首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In situ biodegradation of benzene, toluene, and xylenes in a petroleum hydrocarbon contaminated aquifer near Fairbanks, Alaska was assessed using carbon and hydrogen compound specific isotope analysis (CSIA) of benzene and toluene and analysis of signature metabolites for toluene (benzylsuccinate) and xylenes (methylbenzylsuccinates). Carbon and hydrogen isotope ratios of benzene were between -25.9 per thousand and -26.8 per thousand for delta13C and -119 per thousand and -136 per thousand for delta2H, suggesting that biodegradation of benzene is unlikely at this site. However, biodegradation of both xylenes and toluene were documented in this subarctic aquifer. Biodegradation of xylenes was indicated by the presence of methylbenzylsuccinates with concentrations of 17-50 microg/L in three wells. Anaerobic toluene biodegradation was also indicated by benzylsuccinate concentrations of 10-49 microg/L in the three wells with the highest toluene concentrations (1500-5000 microg/L toluene). Since benzylsuccinate typically accounts for a very small fraction of the toluene present in groundwater (generally <1 mol%), the signature metabolite approach works best at higher toluene concentrations when it is not constrained by detection limits. In wells with lower toluene concentrations (410-640 microg/L), carbon and hydrogen isotopic values were enriched by up to approximately 2 per thousand for delta13C and approximately 70 per thousand for delta2H. This evidence of isotopic fractionation verifies the effects of biodegradation in these low concentration wells where metabolites may already be below detection limits. The combined use of signature metabolite and CSIA data is particularly valuable given the challenge of verifying biodegradation in subarctic environments where degradation rates are typically much slower than in temperate environments.  相似文献   

2.
A screening using several fungi (Phanerochaete chrysosporium, Pleurotus ostreatus, Trametes versicolor and Aureobasidium pullulans) was performed on the degradation of syringol derivatives of azo dyes possessing either carboxylic or sulphonic groups, under optimized conditions previously established by us. T. versicolor showed the best biodegradation performance and its potential was confirmed by the degradation of differently substituted fungal bioaccessible dyes. Enzymatic assays (lignin peroxidase, manganese peroxidase, laccase, proteases and glyoxal oxidase) and GC-MS analysis were performed upon the assay obtained using the most degraded dye. The identification of hydroxylated metabolites allowed us to propose a possible metabolic pathway. Biodegradation assays using mixtures of these bioaccessible dyes were performed to evaluate the possibility of a fungal wastewater treatment for textile industries.  相似文献   

3.
Lu J  Jin Q  He Y  Wu J 《Chemosphere》2007,69(7):1047-1054
Biodegradation behavior of nonylphenol polyethoxylates (NPEOs) under Fe(III)-reducing conditions was investigated. The study demonstrated that NPEOs could be rapidly biodegraded under Fe(III)-reducing conditions. Almost 60% of the total NPEOs were removed within three days and the maximum biodegradation rate was 34.95+/-0.84 microM d(-1). NPEOs were degraded via sequential removal of ether units under Fe(III)-reducing conditions. No nonylphenol polyethoxy-carboxylates (NPECs) were formed in this process. This ether removal process was coupled to Fe(III) reduction. Nonylphenol (NP), nonylphenol monoethoxylate (NP1EO), and nonylphenol diethoxylate (NP2EO) slightly accumulated in the anaerobic biodegradation process. The accumulation of these estrogenic metabolites led to a significant increase in the estrogenic activity during the biodegradation period. The calculated estrogenic activity reached its top on day 14 when the total concentration of these estrogenic metabolites was maximal. This is the first report of the primary biodegradation behavior of NPEOs under Fe(III)-reducing conditions. These findings are of major environmental importance in terms of the environmental behavior of NPEO contaminants in natural environment.  相似文献   

