首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
城市生活垃圾填埋场释放汞的形态初步研究   总被引:7,自引:3,他引:4  
大气的人为汞释放源研究已经较为广泛,但国内外对垃圾填埋场这一潜在的大气汞释放源还没有重视,尤其是垃圾填埋场释放汞的形态研究较为缺乏。2003年11月下旬,对贵阳市一新建的生活垃圾填埋场排放气体中的总汞(TGM)、单甲基汞(MMHg)、二甲基汞(DMHg)进行了初步的研究。结果显示填埋半年、填埋一年与填埋两年的垃圾填埋场排气筒气体中总汞浓度分别为665.52±291.25ng/m3(n=305)、25.6±3.2ng/m3(n=13)、14.5±1.8ng/m3(n=28);填埋半年与填埋两年的垃圾填埋场排气筒气体中单甲基汞浓度分别为2.06±1.82ng/m3(n=11)、0.18±0.06ng/m3(n=2),二甲基汞浓度为9.45±5.18ng/m3(n=12)。这一结果初步说明垃圾填埋场不仅是大气总汞的释放源类型之一,也是大气中毒性更强的单甲基汞与二甲基汞的释放源之一。  相似文献   

2.
我国原生汞生产行业典型企业Hg的污染排放特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为了解目前国内仍在运行生产的原生汞生产企业各排污节点气态Hg排放现状以及对周围环境介质的影响,选择一家典型企业进行了现场监测研究. 结果表明:在研究企业汞矿坑口、中转漏斗、破碎、浮选、脱水等工艺节点的车间空气中ρ(气态Hg)较低,在(3.00±0.23)~(20.3±7.7)ng/m3之间;而在全尾砂充填、冶炼和冷凝等工艺节点的车间空气中ρ(气态Hg)相对较高,为(754±67)~(907±79)ng/m3. 冶炼废气中ρ(气态Hg)平均值为(295±32)μg/m3,ρ(颗粒态Hg)平均值为(65.9±3.8)μg/m3;燃煤锅炉废气中ρ(气态Hg)平均值为(123±40)μg/m3,未达到GB 30770—2014《锡、锑、汞工业污染物排放标准》限值(15 μg/m3)或GB 13271—2014《锅炉大气污染物排放标准》限值(50 μg/m3)的要求,其ρ(颗粒态Hg)平均值为(14.1±3.5)μg/m3,ρ(气态Hg)∶ρ(颗粒态Hg)约为7∶1. 研究企业2012年气态Hg排放总量为18.9 kg,释Hg因子为0.004 8%. 研究企业矿区内土壤w(总Hg)为6.44~444 mg/kg,平均值为(140±133)mg/kg;矿区外为1.96~104 mg/kg,平均值为(24.4±26.2)mg/kg. 地累积指数法评价结果表明,土壤受Hg污染影响程度为矿区内>矿区外东南和东北方向>矿区外西南和西北方向. 研究显示,我国汞矿开采、冶炼排放对厂界及周边土壤造成了明显影响,并且污染仍在持续,不容忽视.   相似文献   

3.
为了弄清楚酸性矿井废水的排放是否对阿哈湖造成了汞污染,研究了阿哈湖中汞的各种赋存形态(包括溶解气态汞、活性汞、颗粒态汞、溶解态汞、溶解态甲基汞、颗粒态甲基汞以及沉积物间隙水体的溶解态汞、溶解态甲基汞)及其在水体和沉积物间隙水中的剖面分布.结果显示,阿哈湖水体中溶解气态汞的浓度为0.04~0.09ng·L-1,活性汞浓度为0.2~1.1ng·L-1,总汞浓度为2.08~19.14 ng·L-1,甲基汞浓度为0.002~0.43 ng·L-1;在沉积物间隙水体中溶解态汞浓度为1.72~19.12 ng·L-1,溶解态甲基汞浓度为0.03~1.57 ng·L-1.实验数据表明,溶解态甲基汞浓度在沉积物下2~5 cm处最高,随着深度增加而逐渐降低,其与硫酸盐还原菌(SRB)分布呈现较好的吻合,说明水体-沉积物界面是甲基汞的产生地点;并且在沉积物中高浓度硫酸根浓度高达1100 mg·L-1的条件下,硫酸根浓度与甲基汞浓度依然一致.  相似文献   

