共查询到20条相似文献,搜索用时 0 毫秒
1.
Georgiadis M Cai Y Solo-Gabriele HM 《Environmental pollution (Barking, Essex : 1987)》2006,141(1):22-29
The primary objective of this study was to develop a simple method that can be used to extract the more readily mobilizable and bioavailable arsenic species from soil and sediment while at the same time minimizing the transformation between (AsIII) and (AsV), the two most commonly found arsenic species in the environment. Several extraction strategies were evaluated using phosphate as extractant in combination with either ethylenediaminetetraacetic acid (EDTA), hydroxylamine hydrochloride (NH2OH.HCl), or sodium diethyldithiocarbamate trihydrate (NaDDC). The addition of EDTA in the phosphate solution did not prevent AsIII from oxidation. While promising results were shown when 1% NH2OH.HCl was added, conversion of AsIII began to occur with extended extraction time (> 12 h). Good results were achieved using 10 mM phosphate and 0.5% NaDDC where AsIII oxidation was clearly minimized. The combined phosphate and NaDDC solution was applied to several soil and sediment samples. AsIII spiked was quantitatively recovered in all soil types tested. 相似文献
2.
Lattice Boltzmann model for agrochemical transport in soils 总被引:2,自引:0,他引:2
Agrochemical transport in soils is complicated and involves physical, chemical and biochemical reactions; its mathematical modelling remains a challenging task. This paper presents a lattice Boltzmann model to simulate the agrochemical movement. The lattice Boltzmann model is a microscopic and process-based model, simulating the transport process by tracking chemical particles. The model presented in this paper is for one-dimensional vertical leaching and assumes that the chemical particles at the microscopic level move in five directions: one stagnant, two in vertical direction and two in an internal horizontal direction bounded by two reactive walls. Reactions at the walls are assumed to take place at two different rates, one in fast rate where the chemicals in the solution and on the wall are in an instant equilibrium, and the other in slow rate where the mass exchange rate between the chemicals in the solution and on the wall is a first-order kinetic. The reactions on both walls are assumed to occur instantly when the chemical particles moving in the internal direction hit the walls. To test the model, we measured the leaching of atrazine through soil columns in the laboratory. The results simulated with the lattice Boltzmann model are compared with the measured breakthrough curves and the non-equilibrium two-site convection-dispersion model; they all show close agreement. The transport parameters needed in the models are obtained from the measurement of adsorption isotherm of atrazine, bromide leaching in the same soil columns and calibration. 相似文献
3.
4.
Gavriliev Sakhayaan Petrova Tatiana Miklyaev Petr 《Environmental science and pollution research international》2022,29(59):88606-88617
Environmental Science and Pollution Research - This article delves into the factors that may influence radon flux, such as soil properties and weather conditions, on the example of two experimental... 相似文献
5.
Li Xu Wen Zhang Zhu Qi Jakada Hamza 《Environmental science and pollution research international》2020,27(31):38974-38986
Environmental Science and Pollution Research - Groundwater flow velocity and dispersivity might be temporally or spatially variable rather than constant. In this paper, linearly-asymptotically or... 相似文献
6.
Bacteriophage removal by soil passage in two field studies was re-analyzed with the goal to investigate differences between one- and two-dimensional modeling approaches, differences between one- and two-site kinetic sorption models, and the role of heterogeneities in the soil properties. The first study involved removal of bacteriophages MS2 and PRDI by dune recharge, while the second study represented removal of MS2 by deep well injection. In both studies, removal was higher during the first meters of soil passage than thereafter. The software packages HYDRUS-ID and HYDRUS-2D, which simulate water flow and solute transport in one- and two-dimensional variably saturated porous media, respectively, were used. The two codes were modified by incorporating reversible adsorption to two types of kinetic sites. Tracer concentrations were used first to calibrate flow and transport parameters of both models before analyzing transport of bacteriophages. The one-dimensional one-site model did not fully describe the tails of the measured breakthrough curves of MS2 and PRD1 from the dune recharge study. While the one-dimensional one-site model predicted a sudden decrease in virus concentrations immediately after the peaks, measured data displayed much smoother decline and tailing. The one-dimensional two-site model simulated the overall behavior of the breakthrough curves very well. The two-dimensional one-site model predicted a more gradual decrease in virus concentrations after the peaks than the one-dimensional one-site model, but not as good as the one-dimensional two-site model. The dimensionality of the problem hence can partly explain the smooth decrease in concentration after peak breakthrough. The two-dimensional two-site model provided the best results. Values for k(att2) and k(det2) could not be determined at the last two of four monitoring wells, thus suggesting that either a second type of kinetic sites is present in the first few meters of dune passage and not beyond the second monitoring well, or that effects of soil heterogeneity and dimensionality of the problem overshadowed this process. Variations between single collector efficiencies were relatively small, whereas collision efficiencies varied greatly. This implies that the nonlinear removal of MS2 and PRD1 is mainly caused by variations in interactions between grain and virus surfaces rather than by physical heterogeneity of the porous medium. Similarly, a two-site model performed better than the one-site model in describing MS2 concentrations for the deep well injection study. However, the concentration data were too sparse in this study to have much confidence in the fitted parameters. 相似文献
7.
