首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper describes a European wide assessment of element budgets, using available data on deposition, meteorology and soil solution chemistry at 121 Intensive Monitoring plots. Input fluxes from the atmosphere were derived from fortnightly or monthly measurements of bulk deposition and throughfall, corrected for canopy uptake. Element outputs from the forest ecosystem were derived by multiplying fortnightly or monthly measurements of the soil solution composition at the bottom of the root zone with simulated unsaturated soil water fluxes. Despite the uncertainties in the calculated budgets, the results indicate that: (i) SO4 is still the dominant source of actual soil acidification despite the generally lower input of S than N, due to the different behaviour of S (near tracer) and N (strong retention); (ii) base cation removal due to man-induced soil acidification is limited; and (iii) Al release is high in areas with high S inputs and low base status.  相似文献   

2.
An input-output budget for dissolved inorganic-N in a small forested catchment in North Wales is presented. From 1982 to 1990, bulk precipitation inputs averaged 10.3 kg ha(-1) year(-1), whereas throughfall inputs in 1983-1984 were 20.3 kg ha(-1) year(-1). Streamwater outputs were consistently larger than bulk precipitation inputs, averaging 14.6 kg ha(-1) year(-1). Inorganic-N in the forest stream was predominantly nitrate and concentrations were substantially higher than in a nearby moorland stream. Both streams showed seasonal trends in nitrate concentration, with highest concentrations occurring in summer in the forest stream but in winter in the moorland stream. Nitrate concentration in the forest stream increased with increasing soil temperature up to approximately 7 degrees C and decreased at higher temperatures. Nitrification is thought to be responsible for nitrate production at temperatures both below and above 7 degrees C, but root uptake becomes significant only at the higher temperatures. In the forest, dry deposition and cloudwater inputs of inorganic-N are responsible for increased nitrogen fluxes in throughfall compared with wet deposition. Mineralization and nitrification in excess of plant needs causes the organic soil horizons to act as a net source of dissolved inorganic-N. Nitrogen transformations in the soil lead to soil acidification at a rate of 1.0 keq ha(-1) year(-1).  相似文献   

3.
Due to high availability of adsorption sites, forested catchments could be net sinks for pollutant arsenic both during the period of increasing and decreasing pollution. We tested this hypothesis along a north-south pollution gradient in spruce die-back affected areas of Central Europe. For two water years (2007-2008), we monitored As fluxes via spruce-canopy throughfall, open-area precipitation, and runoff in four headwater catchments (Czech Republic). Since 1980, atmospheric As inputs decreased 26 times in the north, and 13 times in the south. Arsenic export by runoff was similar to atmospheric inputs at three sites, resulting in a near-zero As mass balance. One site exhibited a net export of As (2.2 g ha−1 yr−1). In contrast, the preceding period (1995-2006) showed much higher As fluxes, and higher As export. Czech catchments do not serve as net sinks of atmospheric As. A considerable proportion of old industrial arsenic is flushed out of the soil.  相似文献   

4.
Aluminium (Al) speciation is a characteristic that can be used as a tool for describing the soil acidification process. The question that was answered is how tree species (beech vs spruce) and type of soil horizon affect Al speciation. Our hypotesis is that spruce and beech forest vegetation are able to modify the chemical characteristics of organic horizon, hence the content of Al species. Moreover, these characteristics are seasonally dependent. To answer these questions, a detailed chromatographic speciation of Al in forest soils under contrasting tree species was performed. The Jizera Mountains area (Czech Republic) was chosen as a representative mountainous soil ecosystem. A basic forestry survey was performed on the investigated area. Soil and precipitation samples (throughfall, stemflow) were collected under both beech and spruce stands at monthly intervals from April to November during the years 2008–2011. Total aluminium content and Al speciation, pH, and dissolved organic carbon were determined in aqueous soil extracts and in precipitation samples. We found that the most important factors affecting the chemistry of soils, hence content of the Al species, are soil horizons and vegetation cover. pH strongly affects the amount of Al species under both forests. Fermentation (F) and humified (H) organic horizons contain a higher content of water extractable Al and Al3+ compared to organo-mineral (A) and mineral horizons (B). With increasing soil profile depth, the amount of water extractable Al, Al3+ and moisture decreases. The prevailing water-extractable species of Al in all studied soils and profiles under both spruce and beech forests were organically bound monovalent Al species. Distinct seasonal variations in organic and mineral soil horizons were found under both spruce and beech forests. Maximum concentrations of water-extractable Al and Al3+ were determined in the summer, and the lowest in spring.  相似文献   

