry when the water content decreases than at saturated water content and same Darcy velocity. It is possible that velocity variations caused by heterogeneities at the macroscopic scale are responsible for this situation. Another explanation is that molecular diffusion drives the solute mass transfer between mobile and immobile water regions, but the surface of contact between these water regions is small. At very low concentrations, representative of a radioactive Sr contamination of the pore water, sorption and physical disequilibrium dominate the radioactive Sr transport under unsaturated flow conditions. A sorption reaction is described by a cation exchange mechanism calibrated under fully saturated conditions. The sorption capacity, as well as the exchange coefficients are not affected by desaturation. The number of accessible exchange sites was calculated on the basis that the solid remained in contact with water and that the fraction of solid phase in contact with mobile water is numerically equal to the proportion of mobile water to total water content. That means that for this type of sandy soil, the nature of mineral phases is the same in advective and non-advective domains. So sorption reaction parameters can be estimated from more easily conducted saturated experiments, but hydrodynamic behaviour must be characterized by conservative tracer experiments under unsaturated flow conditions.  相似文献   

15.
During soil bioremediation, the diffusion of oxygen into the soil is an important prerequisite for aerobic biodegradation, and the decrease of petroleum products is the ultimate goal. Both processes need to be monitored. The aim of this work was to develop a gas tracer test that yields information on both, gas diffusion and residual saturation with non-aqueous phase liquids (NAPLs) in unsaturated soil heaps. One conservative tracer (methane) and 4 partitioning gas tracers (diethylether, methyl tert-butyl ether, chloroform and n-heptane) were injected as vapors into laboratory columns filled with unsaturated sand with increasing NAPL saturation. Breakthrough curves of gaseous compounds were measured at two points and compared to analytical solutions of an analytical diffusive-reactive transport equation. By fitting of methane data, robust results for effective diffusivity (tortuosity) were obtained. NAPL saturation was most accurately measured by the moderately water soluble tracers (ethers and chloroform). The hydrophobic tracer n-heptane did not partition into water-immersed NAPL. An easy and accurate way to assess air-NAPL partitioning constants from gas chromatography retention times is furthermore reported. It is concluded that gas tracer tests have the potential for measuring two important properties in soil bioremediation systems easily and quickly.  相似文献   

16.
Cho J  Annable MD 《Chemosphere》2005,61(7):899-908
In this study, we investigate pore scale morphology of nonaqueous phase liquids (NAPLs) trapped in different pore sizes using tracer techniques. Specific interfacial area and saturation of NAPL trapped in homogeneous sands were measured using the interfacial and partitioning tracer techniques. The observed NAPL-water interfacial areas increased in a log-linear fashion with decreasing sand grain size, but showed no clear trend with residual NAPL saturation formed in the various grain sizes. The measured values were used to calculate the NAPL morphology index, which characterizes the spatial NAPL distribution within the pore space. The NAPL morphology indices, increased exponentially with decreasing grain size, indicating that the NAPL becomes smaller, but more blobs. For a fixed grain size, the specific interfacial area and saturation of the NAPL were measured following changes caused by dissolution using alcohol. The observed interfacial areas showed a decrease linearly as a function of the NAPL saturation.  相似文献   

17.
Rate limited processes including kinetic adsorption-desorption can greatly impact the fate and behavior of toxic arsenic compounds in heterogeneous soils. In this study, miscible displacement column experiments were carried out to investigate the extent of reactivity during transport of arsenite in soils. Arsenite breakthrough curves (BTCs) of Olivier and Windsor soils exhibited strong retardation with diffusive effluent fronts followed by slow release or tailing during leaching. Such behavior is indicative of the dominance of kinetic retention reactions for arsenite transport in the soil columns. Sharp decrease or increase in arsenite concentration in response to flow interruptions (stop-flow) further verified that non-equilibrium conditions are dominant. After some 40-60 pore volumes of continued leaching, 30-70% of the applied arsenite was retained by the soil in the columns. Furthermore, continued arsenite slow release for months was evident by the high levels of residual arsenite concentrations observed during leaching. In contrast, arsenite transport in a reference sand material exhibited no retention where complete mass recovery in the effluent solution was attained. A second-order model (SOM) which accounts for equilibrium, reversible, and irreversible retention mechanisms was utilized to describe arsenite transport results from the soil columns. Based on inverse and predictive modeling results, the SOM model successfully depicted arsenite BTCs from several soil columns. Based on inverse and predictive modeling results, a second-order model which accounts for kinetic reversible and irreversible reactions is recommended for describing arsenite transport in soils.  相似文献   