A routing procedure is introduced which accounts for the loss of a conservative solute tracer from preferred paths during macropore flow. Water flow is treated as a series of kinematic waves from which the tracer is lost due to mixing previously stored soil water, and an expression for solute loss is added to a previously developed model. The model parameters are estimated through experiments at three different input rates applied to a column of a macroporous forest soil.The results of seven experimental runs indicate that solute losses are consistently highest at the early stages of infiltration and drainage flow. An empirical relationship is proposed which links the frequency distribution of the flow parameter with that for solute loss from the preferred path during transient water flow and solute transport. 相似文献
8.
Kim SB On HS Kim DJ Jury WA Wang Z 《Journal of environmental science and health. Part. B》2007,42(5):529-537
This study was conducted to determine the significance of bromacil transport as a function of water and carbon content in soils and to explore the implications of neglecting sorption when making assessments of travel time of bromacil through the vadose zone. Equilibrium batch sorption tests were performed for loamy sand and sandy soil added with four different levels of powdered activated carbon (PAC) content (0, 0.01, 0.05, and 0.1%). Column experiments were also conducted at various water and carbon contents under steady-state flow conditions. The first set of column experiments was conducted in loamy sand containing 1.5% organic carbon under three different water contents (0.23, 0.32, and 0.41) to measure breakthrough curves (BTCs) of bromide and bromacil injected as a square pulse. In the second set of column experiments, BTCs of bromide and bromacil injected as a front were measured in saturated sandy columns at the four different PAC levels given above. Column breakthrough data were analyzed with both equilibrium and nonequilibrium (two-site) convection-dispersion equation (CDE) models to determine transport and sorption parameters under various water and carbon contents. Analysis with batch data indicated that neglect of the partition-related term in the calculation of solute velocity may lead to erroneous estimation of travel time of bromacil, i.e. an overestimation of the solute velocity by a factor of R. The column experiments showed that arrival time of the bromacil peak was larger than that of the bromide peak in soils, indicating that transport of bromacil was retarded relative to bromide in the observed conditions. Extent of bromacil retardation (R) increased with decreasing water content and increasing PAC content, supporting the importance of retardation in the estimation of travel time of bromacil even at small amounts of organic carbon for soils with lower water content. 相似文献
9.
10.
Chen B Li Y Huang GH Huang Y Li Y 《Journal of environmental science and health. Part. B》2004,39(4):613-626
A GIS-aided pesticide loss model (PeLM) was developed to simulate pesticide losses through surface runoff and sediment transport in watershed systems. The PeLM could tackle the movement of eroded soil along with surface runoff as well as the pesticide losses in adsorbed and dissolved phases. The contributions of different soil types in the sediment were also examined. The model was applied to the Kintore Creek Watershed of southern Ontario, Canada. The simulation results were verified through observed data, indicating a correlation level of 0.89-0.98. The results also showed that clay particles usually held the largest share of contributions to pesticide losses through soil erosion. This study is significant in the efforts for modeling nonpoint source pollution in watershed systems. It provides useful information and support for the related decisions of watershed management. 相似文献
11.
Polycyclic aromatic hydrocarbons in Norwegian forest soils: impact of long range atmospheric transport 总被引:8,自引:0,他引:8
Levels of nine selected polycyclic aromatic hydrocarbons, PAHs, in surface soils from areas in southern and central Norway are presented. Levels in central Norway are generally low, while the southern Norway soils are about ten-fold higher with respect to 4 and 5 ring PAHs. Comparison with air quality data indicates long-range atmospheric transport to be the major source of the excess 4 and 5 ring PAHs in the south. Analyses of peat cores from ombrotrophic bogs support this assumption, and these provide a potentially useful approach for temporal studies of atmospheric PAH deposition. Analytical data for naphthalene in soils depend very much on the sampling and storage of the samples before analysis. 相似文献
12.