5.
A study was carried out to determine the chemical composition of bulk precipitation, throughfall and stemflow in an urban forest in Kuala Lumpur, Malaysia. The mean weekly rainfall recorded during the period of study was 63.2 mm. Throughfall, stemflow and canopy interception of incident precipitation were 77.1%, 1.2% and 21.7% respectively. Bulk precipitation, througfall and stemflow were acidic, the pH recorded being 4.37, 4.71 and 4.15 respectively. In all cases the dominant ions were NO3, SO4, Cl, NH4, K, Ca and Na. Of the ions studied Ca, K, Cl, SO4, Mg and Mn showed net increases in passing through the forest canopy, while NH4, Na, NO3, Zn, H and Fe showed net retention. This study shows that the urban environment of Kuala Lumpur contributes considerable amounts of materials to the atmosphere, as reflected by the high ionic contents in bulk precipitation, throughfall and stemflow.  相似文献   

6.
Nitrogen fluxes, particularly those of ammonium, are extremely high in Dutch forests. In soils exposed to high ammonium deposition, acidification, eutrophication or a combination of both processes may occur. In addition to the amounts of ammonium deposited, the rate of soil nitrification determines which process takes place. A nation-wide investigation, in which three coniferous tree species were involved, was carried out to study the relation between deposition fluxes, measured by means of throughfall and bulk samplers, and the chemical composition of the soil. The ammonium deposition accounted directly for the high ammonium content and the high ammonium/cation ratios in the soil. In the top layer of most of the forest soils which were investigated nitrification rates were low. In these stands ammonium/cation ratios in the soil often reflected ammonium/cation ratios in throughfall water. Even in soils with relatively high nitrification rates, ammonium concentrations exceeded those of nitrate in the top layer of the mineral soil, indicating that ammonium deposition was more important than nitrification rate in determining the predominant form of nitrogen.  相似文献   

7.
Long term trend analysis of bulk precipitation, throughfall and soil solution elemental fluxes from 12 years monitoring at 10 ICP Level II forest sites in the UK reveal coherent national chemical trends indicating recovery from sulphur deposition and acidification. Soil solution pH increased and sulphate and aluminium decreased at most sites. Trends in nitrogen were variable and dependant on its form. Dissolved organic nitrogen increased in bulk precipitation, throughfall and soil solution at most sites. Nitrate in soil solution declined at sites receiving high nitrogen deposition. Increase in soil dissolved organic carbon was detected - a response to pollution recovery, changes in soil temperature and/or increased microbial activity. An increase of sodium and chloride was evident - a possible result of more frequent storm events at exposed sites. The intensive and integrated nature of monitoring enables the relationships between climate/pollutant exposure and chemical/biological response in forestry to be explored.  相似文献   

