首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
盛义平  刘琦  饶砚迪 《化工环保》2018,38(5):529-534
制备了Fe3O4-聚四氟乙烯(PTFE)电极,优化了原料配比和焙烧温度。对比了Fe3O4-PTFE单阴极和Fe3O4-PTFE与乙炔碳黑-PTFE电极并联双阴极体系对模拟Rhb染料废水的处理效果。实验结果表明:在m(Fe3O4)∶m(PTFE)=3.0∶2.5、焙烧温度为300 ℃的条件下制备Fe3O4-PTFE电极,采用阴极电-Fenton法降解模拟Rhb废水的效果最佳,电解反应120 min时Rhb降解率达86.91%;Fe3O4-PTFE电极与乙炔碳黑-PTFE电极并联作为双阴极电解Rhb废水时,最佳电压为6 V,最佳初始废水pH为3,在此条件下电解反应120 min时Rhb降解率达91.65%。  相似文献   

2.
选择Al2O3,TiO2,MnO2,Fe3O4 4种金属氧化物对溶液中的对氯苯甲酸(p-CBA)进行催化臭氧氧化降解。催化剂的表征结果显示:TiO2具有最大的比表面积,为93.84 m2/g,Al2O3的比表面积最低,仅为10.28 m2/g;MnO2和Fe3O4表面含有大量强酸性位,故其等电点较低,分别为1.45和1.82。4种催化剂对p-CBA的吸附能力与其比表面积相关,而催化臭氧氧化活性高低却与其等电点的高低顺序一致。Al2O3具有最高的等电点(6.92),也表现出相对较强的催化臭氧氧化活性。在臭氧通量6 mg/min、p-CBA初始质量浓度40 mg/L、Al2O3投加量0.5 g/L、反应时间40 min的条件下,p-CBA去除率达到58.6%,远高于单独臭氧化和吸附过程的去除率。  相似文献   

3.
张磊 《化工环保》2012,40(5):474-479
综述了Fe3O4-MnO2复合材料催化降解水中有机污染物的研究进展,介绍了Fe3O4-MnO2复合材料的负载方式,总结了Fe3O4-MnO2复合材料在催化降解水中有机污染物方面的应用。同时,阐述了Fe3O4-MnO2复合材料催化降解水中有机污染物的机理。指出:Fe3O4-MnO2复合材料未来的研发方向是实现负载方式的多样性和提高复合材料的热稳定性,制备出形貌多样、结晶性能好、稳定性高、经济性好、功能多样的Fe3O4-MnO2复合材料。  相似文献   

4.
以氮掺杂碳(NC)为前驱体,采用反向共沉淀法制备了Fe3O4/NC复合催化剂,通过SEM、TEM、FTIR等技术手段进行了表征,考察了该催化剂活化过二硫酸盐(PDS)降解苯酚的效果和影响因素。表征结果显示纳米Fe3O4成功负载至NC上。实验结果表明:Fe3O4/NC-PDS体系对苯酚具有良好的氧化降解效果,在苯酚溶液初始质量浓度20 mg/L、Fe3O4/NC加入量1.0 g/L、PDS加入量2.0 g/L、pH 7、反应温度25℃的条件下,反应120 min后,苯酚去除率达100%;Fe3O4/NC-PDS体系降解苯酚的途径包括自由基途径和非自由基途径两种方式,主要活性物种为1O2;在Fe3O4/NC-PDS降解苯酚过程中,苯酚的C—H键首先发生断裂,经过反位取代生成苯二酚,苯二酚...  相似文献   

5.
以活性炭作载体、Fe3O4为活性组分,用共沉淀法制得Fe3O4/活性炭催化剂,采用XRD、SEM、VSM等技术对其进行了表征,并考察了Fe3O4/活性炭催化光助类Fenton反应降解四环素的主要影响因素和反应机理。表征结果表明,Fe3O4/活性炭催化剂很好地保留了活性炭的多孔结构,Fe3O4在活性炭表面分布均匀,粒径尺寸为8.26~18.32 nm。Fe3O4/活性炭催化光助类Fenton反应降解四环素的最佳实验条件为:pH 5~7,四环素初始质量浓度 50 mg/L,H2O2投加量 10 mmol/L,催化剂投加量 0.5 g/L。在该条件下反应60 min后,水溶液中四环素降解率大于99%。在光助类Fenton降解四环素的反应体系中,·OH是引发反应的主要自由基,HO2...  相似文献   

