首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seven vital stains were mixed with fish muscle and fed to a sublittoral lysianassid (Orchomene sp. A collected in Scripps Canyon off La Jolla, California USA between August 1978 and August 1981) in the laboratory to test the utility of these dyes as feeding labels for scavenging amphipods. Fast-green FCF proved to be the most effective of the stains tested; >90% of starved amphipods fed fast-green-stained bait (Scomber japonicus muscle) for as little as 1 h exhibited a conspicuous green coloration along the digestive tract, which lasted an average of 35 d. The ability to label animals with such a single, short exposure interval makes this dye especially suitable for marking scavengers attracted to bait. Fast green efficiently stained this amphipod over a broad range of concentrations (1 to 8% by weight in water) and feeding regimes, and had no significant effects on survivorship or activity of laboratory-held organisms. Nile blue A also proved to be an acceptable feeding label for Orchomene sp. A for time scales of about 1 wk. Additional laboratory and field tests between August 1978 and August 1979 indicated that fast green is an effective feeding stain for 2 bathyal species (Orchomene sp. B and O. plebs from the Ross Sea, Antarctica) and 3 abyssal species (Eurythenes gryllus, O. gerulicorbis and Paralicella caperesca from the central North Pacific Ocean) of amphipods. Field labeling of amphipods at 5 800 m in the central North Pacific Ocean with fast green demonstrates that feeding stains may be used readily as in situ marking agents for population studies of scavengers in remote environments.  相似文献   

2.
Two traps baited with fish were placed on the bottom (5720 m) of the central North Pacific Gyre. A total of 1793 lyssianassid amphipods were collected no ovigerous females and no identifiable males were caught. Five amphipod species were represented [1 undescribed species of Orchomene; 2 undescribed species of Paralicella; Eurythenes gryllus (Lichtenstein); and Cyclocaris sp.], 2 by single specimens. Amphipod samples give no evidence of size-classes. Evidence for scavenging as the amphipods' primary mode of existence is discussed. Forty-four copepods, of a single harpacticoid genus (Tisbella), were also collected.  相似文献   

3.
Photographic and trap data obtained from the eastern North Atlantic Ocean in 1981 and 1978, respectively, have been combined to document the response of abyssal lysianassid amphipods to large food falls, and the predation on these amphipods by the fish Paraliparis bathybius. The use of a new camera/current meter system has demonstrated that overall numbers of amphipods and presence of fish were related to tidal currents. Species of Paralicella and Orchomene were the most abundant amphipods, and occurred in peak numbers during periods of low current velocity. Variation in abundance of Eurythenes gryllus, a larger species, which occurred in smaller numbers, was apparently not related to tidal currents. Paraliparis bathybius were present only during flood tides.  相似文献   

4.
Lysianassid amphipods were collected in 1987 from Frobisher Bay, Baffin Island, and from the Mingan Archipelago, Gulf of St Lawrence. Meal size and feeding rate of Anonyx nugax (Phipps), Onisimus (=Pseudalibrotus) litoralis (Krøyer) and Orchomenella pinguis (Boeck) were estimated directly, gravimetrically and/or from predictive equations. Size-specific ingestion was greatest in A. nugax, which fed swiftly and efficiently in comparison to O. litoralis and O. pinguis. These two latter species dispersed some bait while feeding and crawling on its surface. Groups of lysianassids fed more wastefully than single individuals. Meal size of females of O. litoralis decreased with increasing maturity, while berried females of O. pinguis consumed less food than mature males. Up to 30 d of starvation had no effect on survival and feeding ability of A. nugax, but 10 to 15 d of starvation dramatically reduced feeding ability or killed O. litoralis and O. pinguis. Differences between meal size, feeding rate and survival point to divergent feeding patterns, which also have been evidenced elsewhere by analysis of gut contents. O. litoralis and O. pinguis are best characterized as facultative scavengers, while large A. nugax are possibly obligate carnivores. Results emphasize the importance of lysianassid amphipods, particularly A. nugax, as bait stealers and as predators of commercial species trapped by various fishing gear.  相似文献   