Impact of long-term wastewater irrigation on sorption and transport of atrazine in Mexican agricultural soils 总被引:1,自引:0,他引:1
Müller K Duwig C Prado B Siebe C Hidalgo C Etchevers J 《Journal of environmental science and health. Part. B》2012,47(1):30-41
In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years with sorption to a non-irrigated (P0) Phaeozem soil under rainfed agriculture. The use of bromide as an inert water tracer in column experiments and the subsequent analysis of the tracers' breakthrough curves allowed the calibration of the hydrodynamic parameters of a two-site non equilibrium convection-dispersion model. The quality of the irrigation water significantly altered the soils' hydrodynamic properties (hydraulic conductivity, dispersivity and the size of pores that are hydraulically active). The impacts on soil chemical properties (total organic carbon content and pH) were not significant, while the sodium adsorption ratio was significantly increased. Sorption and desorption isotherms, determined in batch and column experiments, showed enhanced atrazine sorption and reduced and slower desorption in wastewater-irrigated soils. These effects increased with the length of irrigation. The intensified sorption-desorption hysteresis in wastewater-irrigated soils indicated that the soil organic matter developed in these soils had fewer high-energy, easily accessible sorption sites available, leading to lower and slower atrazine desorption rates. This study leads to the conclusion that wastewater irrigation decreases atrazine mobility in the Mezquital valley Phaeozems by decreasing the hydraulic conductivity and increasing the soil's sorption capacity. 相似文献
13.
K. Müller C. Duwig B. Prado C. Siebe C. Hidalgo J. Etchevers 《Journal of environmental science and health. Part. B》2013,48(1):30-41
In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years with sorption to a non-irrigated (P0) Phaeozem soil under rainfed agriculture. The use of bromide as an inert water tracer in column experiments and the subsequent analysis of the tracers’ breakthrough curves allowed the calibration of the hydrodynamic parameters of a two-site non equilibrium convection-dispersion model. The quality of the irrigation water significantly altered the soils’ hydrodynamic properties (hydraulic conductivity, dispersivity and the size of pores that are hydraulically active). The impacts on soil chemical properties (total organic carbon content and pH) were not significant, while the sodium adsorption ratio was significantly increased. Sorption and desorption isotherms, determined in batch and column experiments, showed enhanced atrazine sorption and reduced and slower desorption in wastewater-irrigated soils. These effects increased with the length of irrigation. The intensified sorption-desorption hysteresis in wastewater-irrigated soils indicated that the soil organic matter developed in these soils had fewer high-energy, easily accessible sorption sites available, leading to lower and slower atrazine desorption rates. This study leads to the conclusion that wastewater irrigation decreases atrazine mobility in the Mezquital valley Phaeozems by decreasing the hydraulic conductivity and increasing the soil's sorption capacity. 相似文献
14.
A triple-continuum approach for modeling flow and transport processes in fractured rock 总被引:3,自引:0,他引:3
This paper presents a triple-continuum conceptual model for simulating flow and transport processes in fractured rock. Field data collected from the unsaturated zone of Yucca Mountain, a repository site of high-level nuclear waste, show a large number of small-scale fractures. The effect of these small fractures has not been considered in previous modeling investigations within the context of a continuum approach. A new triple-continuum model (consisting of matrix, small-fracture, and large-fracture continua) has been developed to investigate the effect of these small fractures. This paper derives the model formulation and discusses the basic triple-continuum behavior of flow and transport processes under different conditions, using both analytical solutions and numerical approaches. The simulation results from the site-scale model of the unsaturated zone of Yucca Mountain indicate that these small fractures may have an important effect on radionuclide transport within the mountain. 相似文献
15.