4.
During degradation of trinitrotoluene (TNT) by Trametes modesta, addition of humic monomers prevented the accumulation of all major stable TNT metabolites (aminodinitrotoluenes [AMDNT]) by at least 92% in the presence of 200 mM ferulic acid and guaiacol. Acute toxicity tests with individual TNT metabolites and in T. modesta cultures supplemented with 200 microM TNT demonstrated that the TNT biodegradation process lead to less toxic metabolites. Toxicity decreased in the order TNT>4-HADNT (4-hydroxylaminodinitrotoluene)>2-HADNT>2,6-DNT (2,6-dinitrotoluene)>2',2',6,6-azoxytetranitrotoluene>4-AMDNT>2-AMDNT>2,4-diamninonitrotoluene (2,4-DAMNT) while 2,4-DNT and 2,6-DAMNT were the least toxic. Ferulic acid is the best candidate for immobilization TNT biodegradation metabolites since it prevented the accumulation of AMDNTs in cultures during TNT biodegradation and its products were less toxic. All humic monomers were very effective in immobilizing 2-HADNT [100%], 4-HADNT [100%] and 2,2,6,6-azoxytetranitrotoluene [100%]. Two distinct laccase isoenzymes (LTM1 and LTM2) potentially involved in immobilization of TNT degradation products were purified to electrophoretic homogeneity. LTM1 and LTM2 have molecular weights of 77.6 and 52.5 kDa, are 18% and 24% glycosylated, have pI values of 3.6 and 4.2, respectively. Both enzymes oxidized all the typical laccase substrates tested. LTM1 showed highest kinetic constants (K(m)=0.03 microM; K(cat)=8.8 4x 10(7)s(-1)) with syringaldazine as substrate.  相似文献   

5.
Triclosan is an antimicrobial agent, an endocrine disrupting compound, and an emerging contaminant in the environment. This is the first study investigating triclosan biodegradation potential of four oxygenase-expressing bacteria: Rhodococcus jostii RHA1, Mycobacterium vaccae JOB5, Rhodococcus ruber ENV425, and Burkholderia xenovorans LB400. B. xenovorans LB400 and R. ruber ENV425 were unable to degrade triclosan. Propane-grown M. vaccae JOB5 can completely degrade triclosan (5 mg L−1). R. jostii RHA1 grown on biphenyl, propane, and LB medium with dicyclopropylketone (DCPK), an alkane monooxygenase inducer, was able to degrade the added triclosan (5 mg L−1) to different extents. Incomplete degradation of triclosan by RHA1 is probably due to triclosan product toxicity. The highest triclosan transformation capacity (Tc, defined as the amount of triclosan degraded/the number of cells inactivated; 5.63 × 10−3 ng triclosan/16S rRNA gene copies) was observed for biphenyl-grown RHA1 and the lowest Tc (0.20 × 10−3 ng-triclosan/16S rRNA gene copies) was observed for propane-grown RHA1. No triclosan degradation metabolites were detected during triclosan degradation by propane- and LB + DCPK-grown RHA1. When using biphenyl-grown RHA1 for degradation, four chlorinated metabolites (2,4-dichlorophenol, monohydroxy-triclosan, dihydroxy-triclosan, and 2-chlorohydroquinone (a new triclosan metabolite)) were detected. Based on the detected metabolites, a meta-cleavage pathway was proposed for triclosan degradation.  相似文献   

6.
One of the foremost environmental issues having a key role in the feasibility study of polycyclic aromatic hydrocarbons (PAHs) biodegradation is the concern of the toxicity of the formed intermediate metabolites. In this study, biodegradability of phenanthrene (PHE) at initial concentrations of 100–500 ppm and its hydroxylated intermediate metabolites (IMs) in aqueous phase were investigated using free cells (FC) and immobilized cells (IC) in polyvinyl alcohol (PVA) cryogel beads. Results showed that both FC and IC systems were capable of complete PHE biodegradation at initial concentrations lower than 250 ppm after 7 days, though IC system showed a higher PHE removal rate. The maximum IM concentrations observed at initial PHE concentrations of 100 and 250 ppm were 20 and 49 ppm for FC system, whereas 7.4 and 19 ppm were obtained for IC system, respectively, and IMs were finally removed after 7 days. Similarly, at 500 ppm, IC system resulted in higher removal of PHE compared to FC system. However, during the 7-day period for FC system, IMs concentration rose up to 59 ppm, while for IC system, IMs concentration reaches a maximum at day 5 and thereafter it follows a negative rate. It was also shown that resorcinol as an indicator of hydroxylated aromatic metabolites at concentrations of 0–100 ppm can well be biodegraded by free and immobilized cell systems. No prohibition on PHE biodegradation could hence occur due to IMs formation. Additionally, stability of IC system was examined in repeated-batch cultures, showing the effective removal of PHE up to nine reuse cycles.  相似文献   