5.
Scavenging abyssal amphipods from the North-East Atlantic ocean   总被引:1,自引:0,他引:1  
A baited trap set on the bottom (4855 m) in the eastern North Atlantic Ocean caught over 600 specimens belonging to 7 species of lysianassid amphipods. Photographic evidence showed a slow build up of numbers and demonstrated fluctuations apparently related to current and pressure changes and to the presence of fish. Length-frequency distributions for the more abundant species reveal size classes related to growth stages. Paralicella caperesca produces a single brood of about 90 eggs. Maturity in this species may be attained in 7 to 11 moults, the precise number possibly being determined by food availability. Orchomene gerulicorbis requires about 11 moults to reach maturity, and females are double-brooded. Mortality within the trap is discussed. A comparison of species of Paralicella and Orchomene based on morphological, developmental, reproductive and ecological characters indicates that the former genus are specialized necrophages whereas the latter are opportunist generalists. The abundance and mobility of necrophagous amphipods indicate that they play a very significant role in the trophic web.  相似文献   

6.
Leaf-litter processing by invertebrates in a mangrove forest in Queensland   总被引:6,自引:0,他引:6  
The way leaf shredders handle and shred leaves under laboratory conditions and in the mangrove forest at Myora Springs, Queensland, Australia, was investigated during the period 1980 to 1984. Field observations on the behaviour of the crab Sesarma erythrodactyla during low tide revealed that this species spends most of its time foraging over mud. S. erythrodactyla eats mangrove leaves where they fall or drags them into burrows or hollow logs. Through their feeding activities, crabs (S. erythrodactyla, Metopograpsus frontalis, Helice leachii, Clistocoeloma merguiensis, Leptograpsus variegatus, Paragrapsus laevis, Ilyograpsus paludicula), isopods (Exospaeroma alata, Campaecopia sp.) amphipods (Orchestia sp., Melita sp.), and a capitellid polychaete (Capitellides sp.), break down whole mangrove leaves into small particles. The way in which a leaf is broken down by leaf-shredders influences the size and composition of the particulate organic matter (POM) in the environment. The POM egested by leaf-shredders varies from 32 to 1171 m. POM in this size range occurs in the guts of 38 invertebrate species which feed on mud, suggesting that they depend on the plant detritus produced by leafshredders as a source of food. Leaf-shredders therefore constitute a primary link in the marine food web of mangrove forests.  相似文献   

7.
In situ diel feeding behavior of neritic copepods was investigated using the gut fluorescence method, during spring and fall bloom periods in Akkeshi Bay, on the eastern coast of Hokkaido, Japan. Acartia omorii and Paracalanus sp. were the dominant species during the fall, and Pseudocalanus spp. and A. longiremis during the spring. During both bloom periods, diel rhythms were always observed for the gut pigment contents of these dominant copepods, although there were interspecific differences in the pattern. The maximum gut pigment content was always observed during the night and the minimum during the day. For all species, except Paracalanus sp., the average gut pigment content during the night was significantly higher (p<0.05) than during daytime by factors of between 1.5 and 2.7. There were no significant differences between the gut evacuation rate constants determined during the day and the night, and initial gut pigment content had no effect on the value of gut evacuation rate constants. The instantaneous ingestion rates of individual copepods calculated from gut pigment and the mean value of gut evacuation rate constants followed the same diel rhythms as gut pigment contents. Copepod daily ingestion rates were higher than the daily requirements for respiration during both bloom periods. Estimated daily ration was 40 to 91% of body carbon during the fall bloom, and 17 to 28% during the spring bloom. The higher daily rations during fall were probably due to the difference in in situ temperature (ca. 14°C).  相似文献   