8.
Bernhardt A  Ruck W 《Chemosphere》2004,57(10):1563-1570
The pesticide contamination of water samples collected in and nearby a beech forest in northern Germany was evaluated. For this purpose, a method for the collection of water samples from stemflow and throughfall of beeches (Fagus sylvatica L.) and rainfall was developed in response to the demands for the analysis of organic contaminants in water samples. Furthermore a sensitive and selective multiresidue method was developed to determine 18 pesticides, frequently used in Germany, in aqueous samples. The samples collected were taken from the stemflow, the crown throughfall and the rainfall between May and November 2001. Analysis based on reversed-phase liquid chromatography with a pneumatically assisted electrospray mass spectrometer followed a solid phase extraction using C-18 extraction cartridges. Isoproturon, metolachlor, prosulfocarb and terbuthylazine were found during and shortly after their application period. In rainfall metolachlor, terbuthylazine and prosulfocarb were detectable in concentrations between 5 and 65 ng l(-1) and isoproturon in concentrations between 20 and 360 ng l(-1) respectively. In most of the samples, concentrations of those four pesticides were higher and detectable for a longer time in stemflow than in rainfall. Crown throughfall samples were collected from the end of August to November. Absolute deposition of isoproturon to forest soil were up to 70 times higher in comparison to rainwater samples.  相似文献   

9.
Seasonal variation of sediment toxicity in the Rivers Dommel and Elbe   总被引:3,自引:0,他引:3  
Contaminated sediment in the river basin has become a source of pollution with increasing importance to the aquatic ecosystem downstream. To monitor the temporal changes of the sediment bound contaminants in the River Elbe and the River Dommel monthly toxicity tests were applied to layered sediment and river water samples over the course of 10 months. There is an indication that contaminated sediments upstream adversely affected sediments downstream, but this process did not cause a continuous increase of sediment toxicity. A clear decrease of toxic effects in water and upper layer sediment was observed at the River Elbe station in spring related to high water discharge and algal blooms. The less obvious variation of sediment toxicity in the River Dommel could be explained by stable hydrological conditions. Future monitoring programmes should promote a more frequent and intensive sampling regime during these particular events for ecotoxicological evaluation.  相似文献   

10.
Methods of quantifying the roles of atmospheric acid inputs and internal acid generation by carbonic, organic, and nitric acids are illustrated by reviewing data sets from several intensively studied sites in North America. Some of the sites (tropical, temperate deciduous, and temperate coniferous) received acid precipitation whereas others (northern and subalpine) did not. Natural leaching by carbonic acid dominated soil leaching in the tropical and temperate coniferous sites, nitric acid (caused by nitrification) dominated leaching In an N-fixing temperate deciduous site, and organic acids dominated surface soil leaching in the subalpine site and contributed to leaching of surface soils in several other sites. Only at the temperate deciduous sites did atmospheric acid input play a major role in soil leaching. In no case, however, are the annual net losses of cations regarded as alarming as compared to soil exchangeable cation capital.

These results were used to illustrate the methods of quantifying the effects of atmospheric inputs and internal processes on soil leaching rates, not to draw broad generalizations as to acid rain effects on soils. However, there are predictable patterns in natural soil leaching processes which relate to climate, soil properties, and vegetation that may help in predicting the relative importances of natural vs. atmospheric acid inputs to soil leaching.  相似文献   

11.
对北京降雨过程中雨水、树冠水、地表径流等介质中有机氯农药(OCPs)的污染特征进行了研究,研究的污染物包括六氯苯(HCB)、六六六(HCH)和滴滴涕(DDT)。结果显示,在雨水、树冠水和地表径流中,HCH含量最高(几何平均浓度分别为11.1、21.6和25.1 ng/L),其次是HCB(几何平均浓度分别为3.71、3.54和5.91 ng/L)和DDT(几何平均浓度分别为2.64、4.66和10.6 ng/L)。对地表径流样品中所测的OCPs组分浓度与径流水质参数和气象参数的相关分析显示,所测各OCPs组分浓度与pH呈显著负相关,与径流的溶解性有机碳含量呈显著正相关,降雨量和雨前晴天数对不同组分OCPs的影响并不完全相同。平均贡献率的计算表明,雨水是城市地表径流中OCPs的一个重要来源,树冠水的贡献也不可忽视。  相似文献   