7.
Few techniques exist to measure the biodegradation of recalcitrant organic compounds such as chlorinated hydrocarbons (CHC) in situ, yet predictions of biodegradation rates are needed for assessing monitored natural attenuation. Traditional techniques measuring O2, CO2, or chemical concentrations (in situ respiration, metabolite and soil air monitoring) may not be sufficiently sensitive to estimate biodegradation rates for these compounds. This study combined isotopic measurements (14C and delta13C of CO2 and delta13C of CHCs) in conjunction with traditional methods to assess in situ biodegradation of perchloroethylene (PCE) and its metabolites in PCE-contaminated vadose zone sediments. CHC, ethene, ethane, methane, O2, and CO2 concentrations were measured over 56 days using gas chromatography (GC). delta13C of PCE, trichloroethylene (TCE) and cis-1,2-dichloroethylene (DCE), delta13C and 14C of vadose zone CO2 and sediment organic matter, and delta13C, 14C, and deltaD of methane were measured using a GC-isotope ratio mass spectrometer or accelerator mass spectrometer. PCE metabolites accounted for 0.2% to 18% of CHC concentration suggesting limited reductive dechlorination. Metabolites TCE and DCE were significantly enriched in (13)C with respect to PCE indicating metabolite biodegradation. Average delta13C-CO2 in source area wells (-23.5 per thousand) was significantly lower compared to background wells (-18.4 per thousand) indicating CHC mineralization. Calculated CHC mineralization rates were 0.003 to 0.01 mg DCE/kg soil/day based on lower 14C values of CO2 in the contaminated wells (63% to 107% modern carbon (pMC)) relative to the control well (117 pMC). Approximately 74% of the methane was calculated to be derived from in situ CHC biodegradation based on the 14C measurement of methane (29 pMC). 14C-CO2 analyses was a sensitive measurement for quantifying in situ recalcitrant organic compound mineralization in vadose zone sediments for which limited methodological tools exist.  相似文献   

8.
Sepic E  Bricelj M  Leskovsek H 《Chemosphere》2003,52(7):1125-1133
The toxicity of nine stable products of the biodegradation of fluoranthene with the pure bacterial strain Pasteurella sp. IFA was studied. For their quantification, an improved analytical procedure with two-step liquid-liquid extraction, derivatisation and gas chromatographic-mass spectrometric detection was used. Growth inhibition and immobility tests for fluoranthene and its metabolites were carried out using algae (Scenedesmus subspicatus), bacteria (Pseudomonas putida) and crustaceans (Daphnia magna and Thamnocephalus platyurus). Tests using the alga S. subspicatus revealed that with the exception of 9-hydroxyfluorene, which was only four times less toxic than fluoranthene, all the other metabolites were 37 to approximately 3000 times less toxic than the parent material. P. putida cells were resistant to fluoranthene and its primary metabolites, but were inhibited by low molecular weight intermediates, especially benzoic acid. Fluoranthene was not toxic to T. Platyurus, but was toxic to D. magna. Its primary metabolites (including 9-fluorenone and 9-hydroxyfluorene) were toxic to D. magna, and a low molecular weight metabolite (2-carboxybenzaldehyde) was highly toxic to T. platyurus.  相似文献   