8.
Measurements of respiration and excretion at 25°C were made for five species of ctenophores collected during five cruises to the Bahamas (1982–1984). The mean element-specific respiration and ammonium excretion rates of freshly collected specimens of all species ranged from 4 to 16% d-1, the mean atomic O:N ratios were 10 to 16, and ammonium averaged 60 to 90% of the total dissolved nitrogen excreted. For adult ctenophores, the carbon content ranged from 0.6% carbon (as percent of dry weight) for Bolinopsis vitrea to 3.7% carbon for Beroë ovata. There was a marked increase in the organic content (% carbon of dry weight) of small Bolinopsis vitrea with tentacles compared to fully lobate adults. B. vitrea had increasingly higher metabolic rates when held at food concentrations up to 100 copepods 1-1 (about 250 g C 1-1). The overall range between starved and well-fed B. vitrea was about two times for respiration and a factor of three for ammonium excretion. B. vitrea decreased from well-fed to a starved metabolic rate in about a day after removal from food. The metabolic rate of Eurhamphaea vexilligera was not measurably affected by short-term starvation or feeding (maximum 25 copepods 1-1). In feeding experiments, E. vexilligera of 20 to 56 mm length fed at rates equivalent to clearance rates of 250 to 1 800 ml h-1.  相似文献   

9.
Rates of respiration and protein synthesis were measured during embryonic and larval development of Antarctic asteroids with different life-history modes (non-feeding and feeding larvae: Acodontaster hodgsoni, Porania antarctica, Odontaster meridionalis). Patterns of respiration for these species all show an increase during embryogenesis, with subsequent maintenance of routine respiration (“starvation resistance”), even in the absence of food for ~4 months (O. meridionalis). Fractional rates of protein synthesis (i.e., rate per unit mass of whole-body protein content) in the Antarctic larvae are essentially identical to those of temperate species. Larvae of O. meridionalis had an average fractional synthesis rate of 0.52% ± 0.05 h−1 at −1.0°C, which is comparable to the temperate asteroid Asterina miniata at 0.53% ± 0.14 h−1 at 15°C. For embryos of the asteroids A. hodgsoni and P. antarctica, fractional rates of protein synthesis (~0.2% h−1) also are comparable to those reported for embryos of temperate echinoderm species. While rates of synthesis are high, rates of protein deposition are relatively low (percent of protein synthesized that is retained for growth). During a ~4 month growth period for larvae of O. meridionalis, the average protein depositional efficiency was 5.2%. This contrasts with higher rates of depositional efficiency reported for similar developmental stages of temperate echinoderm species. The biological significance of maintaining high rates of macromolecular synthesis for species with low rates of cell division and low protein depositional efficiencies is intriguing in the context of understanding the mechanistic bases of extended life spans and dispersal potential in response to changing Antarctic environments.  相似文献   

10.
Amphipods Eurythenes gryllus were collected at 7800?m depth in the Atacama Trench (South Pacific) for studying their biochemical composition (in terms of proteins, lipids and carbohydrates and fatty acid content) and to gather information on bioenergetic strategies and trophic habits of organisms living in this extreme environment. The effect of long-term formalin storage on the biochemical determinations was also determined. Proteins were the dominant biochemical class of organic compounds (39–53%D.W.), whereas carbohydrates accounted for a very small fraction (1–2%D.W.). Lipid concentrations of E. gryllus accounted for 7–18%D.W. and were much lower than those reported for other deep-sea amphipods. These differences are likely to be more dependent upon food availability in the Atacama Trench rather than upon temperature. Lipid composition of E. gryllus revealed the dominance of monounsaturated fatty acids with polyunsaturated fatty acids accounting for a very small fraction, suggesting that hadal amphipods are higher dependent upon lipid reserves than amphipods inhabiting at shallow depths. The ratio of C18:1Δ9 to C18:1Δ11 was >11 confirming the necrophagous trophic habits of this hadal amphipod.  相似文献   