12.
The most stable forms of chromium in the environment are chromium (III) and chromium (VI), the former being relatively immobile and necessary for organisms, and the latter being highly soluble and toxic. It is thus important to characterise ecotoxicological impacts of Cr(VI). However, there are still some important uncertainties in the calculation of ecotoxicological impacts of heavy metals in the LCIA global approach. The aim of this paper is to understand how the spatial and dynamic characterization of life cycle inventory (LCI) data can be exploited in life cycle impact assessment and particularly for the evaluation of the aquatic and terrestrial ecotoxicity of Cr(VI). To quantify these impacts, we studied an industrial waste landfill in the North of France that was contaminated with chromium. On the polluted area, the aquatic contamination is due to the slag heap as well as to chromium spots in soil. The soil contamination is mainly due to infiltration of chromium from the infill. The concentration of Cr(VI) in soil and water varies according to seasonal climatic variations and groundwater level. These variations have an effect on the Cr(VI) fate factor, in particular on transfer and residence time of the substance. This study underlines the spatial distribution of aquatic ecotoxicity and the temporal variation of freshwater ecotoxicity. We analysed the correlation between precipitation, temperature, concentration and ecotoxicity impact. With regards to the terrestrial ecotoxicity, the study focused on the vertical variation of the ecotoxicity and the major role of the soil layer composition into terrestrial pollution.  相似文献   

13.
Nitrogen leaching from boreal and temporal forests, where normally most of the nitrogen is retained, has the potential to increase acidification of soil and water and eutrophication of the Baltic Sea. In parts of Sweden, where the nitrogen deposition has been intermediate to high during recent decades, there are indications that the soils are close to nitrogen saturation. In this study, four different approaches were used to assess the risk of nitrogen leaching from forest soils in different parts of Sweden. Nitrate concentrations in soil water and C:N ratios in the humus layer where interpreted, together with model results from mass balance calculations and detailed dynamic modelling. All four approaches pointed at a risk of nitrogen leaching from forest soils in southern Sweden. However, there was a substantial variation on a local scale. Basing the assessment on four different approaches makes the assessment robust.  相似文献   

14.
The aim of the research reported here was to investigate the relation between heavy metal concentrations in salt marsh plants, extractability of the metals from soil and some soil characteristics. In April 1987, Spartina anglica and Aster tripolium plants and soil were collected from four salt marshes along the Dutch coast. The redox potential of the soil between the roots of the plants and at bare sites was measured. Soil samples were oven-dried and analyzed for chloride concentration, pH, fraction of soil particles smaller than 63 microm (f < 63 microm), loss on ignition (LOI) and ammonium acetate and hydrochloric acid extractable Cd, Cu and Zn concentrations. The roots and shoots of the plants were analyzed for Cd, Cu and Zn. Because drying of the soil prior to chemical analysis might have changed the chemical speciation of the metals, and therefore the outcome of the ammonium acetate extraction, a second survey was performed in October 1990. In this survey A. tripolium plants and soil were collected from two salt marshes. Fresh and matched oven-dried soil samples were analyzed for water, ammonium acetate and diethylene triaminepentaacetic acid (DTPA) extractable Cd, Cu and Zn concentrations. The soil samples were also analyzed for f < 63 microm, LOI and total (HNO(3)/HCl digestion) metal concentrations. Soil metal concentrations were correlated with LOI. Drying prior to analysis of the soil had a significant effect on the extractability of the metals with water, ammonium acetate or DTPA. Plant metal concentrations significantly correlated only with some extractable metal concentrations determined in dried soil samples. However, these correlations were not consistently better than with total metal concentrations in the soil. It was concluded that extractions of metals from soil with water, ammonium acetate or DTPA are not better predictors for metal concentrations in salt marsh plants than total metal concentrations, and that a major part of the variation in metal concentrations in the plants cannot be explained by variation in soil composition.  相似文献   