4.
贵阳市一居民区大气颗粒态汞的污染状况   总被引:2,自引:0,他引:2  
2004年4、7、8、11、12月采用微型捕集管-冷原子荧光光谱法对贵阳市一个居民区大气中的痕量颗粒态总汞(TPM)进行了测定。结果表明:TPM日均浓度范围是0.149~4.853 ng.m-3,平均值是1.091 ng.m-3,显著高于背景参考值1~86 pg.m-3;TPM浓度采暖期大于非采暖期,夜间通常大于白昼;TPM与大气气态总汞(TGM)可能具有同源性;燃煤、垃圾焚烧以及周边工厂排放的含尘烟气可能是居民区大气颗粒态汞的主要人为来源。  相似文献   

5.
太湖不同营养水平湖区汞的形态和分布特征   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究富营养化对太湖汞形态分布特征的影响,于2011年水华暴发期,在太湖不同营养水平湖区(竺山湾、贡湖湾及南太湖)采集水样,测定了水体中THg(总汞)、DHg(溶解态总汞)、RHg(活性汞)、TMeHg(总甲基汞)、DMeHg(溶解态甲基汞)的质量浓度及其分布特征. 结果表明,太湖不同营养水平湖区水体中ρ(THg)和ρ(DHg)无显著差异,ρ(THg)为4.67~12.15 ng/L,ρ(DHg)为2.27~10.36 ng/L. 太湖水体中ρ(RHg)平均值为0.79 ng/L,藻类的生长对水体中ρ(RHg)的分布有显著影响,水体营养水平越高,ρ(RHg)越低. 水体中ρ(TMeHg)和ρ(DMeHg)分别为0.10~0.27和0.09~0.23 ng/L,藻类的吸附及水体中较高的Eh(氧化还原电位)和pH抑制了汞的甲基化,但在富营养化较严重的竺山湾,受藻类生长及水华的影响,水体中ρ(TMeHg)(0.22 ng/L)仍相对较高.   相似文献   

6.
乌江流域大气降雨中不同形态汞的时空分布   总被引:6,自引:0,他引:6  
2006年1~12月测定了乌江流域5个水库库区大气降雨中不同形态汞的浓度.结果表明,总汞、溶解态汞、颗粒态汞、活性汞、甲基汞的浓度范围分别为7.49~149.13ng·L-1、1.23~10.02ng·L-1、5.76~141.92ng·L-1、0.56~2.94ng·L-1、0.082~0.821ng·L-1.降雨中颗粒态汞为主要形态,约占总汞比例的67.6%~96.1% (平均87%),活性汞、甲基汞占总汞的比例分别为5.1%和0.68%.除活性汞外,其它形态汞的浓度存在明显的季节变化趋势,冬春季的浓度明显高于夏秋季,而不同形态汞的空间分布特征不明显.降雨中汞的浓度主要受降雨量及燃煤等人为活动的影响.  相似文献   

7.
三门峡水库水体中不同形态汞的分布特征   总被引:2,自引:1,他引:1  
程柳  麻冰涓  周伟立  王力  职音  刘清伟  毛宇翔 《环境科学》2017,38(12):5032-5038
为了解三门峡水库水体中不同形态汞的分布特征,在丰水期和枯水期对三门峡水库进行采样,分别采用冷原子荧光光谱法(CVAFS)和蒸馏-乙基化衍生-气相色谱-冷原子荧光法(GC-CVAFS)测定水样中总汞、总甲基汞、溶解态总汞和溶解态甲基汞的浓度.结果表明,三门峡水库水体中总汞、溶解态汞和颗粒态汞浓度范围分别为1.65~9.65、0.80~3.16和0.70~7.81 ng·L~(-1),符合国家地表水环境质量标准(GB 3838-2002)一类水汞浓度标准限值;总甲基汞、溶解态甲基汞和颗粒态甲基汞浓度分别为0.05~0.36、0.02~0.14和ND~0.26 ng·L~(-1).三门峡水库水体总汞和甲基汞在季节和空间分布上没有呈现出明显的变化规律.总汞和甲基汞与未受污染的天然水体差别不大,水库未受到明显的汞污染.丰、枯水期沉积物中总汞浓度分别为(92.96±10.65)ng·g~(-1)和(80.06±19.14)ng·g~(-1),甲基汞浓度分别为(0.33±0.14)ng·g~(-1)和(0.50±0.19)ng·g~(-1).较低的甲基汞浓度说明在三门峡水库汞的迁移转化过程中,甲基化作用可能并非主要的过程,这可能与水体底层溶解氧浓度较高以及沉积物中有机质浓度较低有关.  相似文献   