11.
The rates of photosynthesis and dark respiration for 7 marine algae and 1 fresh-water alga were measured and compared. The dinoflagellates Glenodinium sp. and zooxanthellae have high dark respiration rates relative to photosynthetic rates, which may decrease their net growth rates. Photorespiration in the 8 algal species was studied by examining the effects of the concentration of oxygen on the rates of photosynthesis, on the incorporation of 14CO2 into the photorespiratory pathway intermediates glycine and serine, and on the postillumination burst of carbon dioxide production and oxygen consumption. A combination of these results indicates that all the algae tested can photorespire, but that Glenodinium sp., Thalassiosira pseudonana, and zooxanthellae either have a photorespiratory pathway different from that proposed for freshwater algae (Tolbert, 1974), or an additional pathway for glycolate metabolism.  相似文献   

12.
The resistance to high and low temperatures, starvation and desiccation effects in the sand dwelling amphipods Bathyporeia pilosa Lindström and B. pelagica (Bate) have been tested. B. pilosa was the more tolerant species in all experiments. Gravid females showed a greater resistance to high temperatures than adult males in both species, and starvation tolerance was in the order gravid females>juvenile males> adult males. Time-temperature relationships, however, would seem to be of greater ecological significance than upper or lower lethal temperatures, and desiccation effects become obvious well within any limits set by starvation. Exposure would appear to be an important concept limiting the intertidal distribution of sand dwelling animals, particularly those confined to the surface layers of sediment. The amplitude, rate and degree of environmental change and its effect on feeding and reproduction offer severe limitations to the distribution of the two Bathyporeia species studied.  相似文献   

13.
A deep-sea benthic trap is described with which amphipods (Tmetonyx cicada) were both collected and observed at their ambient pressure of 134 atm. T. cicada collected with decompression from the same depth and locality were more sensitive to subsequent recompression than those amphipods brought to the surface at their ambient pressure. T. cicada from 2700 m experience irreversible injury during decompression to atmospheric pressure. The pressure tolerance of the deep-sea mysid Gnathophausia zoea was measured and compared with the tolerance of mid-water decapods and the shallow-water Crangon crangon. G. zoea became more sensitive to high pressure with prolonged exposure to atmospheric pressure. Deep sea animals exhibit a tolerance to high pressure related to their normal ambient pressure; sensitivity to decompression is also related to normal ambient pressure.  相似文献   

14.
Respiration and nitrogen-excretion studies were carried out on several species of zooplankton (Meganyctiphanes norvegica, Phronima sedentaria, Acartia clausi and Sagitta setosa) under starvation. Although all the species were mainly ammonotelic, apparently a significant amount of organic nitrogen was excreted; the validity of the measurements and their significance are discussed. The effect of duration of starvation showed for M. norvegica and A. clausi two different patterns of behaviour, which were chiefly a function of the rate of biomass turnover of the species studied. The rates of metabolism, chemical composition, and reaction to starvation varied with season in M. norvegica. The physiological balance of the experimental animals was examined by calculating the protein carbon equivalent to respiratory and excretory catabolism, and by use of atomic O:N ratios. Starved individuals catabolized more protein carbon than can be accounted for by the amount of respiratory oxygen utilized. A hypothesis, which suggests that there are three levels of resistance to starvation, is proposed to explain this paradox, and its metabolic basis is discussed.  相似文献   