15.
A method of analyzing spatial flow and precipitation patterns associated with long-range transport is presented. This technique uses hourly precipitation data and model-calculated mixed layer trajectories to determine these patterns upwind of a receptor site. Precipitation is determined at hourly points along trajectories in a statistical sense using estimates of error in long-range trajectory calculations. This technique is used in seasonal analyses of fine particle concentrations at a remote northern Great Plains sampling site during summer 1980. The analyses show that there are distinctly different flow and precipitation patterns during high and low fine particle concentration periods. Highest fine sulfur particle concentrations occurred when flow was from the south with a higher frequency of precipitation. Highest fine soil particle concentrations occurred when precipitation frequencies were lower.  相似文献   

16.
Microbial indicators of heavy metal contamination in urban and rural soils   总被引:10,自引:0,他引:10  
Urban soils and especially their microbiology have been a neglected area of study. In this paper, we report on microbial properties of urban soils compared to rural soils of similar lithogenic origin in the vicinity of Aberdeen city. Significant differences in basal respiration rates, microbial biomass and ecophysiological parameters were found in urban soils compared to rural soils. Analysis of community level physiological profiles (CLPP) of micro-organisms showed they consumed C sources faster in urban soils to maintain the same level activity as those in rural soils. Cu, Pb, Zn and Ni were the principal elements that had accumulated in urban soils compared with their rural counterparts with Pb being the most significant metal to distinguish urban soils from rural soils. Sequential extraction showed the final residue after extraction was normally the highest proportion except for Pb, for which the hydroxylamine-hydrochloride extractable Pb was the largest part. Acetic acid extractable fraction of Cd, Cu, Ni, Pb and Zn were higher in urban soils and aqua regia extractable fraction were lower suggesting an elevated availability of heavy metals in urban soils. Correlation analyses between different microbial indicators (basal respiration, biomass-C, and sole C source tests) and heavy metal fractions indicated that basal respiration was negatively correlated with soil Cd, Cu, Ni and Zn inputs while soil microbial biomass was only significantly correlated with Pb. However, both exchangeable and iron- and manganese-bound Ni fractions were mostly responsible for shift of the soil microbial community level physiological profiles (sole C source tests). These data suggest soil microbial indicators can be useful indicators of pollutant heavy metal stress on the health of urban soils.  相似文献   

17.
In this paper we report measurements of SO2-4 fluxes in throughfall and bulk deposition across an elevational transect from 800 to 1275 m on Slide Mountain in the Catskill Mountains of southeastern New York State. The net throughfall flux of SO2-4 (throughfall-bulk deposition), which we attribute to cloud and dry deposition, increased by roughly a factor of 13 across this elevational range. Part of the observed increase results from the year-round exposure of evergreen foliage at the high-elevation sites, compared to the lack of foliage in the dormant season in the deciduous canopies at low elevations. Comparison of the net throughfall flux with estimates of cloud deposition suggests that both cloud deposition and dry deposition increased with elevation. Dry deposition estimates from a nearby monitoring site fall within the measured range of net throughfall flux for SO2-4. The between-site variation in net throughfall flux was very high at the high-elevation sites, and less so at the lower sites, suggesting that studies of atmospheric deposition at high-elevations will be complicated by extreme spatial variability in deposition rates. Studies of atmospheric deposition in mountainous areas of the eastern U.S. have often emphasized cloud water deposition, but these results suggest that elevational increases in dry deposition may also be important.  相似文献   

18.