9.
An investigation of biodegradation of chlorinated phenol in an anaerobic/aerobic bioprocess environment was made. The reactor configuration used consisted of linked anaerobic and aerobic reactors, which served as a model for a proposed bioremediation strategy. The proposed strategy was studied in two reactors before linkage. In the anaerobic compartment, the transformation of the model contaminant, 2,4,6-trichlorophenol (2,4,6-TCP), to lesser-chlorinated metabolites was shown to occur during reductive dechlorination under sulfate-reducing conditions. The consortium was also shown to desorb and mobilize 2,4,6-TCP in soils. This was followed, in the aerobic compartment, by biodegradation of the pollutant and metabolites, 2,4-dichlorophenol, 4-chlorophenol, and phenol, by immobilized white-rot fungi. The integrated process achieved elimination of the compound by more than 99% through fungal degradation of metabolites produced in the dechlorination stage. pH correction to the anaerobic reactor was found to be necessary because acidic effluent from the fungal reactor inhibited sulfate reduction and dechlorination.  相似文献   

10.
Peroxidative degradation of selected PCB: a mechanistic study   总被引:6,自引:0,他引:6  
Köller G  Möder M  Czihal K 《Chemosphere》2000,41(12):326-1834
The enzyme-induced decomposition and biodegradation of PCB were investigated. 2,5-Dichlorobiphenyl (PCB 9) and 2,2,5,5-tetrachlorobiphenyl (PCB 52) were used as example compounds to study efficiency and mechanism of the degradation processes. It was found that the application of horseradish peroxidase (HRP) together with defined amounts of hydrogen peroxide removed 90% of the initial concentration of PCB 9 and 55% of the initial concentration of PCB 52 from an aqueous solution after a reaction period of 220 min. Dechlorination was observed as the initial step. Although the metabolites identified were mainly chlorinated hydroxybiphenyls, benzoic acids and non-substituted 1,1-biphenyl, some higher chlorinated biphenyl isomers also appeared. The biodegradation of PCB 9 using the white rot fungus Trametes multicolor took about four weeks and reduction was about 80% of the initial concentration. The metabolites produced (dichlorobenzenes, chlorophenols and alkylated benzenes) were not quite the same as those observed upon incubation with HRP.  相似文献   

11.
In recent years, natural attenuation (NA) has evolved into a possible remediation alternative, especially in the case of BTEX spills. In order to be approved by the regulators, biodegradation needs to be demonstrated which requires efficient site investigation and monitoring tools. Three methods--the Integral Groundwater Investigation method, the compound-specific isotope analysis (CSIA) and a newly developed combination of both--were used in this work to quantify at field scale the biodegradation of o-xylene at a former gasworks site which is heavily contaminated with BTEX and PAHs. First, the Integral Groundwater Investigation method [Schwarz, R., Ptak, T., Holder, T., Teutsch, G., 1998. Groundwater risk assessment at contaminated sites: a new investigation approach. In: Herbert, M. and Kovar, K. (Editors), GQ'98 Groundwater Quality: Remediation and Protection. IAHS Publication 250, pp. 68-71; COH 4 (2000) 170] was applied, which allows the determination of mass flow rates of o-xylene by integral pumping tests. Concentration time series obtained during pumping at two wells were used to calculate inversely contaminant mass flow rates at the two control planes that are defined by the diameter of the maximum isochrone. A reactive transport model was used within a Monte Carlo approach to identify biodegradation as the dominant process for reduction in the contaminant mass flow rate between the two consecutive control planes. Secondly, compound-specific carbon isotope analyses of o-xylene were performed on the basis of point-scale samples from the same two wells. The Rayleigh equation was used to quantify the degree of biodegradation that occurred between the wells. Thirdly, a combination of the Integral Groundwater Investigation method and the compound-specific isotope analysis was developed and applied. It comprises isotope measurements during the integral pumping tests and the evaluation of delta13C time series by an inversion algorithm to obtain spatially integrated mean isotope values at the control planes. It was shown that the Rayleigh equation is applicable to spatially integrated mean isotope values in order to obtain the mean biodegradation between the consecutive control planes. All three approaches yielded consistently a 98-99% degradation of o-xylene.  相似文献   