15.
Changes in the respiration, ammonia excretion and biochemical composition were studied for three species of starving zooplankton (Calanus finmarchicus, Sagitta elegans, and Acartia clausi). Over the period of starvation, the respiration rate of all three species followed the same pattern of an initial decrease followed by a more or less constant level. A similar pattern was observed for the ammonia excretion rate of S. elegans and A. clausi, whereas C. finmarchicus excretion appeared to oscillate between high and low levels of protein catabolism. Study of the biochemical changes showed that C. finmarchicus consumed primarily lipids, and at times proteins, to meet its energy requirement whereas S. elegans and A. clausi primarily used protein. Variations in the elemental composition as well as the O:N ratio confirmed that C. finmarchicus alternated between periods of protein-dominant catabolism and lipid-dominant catabolism during starvation. No similar change in catabolism was observed in the two other species. The results are discussed in terms of physiological mechanisms of resistance to starvation and were used to calculate the energy budget of S. elegans and C. finmarchicus during the period of total starvation. The significance of such budgets is discussed and some of the sources of error examined.Bedford Institute of Oceanography Contribution.  相似文献   

16.
The hypothesis that the behaviour of deep-sea scavenging fishes is influenced by seasonal input of organic matter from the ocean surface was investigated by observing responses to baits placed on the sea floor at 4800 m depth in the NE Atlantic (48°50′N; 16°30′W) during spring (April 1994). Data from the present study are compared with those from previous studies of the same location made in summer 1989. The first fishes to arrive at baits were the grenadier Coryphaenoides (Nematonurus) armatus and the eel Histiobranchus bathybius, after delays of 28 and 29 min, respectively; these results are not significantly different from those of summer 1989. Similarly, other indices of activity (staying time and swimming speed) showed no evidence of differences between years/seasons. However, the rate of radial dispersal of bait (0.009 m s−1) by C. (N.) armatus was much slower than in all previous studies. A change in the size distribution of C. (N.) armatus to smaller individuals in spring 1994 was also evident. It is suggested that the fish on the abyssal plain may not comprise a steady-state population and that major episodic or seasonal migrations may occur. Received: 18 October 1996 / Accepted: 20 December 1996  相似文献   

17.
 The pathway for the flow of salt-marsh grass production into marsh food-webs is still not well defined. We compared the abilities of three marsh macroinvertebrates [salt marsh periwinkles, Littoraria irrorata (Say) (=Littorina irrorata), salt-marsh coffee-bean snails, Melampus bidentatus (Say); and a talitrid amphipod, Uhlorchestia spartinophila Bounsfield and Heard] to access standing-dead leaves of smooth cordgrass (Spartina alterniflora Loisel). The invertebrates were incubated with naturally-decaying leaves, and the rates of removal of organic matter and living fungal biomass (ergosterol) were measured. The impact of invertebrate activity upon fungal growth rates was measured as rates of fungal-membrane synthesis (incorporation of radioacetate into ergosterol). The removal rates of organic leaf biomass per mg individual biomass were highest for amphipods (700 μg mg−1 d−1) and lowest for periwinkles (90 μg mg−1 d−1), but the relatively large biomass of the snails made their removal rates per individual greater than those of amphipods. Net removal of ergosterol by all three invertebrates was >50% for yellow-brown (early-decay) leaf blades. For fully-brown (advanced-decay) blades, >50% removal of ergosterol was found only for periwinkles; exposure to coffee-bean snails and amphipods resulted in a net ergosterol reduction of ≤20%. The lower net reduction of living fungal biomass by coffee-bean snails and amphipods may have been due to fungal-growth stimulation (2.3-fold stimulation in coffee-bean snails and 1.5-fold stimulation in amphipods). Grazing by periwinkles did not stimulate fungal growth, possibly because of its high intensity. Grazing by these three salt-marsh shredders may affect marsh-grass shoot-decay in different ways. Periwinkles may abbreviate the period of fungal production, and incorporate the decaying material relatively quickly into snail biomass and fecal-pellet rain to the sediments. Coffee-bean snails and amphipods may enhance and prolong fungal production, along with the formation of fecal-pellet rain. All three invertebrates fed preferentially on leaf blades rather than leaf sheaths, and feeding rates of gastropods were higher during the night than during the day. Received: 25 November 1998 / Accepted: 4 November 1999  相似文献   