6.
采用超声辅助水热法合成了磁性分子筛Fe3O4/SSZ-13,然后通过溶胶-凝胶法对其继续负载TiO2制得复合光催化剂TiO2-Fe3O4/SSZ-13。借助XRD,FTIR,SEM,TEM,VSM,UV-Vis,PL对其形貌、结构及性能进行了表征,并考察了其光催化性能。表征结果表明,Fe3O4的加入不会改变分子筛的原有结构,复合材料的光响应范围扩大,电荷分离效率提高。降解实验结果表明,光照40 min时活性艳红的去除率可达89.7%,光照60 min时活性艳红去除率可达最大(93.6%),较TiO2提高了5.7%。此外,这种材料还具有较强的磁性,饱和磁化强度为17.80 (A·m2)/kg,可通过外加磁场回收。  相似文献   

7.
以γ-Al2O3作为载体,先后负载CeO2,MnC2O4,Fe(NO33,CrO3,Ni(NO32,NH4VO3等多种金属组分制备γ-Al2O3负载多金属复合催化剂,并用于模拟烟气的选择性催化还原脱硝。通过SEM和XRD技术对催化剂进行了表征。表征结果显示:Fe,Mn,Cr的添加能增加催化剂的低温催化活性、提高催化剂的N2选择性;γ-Al2O3对活性金属氧化物的负载效果良好。实验结果表明:各金属化合物的最佳加入量为 w(MnC2O4·2H2O)=20%,w(Fe(NO33·9H2O)=15%,w(CrO3)=10%,w(Ni(NO32·6H2O)=5%,w(NH4VO3)=10%,w(CeO2)=5%,w(γ-Al2O3)=35%;以在最佳正交实验条件下制得的γ-Al2O3负载多金属复合物为催化剂,在脱硝反应温度为205 ℃的条件下,NO转化率为96.7%;γ-Al2O3负载多金属复合催化剂经5次重复使用,NO转化率仍可稳定在94%左右。  相似文献   

8.
以含油污泥热解残渣为原料,在充分考察其组成特性的基础上,通过添加复合固化剂(水泥和粉煤灰的混合物)及液态黏结剂,制备路基材料,考察了影响路基材料性能的主要因素。分析结果表明:热解残渣的主要组分为SiO2、Al2O3、CaO和SO3,与传统路基材料较为相似;热解残渣的pH、矿物油含量和铜、镉、铅等重金属含量均满足《农用污泥污染物控制标准》(GB 4284—2018)的要求。实验结果表明,在复合固化剂配比(水泥与粉煤灰质量比)为3∶2、复合固化剂与热解残渣质量比为3∶2、液态黏结剂加入量(m(液态黏结剂)∶m(复合固化剂和热解残渣))为0.15~0.20、养护龄期为7 d的条件下,所制得的路基材料抗压强度达到最佳,为2.77 MPa。  相似文献   

9.
采用炼钢精炼渣,通过气固碳酸化反应吸附CO2,考察了不同吸附温度下精炼渣对纯CO2和模拟高炉煤气中CO2的吸附能力。实验结果表明:吸附温度对精炼渣吸附CO2反应有显著的影响,升高温度可以提高精炼渣对CO2的吸附能力;在400 ℃时,精炼渣吸附纯CO2和模拟高炉煤气中CO2的量分别为4.7 mg/g和9.8 mg/g;吸附温度升高到500 ℃和550 ℃时,精炼渣对纯CO2的吸附能力强于高炉煤气中CO2;在550 ℃时,精炼渣吸附纯CO2和模拟高炉煤气中CO2的量达到最高,分别为14.7 mg/g和12.9 mg/g。  相似文献   