12.
In the present work the effect of the alkyl chain length and the position of the sulfophenyl substituent of the linear alkylbenzene sulfonates (LAS) on their anaerobic biodegradability have been investigated. Degradation kinetics of the linear alkyl benzene sulfonates homologues, 2C10LAS, 2C12LAS and 2C14LAS, have been studied. It has been also investigated the effect of the isomer type on the degradation rate of the LAS molecule through the comparative study of the 2C10LAS and 5C10LAS isomers. Batch anaerobic biodegradation tests were performed using sludge from the anaerobic digester of a wastewater treatment plant as microorganisms source. Ultimate biodegradation was evaluated from the biogas production whereas primary biodegradation was determined by specific analysis of the surfactant. LAS homologues and isomers showed a negligible primary biodegradation under anaerobic conditions. Furthermore, analysis of sulfophenyl carboxilates (SPC) by LC–MS indicated a low and constant level of these LAS degradation metabolites over the test period. These data are consistent with a minimal transformation of the LAS parent molecule in the anaerobic digesters. On the other hand, the addition of the shortest alkyl chain length homologues, decyl and dodecylbenzene sulfonates, reduces the biogas production whereas the most hydrophobic homologue, the tetradecylbenzene sulfonate, enhances the biogas production. This LAS homologue seems to increase the availability of organic compounds sorbed on the anaerobic sludge promoting their biodegradation.  相似文献   

13.
Dercová K  Vrana B  Baláz S 《Chemosphere》1999,38(6):1391-1400
Kinetics of distribution of PCBs in an active bacterial suspension of Pseudomonas stutzeri was studied by monitoring the evaporated amounts and the concentration remaining in the liquid medium with the biomass. To determine the biodegradation rate constants of the individual congeners of the PCB formulation Delor 103, a model considering biosorption, evaporation, and primary biodegradation constructed previously was used. Rate constants of biodegradation imply that biodegradation of individual congeners is structure-dependent process. Biodegradability decreases with increasing number of chlorine substituents in the molecule, especially if they are in the ortho and para positions. On the other hand, the increasing number of free ortho and meta positions in the biphenyl molecule leads to better biodegradability. For a simple empirical determination of the influence of the chlorine substitution pattern on biodegradability, the di- and trichlorobiphenyl rate constants of biodegradation were analysed.  相似文献   

14.
The metabolism of phenanthrene and the mammalian corticosteroid hormone cortexolone by the fungus Cunninghamella elegans was studied. The amounts of the cortexolone transformation products, cortisol and epicortisol, were affected by the presence of phenanthrene. Approximately 40% more cortisol was produced by C. elegans in cultures with phenanthrene. In contrast, epicortisol formation decreased. C. elegans transformed phenanthrene to phenanthrene trans-1,2-,3,4-, and 9,10-dihydrodiols, phenols, diphenols (diols) and glucoside conjugates of 1-, 2-, 3-, 4-, and 9-phenanthrols. Almost all of the phenanthrene initially added was metabolized to ethyl acetate extractable metabolites. In the mycelia and culture medium extracts, phenanthrol glucosides represented 80% and 94% of the total metabolites, respectively. The major metabolite was the glucoside conjugate of 1-phenanthrol. The presence of cortexolone affected the biodegradation of phenanthrene by decreasing the amounts of phenanthrene metabolites compared to control cultures.  相似文献   

15.
A procedure was developed to obtain three size fractions (2360 < d(p) < 1000, 1000 < d(p) < 710, and 710 < d(p) < 425 microm) of stable aggregates from Koopveen peat soil by application of an intense mixing regime prior to sieving of the soil material. The organic matter content, aggregation structure and the microstructure of these aggregates were determined and the particles were artificially contaminated with naphthalene and phenanthrene via a solvent phase. A nonlinear Freundlich sorption isotherm was determined for the naphthalene contaminated soil aggregates (n = 0.39; K(F) = 1.13 x 10(-2) m(1.17) kg(-0.39)). The applicability of a mathematical model, that describes sorption equilibrium, intraparticle mass-transfer, and nonlinear bacterial degradation kinetics, was tested by fitting results of dynamic desorption and biodegradation experiments, generated in this study and earlier work on the peat soil aggregates. The experimental data were described adequately although strong variations in the values of the fit parameter, the intra-particle porosity (0.30 < epsilon < 0.88), were found. This indicates the necessity of further investigations.  相似文献   