18.
Allochthonous subsidies of organic material can profoundly influence population and community structure; however, the role of consumers in the processing of these inputs is less understood but may be closely linked to community and ecosystem function. Inputs of drift macrophytes subsidize sandy beach communities and food webs in many regions. We estimated feeding rates of dominant sandy beach consumers, the talitrid amphipods (Megalorchestia corniculata, in southern California, USA, and Talitrus saltator, in southern Galicia, Spain), and their impacts on drift macrophyte subsidies in field and laboratory experiments. Feeding rate varied with macrophyte type and, for T. saltator, air temperature. Size-specific feeding rates of talitrid amphipods were greatest on brown macroalgae (Macrocystis, Egregia, Saccorhiza and Fucus). Rates for large individuals of both species ranged from ∼40 mg wet wt individual−112 h−1 on brown macroalgae to negligible feeding by M. corniculata on a vascular plant (surfgrass). Amphipod growth rates were also greatest on Macrocystis and lowest on surfgrass, Phyllospadix. For a Californian beach with substantial inputs of macrophyte wrack (>70 kg wet wt m−1 month−1 in summer), we estimated that the population of talitrid amphipods could process an average of 55% of the palatable Macrocystis input. Our results indicate that talitrid amphipod populations can have a significant impact on drift macrophyte processing and fate and that the quantity and composition of drift macrophytes could, in turn, limit populations of beach consumers.  相似文献   

19.
Radiotracer techniques can be used to assess eitherin-situ metabolic activities of natural microbial populations or potential turnover rates of specific substrates under the givenin-situ conditions. The second approach has been used in deep-sea sediment studies where steady-state conditions are unlikely to occur because of the heterogeneous distribution of nutrients as a result of a patchy input by depositing particulates. Recent sediment trap studies have shown that particulate matter reaching the deep sea does contain simple organic compounds. Therefore, the present experiments dealt with the measurement of carbon incorporation and respiration of14C-labeled acetate, glucose, glutamate and trimethylamine in deepsea sediments. Free vehicles, i.e. aluminum framed tripods that descend untethered to the deep sea floor and return automatically, were used for thein-situ injection and incubation of cores at depths of 2600 to 5330 m. The data were compared to those obtained from (1) parallel samples incubated at 1 atm andin-situ temperature and (2) a shallow-water station (Buzzards Bay, 12 m). Rates measuredin situ generally decrease with water depth as well as with depth in the upper 9 cm of top sediment. In most experiments, rates measured in the 1 atm controls were higher than those observedin situ. This fact supports the general notion that natural populations of deep-sea sediment contain barotolerant and barophilic microorganisms in varying proportions.  相似文献   

20.
Benthic community respiration was measured in situ at 9 stations along the Gay Head-Bermuda transect from depths of 40 to 5200 m. Three methods were used; bell jar respirometers, grab respirometers, and free vehicle respirometers. Benthic community respiration rates spanned three orders of magnitude, decreasing from 21.5 ml O2 m-2 h-1 at 40 m in November to 0.02 ml O2 m-2 h-1 at 5200 m. Rates decreased two orders of magnitude between 40 and 1800 m and then significantly declined again between the continental rise (3650 m) and the abyssal plain stations. Predictive equations for benthic community respiration along the transect reflect a strong correlation with depth of water. Of lesser significance are the correlations with water temperature, dissolved oxygen, benthic animal biomass, surface primary productivity and sediment organic matter. Calculations show that annual benthic respiration can utilize 1 to 2% of the surface primary productivity. Of the 2 to 7% organic carbon fixed at the surface which supposedly reaches the bottom, only 15 to 29% is utilized by the benthic community at 2200, 3000, and 3650 m. The energy requirements of other biological components of deep-sea benthic communities, such as benthopelagic and macro-epibenthic animals, not included in these measurements, must also be considered in calculating a balance of carbon.Contribution from Scripps Institution of Oceanography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号