Stable isotope analysis of15N/14N and18O/16O - nitrate was used to investigate the nitrate dynamics and potential groundwater pollution in an Alpine forest stand in Tyrol/Austria. The dynamics of δ15−Nnitrate values were followed in a forest ecosystem. The stable isotopic values of the throughfall are comparable with other studies. The completely decoupled dynamics of the δ15−Nnitrate of the precipitation and the surface water was observed. High variations in δ15-N - nitrate values in rainfall indicate that nitrate of different sources is deposited at that site. A significant correlation between the δ15Nnitrate values of the surface water and soil water was obtained, while no significant correlation between the δ15Nnitrate values of any precipitation sample with the surface water could be found. This suggests that the main source of nitrate in soil water originates from microbiological activity such as nitrification reactions and less from nitrate input by deposition. The results of δ18Onitrate measurements strongly supported the microbiological origin of nitrate in the surface and soil water. In an additional lysimeter experiment,15N - labelled nitrate was applied to study nitrate transport in soil. After 130 days and the collection of 300 L leachate, a total of 52% of the applied nitrate was detected in seepage water.

  相似文献   

19.
The assessment of spatial and temporal variation of water quality influenced by land use is necessary to manage the environment sustainably in basin scales. Understanding the correlations between land use and different formats of nonpoint source nutrients pollutants is a priority in order to assess pollutants loading and predicting the impact on surface water quality. Forest, upland, paddy field, and pasture are the dominant land use in the study area, and their land use pattern status has direct connection with nonpoint source (NPS) pollutant loading. In this study, two land use scenarios (1995 and 2010) were used to evaluate the impact of land use changes on NPS pollutants loading in basins upstream of Three Gorges Reservoir (TGR), using a calibrated and validated version of the soil and water assessment tool (SWAT) model. The Pengxi River is one of the largest tributaries of the Yangtze River upstream of the TGR, and the study area included the basins of the Dong and Puli Rivers, two major tributaries of the Pengxi River. The results indicated that the calibrated SWAT model could successfully reproduce the loading of NPS pollutants in the basins of the Dong and Puli Rivers. During the 16-year study period, the land use changed markedly with obvious increase of water body and construction. Average distance was used to measure relative distribution patterns of land use types to basin outlets. Forest was mainly distributed in upstream areas whereas other land use types, in particular, water bodies and construction areas were mainly distributed in downstream areas. The precipitation showed a non-significant influence on NPS pollutants loading; to the contrary, interaction between precipitation and land use were significant sources of variation. The different types of land use change were sensitive to NPS pollutants as well as land use pattern. The influence of background value of soil nutrient on NPS pollutants loading was evaluated in upland and paddy field. It was found that total nitrogen (TN) and total phosphorous (TP) in upland were more sensitive to NPS pollutants loading than in paddy fields. The results of this study have implications for management of the TGR to reduce the loading of NPS pollutants into downstream water bodies.  相似文献   

20.
Organotin compounds (OTC) are highly toxic pollutants and have been mostly investigated so far in aquatic systems and sediments. The concentrations and fluxes of different organotin compounds, including methyl-, butyl-, and octyltin species in precipitation and fog were investigated in a forested catchment in NE Bavaria, Germany. Contents, along with the vertical distribution and storages in two upland and two wetland soils were determined. During the 1-year monitoring, the OTC concentrations in bulk deposition, throughfall and fog ranged from 1 ng Sn l(-1) to several ten ng Sn l(-1), but never over 200 ng Sn l(-1). The OTC concentrations in fog were generally higher than in throughfall and bulk deposition. Mono-substituted species were the dominant Sn species in precipitation (up to 190 ng Sn l(-1)) equaling a flux of up to 70 mg Sn ha(-1) a(-1). In upland soils, OTC contents peaked in the forest floor (up to 30 ng Sn g(-1)) and decreased sharply with the depth. In wetland soils, OTC had slightly higher contents in the upper horizons. The dominance of mono-substituted species in precipitation is well reflected in the contents and storages of OTC in both upland and wetland soils. The ratios of OTC soil storages to the annual throughfall flux ranged from 20 to 600 years. These high ratios are probably due to high stability and low mobility of OTC in soils. No evidence was found for methylation of tin in the wetland soils. In comparison with sediments, concentrations and contents of organotin in forest soils are considerably lower, and the dominant species are less toxic. It is concluded that forested soils may act as sinks for OTC deposited from the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号