The transport and fate of the pharmaceutical carbamazepine (CBZ) were investigated in the Dan Region Reclamation Project (SHAFDAN), Tel-Aviv, Israel. Soil samples were taken from seven subsections of soil profiles (150 cm) in infiltration basins of a soil aquifer treatment (SAT) system. The transport characteristics were studied from the release dynamics of soil-resident CBZ and, subsequently, from applying a pulse input of wastewater containing CBZ. In addition, a monitoring study was performed to evaluate the fate of CBZ after the SAT. Results of this study indicate adsorption, and consequently retardation, in CBZ transport through the top soil layer (0-5 cm) and to a lesser extent in the second layer (5-25 cm), but not in deeper soil layers (25-150 cm). The soluble and adsorbed fractions of CBZ obtained from the two upper soil layers comprised 45% of the total CBZ content in the entire soil profile. This behavior correlated to the higher organic matter content observed in the upper soil layers (0-25 cm). It is therefore deduced that when accounting for the full flow path of CBZ through the vadose zone to the groundwater region, the overall transport of CBZ in the SAT system is essentially conservative. The monitoring study revealed that the average concentration of CBZ decreased from 1094 ± 166 ng L−1 in the recharged wastewater to 560 ± 175 ng L−1 after the SAT. This reduction is explained by dilution of the recharged wastewater with resident groundwater, which may occur as it flows to active reclamation wells. 相似文献
16.
17.
18.
This study modeled the impact on freshwater ecosystems of pharmaceuticals detected in biosolids following application on agricultural soils. The detected sulfonamides and hydrochlorothiazide displayed comparatively moderate retention in solid matrices and, therefore, higher transfer fractions from biosolids to the freshwater compartment. However, the residence times of these pharmaceuticals in freshwater were estimated to be short due to abiotic degradation processes. The non-steroidal anti-inflammatory mefenamic acid had the highest environmental impact on aquatic ecosystems and warrants further investigation. The estimation of the solid-water partitioning coefficient was generally the most influential parameter of the probabilistic comparative impact assessment. These results and the modeling approach used in this study serve to prioritize pharmaceuticals in the research effort to assess the risks and the environmental impacts on aquatic biota of these emerging pollutants. 相似文献
19.
Adsorption and transport of arsenate in carbonate-rich soils: coupled effects of nonlinear and rate-limited sorption 总被引:1,自引:0,他引:1
The transport and fate of arsenate in carbonate-rich soil under alkaline conditions was investigated with multiple approaches combining batch, sequential extraction and column experiments as well as transport modeling studies. Batch experiments indicated that sorption isotherm was nonlinear over a wide range of concentration (0.1-200 mg L(-1)) examined. As(V) adsorption to the calcareous soil was initially fast but then continued at a slower rate, indicating the potential effect of rate-limited sorption on transport. Column experiments illustrated that transport of As(V) was significantly retarded compared to a non-reactive tracer. The degree of retardation decreased with increasing As(V) concentration. As(V) breakthrough curves exhibited nonideal transport behavior due to the coupled effects of nonlinear and rate-limited sorption on arsenate transport, which is consistent with the results of modeling studies. The contribution of nonlinear sorption to the arsenate retardation was negligible at low concentration but increased with increasing As(V) concentration. Sequential extraction results showed that nonspecifically sorbed (easily exchangeable, outer sphere complexes) fraction of arsenate is dominant with respect to the inner-sphere surface bound complexes of arsenate in the carbonate soil fraction, indicating high bioavailability and transport for arsenate in the carbonate-rich soils of which Fe and Al oxyhydroxide fractions are limited. 相似文献
20.
Correct interpretation of tracer test data is critical for understanding transport processes in the subsurface. This task can be greatly complicated by the presence of intraborehole flows in a highly dynamic flow environment. At a new tracer test site (Hanford IFRC) a dynamic flow field created by changes in the stage of the adjacent Columbia River, coupled with a heterogeneous hydraulic conductivity distribution, leads to considerable variations in vertical hydraulic gradients. These variations, in turn, create intraborehole flows in fully-screened (6.5m) observation wells with frequently alternating upward and downward movement. This phenomenon, in conjunction with a highly permeable aquifer formation and small horizontal hydraulic gradients, makes modeling analysis and model calibration a formidable challenge. Groundwater head data alone were insufficient to define the flow model boundary conditions, and the movement of the tracer was highly sensitive to the dynamics of the flow field. This study shows that model calibration can be significantly improved by explicitly considering (a) dynamic flow model boundary conditions and (b) intraborehole flow. The findings from this study underscore the difficulties in interpreting tracer tests and understanding solute transport under highly dynamic flow conditions. 相似文献