10.
采用稀土氧化物改性NaY型分子筛(Ⅰ型催化剂),100 gⅠ型催化剂中添加0.5 g CeO2得到Ⅱ型催化剂,100 gⅠ型催化剂中添加0.5 g La2O3和0.5 g CeO2得到Ⅲ型催化剂。分别采用Ⅰ型、Ⅱ型和Ⅲ型催化剂催化热解废轮胎(粒径0.2 mm),Ⅱ型和Ⅲ型催化剂的产油起始温度和终止温度均低于Ⅰ型催化剂。在催化剂加入量为2.5 g、废轮胎加入量为100 g 的条件下,Ⅲ型催化剂催化热解反应的产油率和油气总产率均高于Ⅰ型和Ⅱ型催化剂。Ⅱ型和Ⅲ型催化剂催化热解主要产生轻组分气体,Ⅱ型催化剂C4选择性最高,Ⅲ型催化剂C3选择性最高。  相似文献   

11.
在研究焦炭燃烧过程中使用钙基添加剂固硫的基础上,探讨了Fe_2O_3或K_2CO_3对CaO脱硫脱硝的影响。实验结果表明:添加剂的种类对焦炭燃烧过程中排放的SO_2和NO的浓度及总量均有一定的影响;加入Fe_2O_3或K_2CO_3替代部分CaO后,焦炭燃烧过程中排放的SO_2和NO比单独加入CaO时均有所下降;向焦炭中分别混合3.0%(w)CaO),1.5%(w)CaO+1.5%(w)Fe_2O_3,1.5%(w)CaO+1.5%(w)K_2CO_3的添加剂时,焦炭的SO_2排放总量分别降低了69.93%,75.98%,79.98%,NO排放总量分别降低了64.38%,79.73%,84.14%;加入Fe_2O_3或K_2CO_3后,钙基添加剂的表面性质发生了变化,同时增加了反应的活性中心数,因而复合添加剂能更有效地进行脱硫脱硝。  相似文献   

12.
MCM-41分子筛负载铁铈催化降解甲基橙   总被引:1,自引:0,他引:1       下载免费PDF全文
采用等体积浸渍法制备了负载型有序介孔Fe-Ce/MCM-41催化剂。研究了该催化剂降解甲基橙的适宜工艺条件,并采用XPS,XRD,TEM技术对该催化剂进行了表征。实验结果表明,该催化剂Fenton氧化降解甲基橙的较适宜工艺条件为:溶液pH 5.0、甲基橙溶液初始质量浓度100 mg/L、催化剂加入量2.0 g/L、H_2O_2浓度20 mmol/L,在此适宜条件下反应120 min时,甲基橙去除率接近100%。表征结果显示:Fe-Ce/MCM-41催化剂主要由铁、铈、氧、碳4种元素组成;铁与铈的摩尔比接近3∶1;铁和铈主要以Fe_3O_4和CeO_2的形态存在于催化剂表面。  相似文献   

13.
采用催化臭氧氧化深度处理某石化厂炼油废水,制备了活性炭复合材料负载催化剂(Fe_2O_3/ACNT),与几种常见负载催化剂进行了物性和COD去除效果的对比,并对Fe_2O_3/ACNT的催化效果和稳定性进行了详细分析。结果表明:催化剂的催化臭氧氧化活性由高到低的顺序为Fe_2O_3/ACNTFe_2O_3/活性炭Fe_2O_3/Al2O3Fe_2O_3/陶粒;Fe_2O_3/ACNT催化剂具有较高的比表面积、孔体积、强度和吸水率,使COD去除率由单独臭氧氧化时的约20%提高到66.8%。在催化剂填充量200 m L、废水pH 7.6、臭氧投加量200 mg/L、体积空速1 h~(-1)的条件下运行30d,COD去除率平均达65.1%,出水COD均值为40.8 mg/L,最高值为44.3 mg/L,满足外排水COD小于50 mg/L的指标。催化剂稳定性良好,运行30 d活性未见明显降低,具有在环保领域应用的前景。  相似文献   

14.
分别采用传统的Fe2+活化过硫酸钠(Na2S2O8)氧化和铁碳强化Na2S2O8氧化两种方法修复模拟机油污染土壤。实验结果表明:对于传统Fe2+-Na2S2O8体系,在Na2S2O8投加量为3.0%(w)、FeSO4·7H2O投加量为0.6%(w)的优化条件下,土壤中总石油烃(TPH)的去除率仅为33.12%;而对于Fe0-C-Na2S2O8体系,在Na2S2O8投加量为1.0%(w)、还原铁粉和活性炭的投加量均为0.1%(w)的优化条件下,土壤中TPH的去除率为42.99%;Fe0-C-Na2S2O8体系较Fe2+-Na2S2O8体系对土壤具有更好的修复效果,且Na2S2O8的投加量减少了2/3。此外,Fe0-C-Na2S2O8体系较Fe2+-Na2S2O8体系对土壤pH的影响小,在实际应用中可适当提高铁粉的投加量来减小Na2S2O8对土壤pH的影响。  相似文献   