18.
Evaluating non-equilibrium solute transport in small soil columns   总被引:11,自引:0,他引:11  
Displacement studies on leaching of bromide and two pesticides (atrazine and isoproturon) were conducted under unsaturated steady state flow conditions in 24 small undisturbed soil columns (5.7 cm in diameter and 10 cm long) each collected from two sites differing in soil structure and organic carbon content in North Germany. There were large and irregular variabilities in the characteristics of both soils, as well as in the shapes of breakthrough curves (BTCs) of different columns, including some with early breakthrough and increased tailing, qualitatively indicating the presence of preferential flow. It was estimated that one preferential flow column (PFC) at site A, and four at site B, contributed, respectively to 11% and 58% of the accumulated leached fraction and to more than 80% of the maximum observed standard deviation (SD) in the field-scale concentration and mass flux of pesticides at two sites. The bromide BTCs of two sites were analyzed with the equilibrium convection-dispersion equation (CDE) and a non-equilibrium two-region/mobile-immobile model. Transport parameters of these models for individual BTCs were determined using a curve fitting program, CXTFIT, and by the time moment method. For the CDE based equilibrium model, the mean values of retardation factor, R, considered separately for all columns, PFCs or non-preferential flow columns (NPFCs) were comparable for the two methods; significant differences were observed in the values of dispersion coefficients of two sites using the two estimation methods. It was inferred from the estimated parameters of non-equilibrium model that 5-12% of water at site A, and 12% at site B, was immobile during displacement in NPFCs. The corresponding values for PFCs of two sites were much larger, ranging from 25% to 51% by CXTFIT and from 24% to 72% by the moment method, suggesting the role of certain mechanisms other than immobile water in higher degrees of non-equilibrium in these columns. Peclet numbers in PFCs of both sites were consistently smaller than five, indicating the inadequacy of the non-equilibrium model to incorporate the effect of all forms of non-equilibrium in PFCs. Overall, the BTCs of individual NPFCs, PFCs and of field average concentration at the two sites were better reproduced with parameters obtained from CXTFIT than by the moment method. The moment method failed to capture the peak concentrations in PFCs, but tended to describe the desorption and tail branches of BTCs better than the curve fitting approach.  相似文献   

19.
In this paper, we used the continuous time random walk (CTRW) framework to characterize the transport process in 1250-cm long one-dimensional homogenous and heterogeneous soil columns at the experiments conducted by Huang et al. [Huang, K., Toride, N., van Genuchten, M.Th., 1995. Experimental investigation of solute transport in large, homogeneous and heterogeneous, saturated soil columns. Trans. Porous Media. 18, 283-302]. The transport process was also simulated by using the advection-dispersion equation (ADE) and the spatial fractional advection-dispersion equation (FADE) for comparison. In the homogeneous soil column, the non-Fickian behavior is found at the distances less than 1000cm with beta values larger than 1.60, but less than 2, and Fickian form transport is obtained at distances larger than 1000cm with beta values larger than 2. In the heterogeneous soil column, we found the most anomalous behavior at distances from 200cm to 700cm with beta values ranging from 0.894 to 0.958, and non-Fickian transport process is observed at distances larger than 800cm with beta values in the range between 1 and 1.3. More significant non-Fickian behavior is found for transport in the heterogeneous soil column than that in the homogeneous soil column. The CTRW fits to the breakthrough curves (BTCs) have lower values of root mean square error (RMSE) and higher values of determination coefficient (r(2)), with respect to the fits of ADE and FADE. The CTRW model also is better captures the full evolution of BTCs, and especially their tails.  相似文献   

20.
Naturally occurring radon in groundwater can be used as an in situ partitioning tracer for locating and quantifying non-aqueous phase liquid (NAPL) contamination in the subsurface. When combined with the single-well, push-pull test, this methodology has the potential to provide a low-cost alternative to inter-well partitioning tracer tests. During a push-pull test, a known volume of test solution (radon-free water containing a conservative tracer) is first injected ("pushed") into a well; flow is then reversed and the test solution/groundwater mixture is extracted ("pulled") from the same well. In the presence of NAPL radon transport is retarded relative to the conservative tracer. Assuming linear equilibrium partitioning, retardation factors for radon can be used to estimate NAPL saturations. The utility of this methodology was evaluated in laboratory and field settings. Laboratory push-pull tests were conducted in both non-contaminated and trichloroethene NAPL (TCE)-contaminated sediment. The methodology was then applied in wells located in non-contaminated and light non-aqueous phase liquid (LNAPL)-contaminated portions of an aquifer at a former petroleum refinery. The method of temporal moments and an approximate analytical solution to the governing transport equations were used to interpret breakthrough curves and estimate radon retardation factors; estimated retardation factors were then used to calculate TCE saturations. Numerical simulations were used to further investigate the behavior of the breakthrough curves. The laboratory and field push-pull tests demonstrated that radon retardation does occur in the presence of TCE and LNAPL and that radon retardation can be used to calculate TCE saturations. Laboratory injection-phase test results in TCE-contaminated sediment yielded radon retardation factors ranging from 1.1 to 1.5, resulting in calculated TCE saturations ranging from 0.2 to 0.9%. Laboratory extraction-phase test results in the same sediment yielded a radon retardation factor of 5.0, with a calculated TCE saturation of 6.5%. Numerical simulation breakthrough curves provided reasonably good matches to the approximate analytical solution breakthrough curves. However, non-equilibrium radon partitioning and heterogeneous TCE distributions may affect the retardation factors and TCE saturation estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号