8.
青岛霾天气下大气汞的污染特征分析   总被引:1,自引:0,他引:1  
2013年1月14~17日青岛市经历了一次大范围的霾污染过程,采集并测定大气气态汞和颗粒态汞,研究汞的污染特征.结果表明,气态汞(TGM)的平均浓度为(2.8±0.9)ng/m3,颗粒汞(PHg)的平均浓度为(245±174)pg/m3.在霾发生的14、15日PHg/TSP的比值明显高于16、17日,且TGM与PHg浓度呈负相关关系,霾日气象条件有利于TGM向PHg转化.大气汞浓度与温度、相对湿度正相关,与风速负相关.TGM与SO2、NO2显著正相关,化石燃料的燃烧是大气汞的主要来源.对大气气团的后向轨迹进行聚类分析,将其分为5类,霾日大气中的汞主要来自近距离传输,受山东本地污染影响,气态汞含量最高.  相似文献   

9.
乌江流域表层水体中汞的形态与时空分布特征   总被引:1,自引:0,他引:1  
为了弄清乌江流域表层水体中汞的形态与时空分布规律,于2009年1~12月,每月采集乌江流域河流表层水样,采用两次金汞齐-冷原子荧光光谱法和蒸馏-乙基化结合GC-CVAFS法测定了水中不同形态汞的浓度。结果表明:(1)监测期间各采样点总汞、甲基汞、溶解态汞、颗粒态汞、活性汞、颗粒态甲基汞、溶解态甲基汞的年均算数平均值分别为5.20±10.89、0.09±0.20、3.31±10.66、1.89±1.08、0.30±0.36、0.06±0.19、0.04±0.03 ng/L。不同形态汞的沿程分布显示,水库的修建改变了原有的汞的地球化学过程。(2)通过不同季节各形态汞浓度的变化发现,河流表层水中不同形态汞有明显的季节变化趋势。(3)相关分析发现,总汞受总悬浮颗粒物含量的影响相对较大;活性汞浓度的季节变化可能与降雨对乌江水体的影响有关。  相似文献   

10.
红枫湖出入库河流汞浓度分布特征及影响因素分析   总被引:3,自引:1,他引:2  
基于冷原子荧光测定方法对红枫湖出入库河流中总汞、溶解态汞、甲基汞及溶解态甲基汞的时空分布特征及控制因素进行了分析。河流总汞浓度在2.2~350ng/L之间,平均值为51ng/L。由于受到人为源的污染,总汞含量显著高于世界其它一些天然水体。河流中总汞和颗粒态汞之间存在极显著相关性(r=0.99,p0.001)。河流汞季节变化主要受河水流量以及暴雨引发的地表径流所控制。河流输入红枫湖水库的汞大部分蓄积在水库中,仅有少量汞输出水库,水库已成为河流汞输入一个巨大的汇。入湖河流中的总甲基汞和溶解态甲基汞并没有显著的季节差异。春季暴雨期间,更多的地表甲基汞随着地表径流进入到河流中,成为河流甲基汞一个重要甲基汞源。  相似文献   

11.
广州市大气气态总汞含量季节和日变化特征   总被引:5,自引:0,他引:5       下载免费PDF全文
利用高时间分辨率自动测汞仪(tekran 2537B),于2010-11~2011-11对广州市大气气态总汞(TGM)进行了连续1a的观测.结果表明,广州市大气气态总汞的年平均含量为(4.86±1.36)ng/m3,表明该地区受到了一定程度的大气汞污染.TGM浓度按季节表现为:春季>冬季>秋季>夏季.TGM污染呈现春高夏低的现象,气象因素如边界层、静止风是影响其季节分布不同的主要原因.日变化趋势为中午最低,早晚出现2个高峰,边界层和温度对TGM日变化有很大影响.对广州市大气气态汞的可能来源分析结果表明,TGM主要来源于本地人为排放,其中市内燃煤电厂和水泥厂等人为源排放可能是广州市大气气态总汞的主要来源.  相似文献   

12.
本研究采用2019年12月9日-12月19日黄、渤海连续在线监测的气态元素汞(GEM)浓度数据,分析了GEM的空间分布、来源及其影响因素。研究结果表明,GEM的平均浓度为(1.92±0.69)ng/m3,变化范围为0.80~4.17 ng/m3。GEM浓度空间差异明显,渤海的浓度高于黄海,最高浓度和最低浓度都出现在山东半岛南部海域。受污染事件及华北地区较高汞排放量的影响,气团携带了华北地区的污染物,近海GEM浓度升高,而来自西伯利亚冷气团中的GEM浓度较低。西向风时更易出现高浓度GEM,GEM浓度与风速呈显著负相关关系(r=?0.217,P<0.01),与气温呈显著正相关关系(r=0.417,P<0.01)。冬季,黄、渤海GEM浓度主要受陆地污染气团的影响。  相似文献   