15.
以溶剂热法制备Fe_3O_4磁性粒子,通过改良的St?ber法在其上包覆Si O_2,并用3-氨丙基三乙氧基硅烷对表面进行氨基修饰,制得Si O_2-NH_2/Fe_3O_4磁性复合材料,并将其用于制药废水二级出水的吸附处理(吸附剂投加量1 g/L、吸附时间120 min)。表征结果显示:Si O_2-NH_2/Fe_3O_4为粒径(510.0±3.6)nm的球形粒子。实验结果表明:在废水p H为5时,Si O_2-NH_2/Fe_3O_4对TOC、蛋白质、腐殖酸的吸附效果最佳,三者的去除率分别达44.14%,35.58%,33.07%,与Fe_3O_4相比分别提高了25.27,21.76,21.05百分点;废水p H为6时,Si O_2-NH_2/Fe_3O_4对多糖和色度的去除效果最佳,二者的去除率分别达26.03%和62.94%,与Fe_3O_4的最高去除率(p H=5时)相比分别提高了17.84百分点和22.45百分点;Si O_2-NH_2/Fe_3O_4重复使用4次,TOC和色度去除率均达初次使用时的87%以上。  相似文献   

16.
分别以H2O2和Na2CO3·1.5H2O2活化Na2S2O4降解原油污染土壤,考察氧化后土壤的原油降解率、pH、微生物含量以及原油组分的变化,比较两种活化剂对过硫酸钠氧化—微生物降解联用技术修复原油污染土壤效果的影响。实验结果表明:两种活化剂氧化处理7 d后的最大原油降解率分别达到42.94%和44.07%;氧化后原油组分的占比情况发生变化,w(饱和烃)增加5.28~11.93个百分点,而w(芳香烃)、w(胶质)和w(沥青质)则分别降低了0.10~2.53,2.53~3.80,0.94~3.43个百分点;添加微生物菌剂进行50 d的生物降解后,两种活化剂的最大原油降解率分别达到71.00%和75.70%,比单独微生物降解时提高了5.96~12.08个百分点。  相似文献   

17.
采用中空纤维膜接触器(FMC)作为解吸装置,对吸收了CO_2的N-甲基二乙醇胺(MDEA)溶液(富液)进行膜法解吸实验。考察了CO_2负荷、解吸温度、解吸压力、富液流速和N_2吹扫流量对CO_2解吸率的影响。结果表明,富液中CO_2负荷越大、解吸温度越高、解吸压力越低、富液流速越大、N_2吹扫流量越大,则CO_2解吸率越高。综合考虑,本实验优选的工艺条件为解吸温度45~65℃,解吸压力10~30 k Pa,富液流速0.08 m/s,N_2吹扫流量200 m L/min。  相似文献   

18.
以Fe Cl_3·6H_2O和正硅酸四乙酯为原料,通过溶胶-凝胶法结合醇溶剂热法制备了Fe_3O_4@Si O_2复合气凝胶。采用XRD,FTIR,SEM,EDS等技术对Fe_3O_4@Si O_2的结构进行了表征。考察了Fe_3O_4@Si O_2对刚果红溶液的吸附性能。表征结果显示,Fe_3O_4@Si O_2复合气凝胶是由直径为10~20 nm的近球形颗粒组装而成的具有三维网络结构的纳米材料,比表面积为457.93 m~2/g,平均孔径为10.7 nm。在溶液p H为5、吸附时间为35 min的最佳工艺条件下,采用Fe_3O_4@Si O_2吸附处理质量浓度为10 mg/L的刚果红溶液,刚果红去除率为99.39%,此时溶液中刚果红的质量浓度仅为0.052 mg/L。Fe_3O_4@Si O_2复合气凝胶吸附刚果红后具有较好的解吸和再生能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号