16.
Atrazine is a persistent organic pollutant in the environment which affects not only terrestrial and aquatic biota but also human health. Since its removal from the environment is needed, atrazine biodegradation is achieved in the present study using the bacterium Rhodococcus sp. BCH2 isolated from soil, long-term treated with atrazine. The bacterium was capable of degrading about 75 % atrazine in liquid medium having pH 7 under aerobic and dark condition within 7 days. The degradation ability of the bacterium at various temperatures (20–60 °C), pH (range 3–11), carbon (glucose, fructose, sucrose, starch, lactose, and maltose), and nitrogen (ammonium molybdate, sodium nitrate, potassium nitrate, and urea) sources were studied for triumph optimum atrazine degradation. The results indicate that atrazine degradation at higher concentrations (100 ppm) was pH and temperature dependent. However, glucose and potassium nitrate were optimum carbon and nitrogen source, respectively. Atrazine biodegradation analysis was carried out by using high-performance thin-layer chromatography (HPTLC), Fourier transform infrared spectroscopy (FTIR), and liquid chromatography quadrupole time-of-flight (LC/Q-TOF-MS) techniques. LC/Q-TOF-MS analysis revealed formation of various intermediate metabolites including hydroxyatrazine, N-isopropylammelide, deisopropylhydroxyatrazine, deethylatrazine, deisopropylatrazine, and deisopropyldeethylatrazine which was helpful to propose biochemical degradation pathway of atrazine. Furthermore, the toxicological studies of atrazine and its biodegraded metabolites were executed on earthworm Eisenia foetida as a model organism with respect to enzymatic (SOD and Catalase) antioxidant defense mechanism and lipid peroxidation studies. These results suggest innocuous degradation of atrazine by Rhodococcus sp. BCH2 in nontoxic form. Therefore the Rhodococcus sp.BCH2 could prove a valuable source for the eco-friendly biodegradation of atrazine pesticide.  相似文献   

17.
The objective of this research was to assess the degradation of fipronil [5-amino-1-(2,6-dichloro-alpha,alpha,alpha -trifluoro-p-tolyl)-4-trifluoromethylsulfinylpyrazole-3-carbonitrile] in soils from sugar cane fields in Northeastern Brazil. Degradation experiments were carried out under laboratory conditions (controlled temperature and in the dark), where sterile and non-sterile soils (Ustoxs) were incubated [under moisture content of 55% of the water holding capacity (WHC)] and analyzed for fipronil disappearance and metabolite formation. Microbial communities present in the soil degrade fipronil. However, biodegradation seems to be dependent on the bioavailability of the fipronil and the half-life according to the zero-order model. Fipronil degradation rate appeared to be biphasic. Degradation fipronil ranged from 83 days (initial concentration = 978 ng g(-1); short-term experiment) to 200 days (initial concentration = 689 ng g(-1); long-term experiment). This an initial slower rate followed by a faster rate after 90 days of incubation may lead to shorter half-life than that calculated with the zero-order model. The sulfone derivative (an oxidation product) was the predominant metabolite, but the sulfide (a reduction product) and amide (a hydrolysis product) derivatives were also formed under non-sterile conditions after 120 days of incubation. The metabolites underwent further biodegradation, particularly the sulfone derivative. Bioavailability appears to affect fipronil degradation in soils with an effective capacity to adsorb fipronil (such as Ustoxs), while redox potential was important for the formation of metabolites. Despite the fine texture, more aerobic sites were present, thus favoring the formation of the sulfone metabolite over that of the sulfide metabolite. Therefore, microaggregation of Ustoxs, with high clay content, played a very important role in determining the types of metabolites formed.  相似文献   