13.
重庆大气汞初步调查   总被引:23,自引:1,他引:23  
对重庆市大气汞调查结果表明,重庆渝中区及近郊区大气汞浓度范围为9.2~101.5ng/m3,平均34.4ng/m3;大气汞形态90%以上为气态汞;大气汞分布在工厂区及城市中心较高,城外较低,自然保护区最低。  相似文献   

14.
An investigation of gaseous elemental mercury concentration in atmosphere was conducted at Beijing and Guangzhou urban, Yangtze Delta regional sites and China Global Atmosphere Watch Baseline Observatory (CGAWBO) in Mt. Waliguan of remote continental area of China. High temporal resolved data were obtained using automated mercury analyzer RA-915 . Results showed that the overall hourly mean Hg0 concentrations in Mt. Waliguan were 1.7± 1.1 ng/m3 in summer and 0.6±0.08 ng/m3 in winter. The concentration in Yangtze Delta regional site was 5.4±4.1 ng/m3, which was much higher than those in Waliguan continental background area and also higher than that found in North America and Europe rural areas. In Beijing urban area the overall hourly mean Hg0 concentrations were 8.3±3.6 ng/m3 in winter, 6.5±5.2 ng/m3 in spring, 4.9±3.3 ng/m3 in summer, and 6.7±3.5 ng/m3 in autumn, respectively, and the concentration was 13.5±7.1 ng/m3 in Guangzhou site. The mean concentration reached the lowest value at 14:00 and the highest at 02:00 or 20:00 in all monitoring campaigns in Beijing and Guangzhou urban areas, which contrasted with the results measured in Yangtze Delta regional site and Mt. Waliguan. The features of concentration and diurnal variation of Hg0 in Beijing and Guangzhou implied the importance of local anthropogenic sources in contributing to the high Hg0 concentration in urban areas of China. Contrary seasonal variation patterns of Hg0 concentration were found between urban and remote sites. In Beijing the highest Hg0concentration was in winter and the lowest in summer, while in Mt. Waliguan the Hg0 concentration in summer was higher than that in winter. These indicated that different processes and factors controlled Hg0 concentration in urban, regional and remote areas.  相似文献   

15.
近年来随着城市交通基础建设的发展,汽车保有量的大幅增加,化石燃料的燃烧也随之增加,城市空气质量面临新的挑战。其中,大气汞污染受到越来越多的关注。文章利用Lumex RA-915和多功能汞分析仪,应用原位检测方法在隧道行车中和道路旁2 m远处,测定了城市隧道及道路周边空气中的元素汞的分布,初步研究了地面交通汞排放对周边环境中元素汞分布的特征的影响。结果表明:隧道内各点的大气汞浓度变化较小,并与通风情况有关;当隧道外自然风风速较大时,隧道内外大气中元素汞浓度均明显降低,从10~17ng/m3降低到4~8 ng/m3。地面道路旁大气元素汞的分布随汽车行驶状况、温度和昼夜变化而变化。中午大气中汞浓度较低,而傍晚较高;从白天至晚上呈上升趋势,从10.8 ng/m3和16.4 ng/m3升高到15.7 ng/m3和19.4 ng/m3;气温越高,大气中的汞浓度也越高;路口汽车怠速时汞浓度较高。因此,应加大交通排放对城市大气汞污染贡献的关注。  相似文献   

16.
于2015年3月29日至5月6日乘东方红2号从青岛前往西北太平洋,采用现场测定与室内分析结合的方法分析了黄海到西北太平海域表层海水中Hg形态及分布特征,以认识黄海到西北太平洋海水Hg的含量及区域Hg的迁移。黄海-西北太平洋表层海水中总汞(THg,total mercury)变化范围为0.11~2.50 ng/L,平均为0.75±0.51 ng/L,THg的含量呈近海高大洋低;表层海水中活性汞(RHg,reactive mercury)范围为0.10~1.45 ng/L,平均为0.33±0.24 ng/L,RHg/THg平均为48.4%,海水中RHg与水温呈显著性正相关(r=0.494*,P=0.045);表层海水中溶解性气态汞(DGM,dissolved gaseous mercury)的含量为11.7~105.7 pg/L,平均浓度39.6±22.9 pg/L。海水中DGM与气温呈显著正相关(r=0.633*,P=0.011),与风速呈显著负相关关系(r=-0.660**,P=0.006)。从黄海到西北太平洋DGM含量逐渐升高,其日变化呈现白天高夜晚低的趋势,主要受光照的影响。  相似文献   

17.
多环芳烃(PAHs)及有机磷阻燃剂(OPEs)种类繁多且具有易挥发性,通过气固分配行为完成气态和颗粒态的转化. 为准确评估天津市津南区PAHs、OPEs和各组分气固分配行为及风险评价,选择16种PAHs及7种OPEs作为研究对象,利用色谱质谱联用技术测定2019—2020年天津市津南区大气环境中的PAHs和OPEs浓度水平,利用气固分配实测及预测模型研究PAHs及OPEs分配行为,并通过健康风险评价模型对其健康风险进行评估. 结果表明:①天津市津南区2019—2020年∑G-PAHs (气态PAHs总和)年均浓度为36.7 ng/m3,PM2.5中∑P-PAHs (颗粒态PAHs总和)年均浓度为7.3 ng/m3;∑G-OPEs (气态OPEs总和)年均浓度为5 142.0 pg/m3,PM2.5中∑P-OPEs (颗粒态OPEs总和)年均浓度为2 752.0 pg/m3. ②研究期间,PAHs气固分配机制受吸收和吸附机制共同影响,低分子量、高分子量PAHs分别受吸附机制、吸收机制影响,而OPEs则主要受有机物吸收机制影响. ③颗粒态的2~3环PAHs、4环PAHs和5~6环PAHs的非致癌风险值占比分别为0.01%~8%、1%~31%和62%~98%,颗粒态的2~3环PAHs、4环PAHs和5~6环PAHs的致癌风险值占比分别为0.2%~1.5%、3%~71%和70%~99%,颗粒态的TNBP (磷酸三丁酯)、TCEP〔三-(β-氯乙基)磷酸酯〕、TCPP〔三(异氯丙基)磷酸盐〕、TPHP (磷酸三苯酯)和TDCPP〔三(1,3 -二氯异丙基)磷酸盐〕的非致癌风险值占比分别为36% (范围为10%~58%)、40% (范围为11%~72%)、45% (范围为13%~67%)、51% (范围为38%~75%)和49% (范围为37%~60%). 研究显示,OPEs的健康风险远低于PAHs,气态OPEs和颗粒态PAHs对人体健康的影响较显著.   相似文献   

18.
封闭式城市生活垃圾填埋场向大气释放汞的途径   总被引:3,自引:0,他引:3  
利用自动测汞仪和动力学通量箱技术,对武汉市某生活垃圾填埋场封闭的扩建部分向大气释放汞的途径进行了研究.结果发现,封闭式垃圾填埋场释放汞的途径主要是通过地表,而排气筒的释放很小.观测期间地表汞的释放强度平均为(192.5±245.3)ng·(m2·h)-1,比世界背景区域高出1~2个数量级.释放过程具有明显的昼夜变化规律,白天高于夜间,并在午间达到峰值.光照强度与汞释放通量间的相关性最高,达到0.77,说明Hg(Ⅱ)的光致还原作用是挥发态Hg0生成的主要途径.垃圾填埋场排气筒释放的气体中Hg0的平均浓度为7.0~68.9 ng.m-3,远低于运行中的垃圾填埋场,并且流速也很小.  相似文献   

19.
复合钙基吸收剂吸附烟气中汞的试验研究   总被引:2,自引:0,他引:2  
将飞灰和CaO以4∶1(质量比)混合,在室温25℃下消化10min,在68℃下干燥40min,制得基础吸收剂,再添加5%的KMnO4(或NaClO2)和15%的水分,制成可吸附燃煤烟气汞的复合钙基吸收剂. 研究了KMnO4/NaClO2添加量,吸收剂中水分含量,温度,进口φ(O2)、ρ(Hg0)、ρ(SO2)和ρ(NO)等因素对复合钙基吸收剂吸附烟气汞的影响. 结果表明:随着KMnO4、NaClO2添加量从0增至5%,复合钙基吸收剂对烟气汞10min吸附量从131.75ng/g分别增至443.00和876.08ng/g;在KMnO4(或NaClO2)添加量为5%,水分含量为15%,温度为80℃,进口φ(O2)为6%的条件下,模拟烟气进口ρ(Hg0)从18.0μg/m3增至86.4μg/m3时,复合钙基吸收剂对烟气汞的最大吸附量升至1203.33ng/g(或2391.63ng/g);当进口ρ(SO2)从1429mg/m3增至2286mg/m3时,KMnO4(或NaClO2)添加剂相对应的烟气汞最大吸附量降至421.50ng/g(或860.00ng/g);当进口ρ(NO)从536mg/m3增至938mg/m3时,KMnO4(或NaClO2)添加剂相对应的烟气汞最大吸附量降至336.75ng/g(或776.38ng/g).   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号