18.
The aerobic biodegradation of commercial nonylphenol ethoxylate (NPE) mixture and alkali lignin was studied using the OECD headspace test accompanied by the simultaneous measurement of ecotoxicity directly from the biodegradation liquors and by the follow-up of the chemical composition of the studied chemicals. NPE degradation was dependent on the inoculum source: approximately 40% of NPE was mineralized into CO2 during the 4-week experiment when inoculum from Helsinki City wastewater treatment plant (WWTP) was used, and only 12% was mineralized when inoculum from Jyväskylä City WWTP was used. Chemical analyses revealed a shift in the ethoxylate chain length from longer to shorter soon after the beginning of the NPE biodegradation tests. At the same time also toxicity (reverse electron transport assay, RET) and estrogenic activity (human estrogen receptor yeast) measured directly from the biodegradation liquors decreased. In case of alkali lignin, approximately 11% was mineralized in the test and chemical analysis showed in maximum a 30% decrease in lignin concentration. Toxicity of lignin biodegradation liquors started to decrease in the beginning of the test, but became more toxic towards the end of the test again. Especially RET assay proved to be sensitive enough for measuring toxicity changes directly from biodegradation liquors, although a concentrating treatment of the liquors is recommended for a more detailed characterization and identification of toxic metabolites.  相似文献   

19.
Ozonation characteristics of synthetic Procaine Penicillin G (PPG) formulation effluent were investigated in a semi-batch ozone reactor at different pH (3, 7 and 12), ozone feed rates (600-2600 mg h-1) and COD values (200-600 mg l-1). Ozonation of aqueous PPG effluent resulted in 37 (82)% COD removal after 60 (120) min ozonation when the reaction pH was kept constant at pH=7.900 mg l-1 (corresponding to 50% of the total introduced) ozone was absorbed during a reaction period of 1 h. The effects of increasing the applied ozone dose and the initial COD on the COD abatement rates of PPG effluent were also studied. Results have indicated that increasing the ozone dose and decreasing the COD content both have positive effects on COD removal rates. The significant contribution of the free radical (.OH) reaction pathway to PPG ozonation could be traced using tert-butyl alcohol as the .OH probe compound at varying concentrations. The bimolecular reaction rate constants for the direct reaction of PPG with ozone were found as 152 and 2404 M-1 h-1 at pH=3 and 7, respectively, using the gas phase ozone partial pressures determined from of the outlet gas stream analysis. It could be demonstrated that ozone decomposition to free radicals being triggered by increasing the pH from 3 to 7 is essential for the rate enhancement of PPG effluent ozonation.  相似文献   

20.
The objective of this research was to assess the degradation of fipronil [5-amino-1-(2,6-dichloro-α,α,α -trifluoro-p-tolyl)-4-trifluoromethylsulfinylpyrazole-3-carbonitrile] in soils from sugar cane fields in Northeastern Brazil. Degradation experiments were carried out under laboratory conditions (controlled temperature and in the dark), where sterile and non-sterile soils (Ustoxs) were incubated [under moisture content of 55% of the water holding capacity (WHC)] and analyzed for fipronil disappearance and metabolite formation. Microbial communities present in the soil degrade fipronil. However, biodegradation seems to be dependent on the bioavailability of the fipronil and the half-life according to the zero-order model. Fipronil degradation rate appeared to be biphasic. Degradation fipronil ranged from 83 days (initial concentration = 978 ng g? 1; short-term experiment) to 200 days (initial concentration = 689 ng g? 1; long-term experiment). This an initial slower rate followed by a faster rate after 90 days of incubation may lead to shorter half-life than that calculated with the zero-order model. The sulfone derivative (an oxidation product) was the predominant metabolite, but the sulfide (a reduction product) and amide (a hydrolysis product) derivatives were also formed under non-sterile conditions after 120 days of incubation. The metabolites underwent further biodegradation, particularly the sulfone derivative. Bioavailability appears to affect fipronil degradation in soils with an effective capacity to adsorb fipronil (such as Ustoxs), while redox potential was important for the formation of metabolites. Despite the fine texture, more aerobic sites were present, thus favoring the formation of the sulfone metabolite over that of the sulfide metabolite. Therefore, microaggregation of Ustoxs, with high clay content, played a very important role in determining the types of metabolites formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号