首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The goal of this study is to investigate numerically the wind flow and pollutant dispersion within an urban street canyon containing an elevated expressway and reveal the impacts of elevated expressway on the atmospheric environment in the canyon. A two-dimensional numerical model for simulating airflow and pollutant dispersion inside urban street canyons is first developed based on the Reynolds-averaged Navier–Stokes equations coupled with the standard k???ε turbulence model and the convection–diffusion equation for passive species transport, and then it is validated against a wind tunnel experiment. It was found that the model-predicted results agree well with the experimental data. Having established this, the wind fields and pollutant distributions in the canyon containing an elevated expressway are evaluated. The numerical results show that the expressway height above the street floor and the gap distance between the expressway and the building wall have considerable influence on airflow and pollutant level inside a canyon: (1) the vortical flow structure in the canyon varies with the expressway height for a constant gap distance, under certain expressway heights, only one main clockwise vortex is formed, while under others one main vortex as well as one or two secondary vortices above and below the expressway are created; (2) the pollutant level within the canyon increases when an expressway is placed in the canyon, especially when the expressway height equals the building height the flow velocities in the canyon are drastically reduced and air exchange in and above the canyon is seriously impeded by the expressway, which leads to a much higher pollution level in the canyon; and (3) the wider gap distance is favorable to pollutant removal from the canyon.  相似文献   

2.
Modelling of Fluid Flow and Pollutant Dispersion in a Street Canyon   总被引:6,自引:0,他引:6  
A two-dimensional steady state numerical simulation has been carried out for a typical street canyon ventilated by a cross-wind. The PHOENICS package from CHAM was used to solve for the air flow above and within the street canyon. The k-epsilon turbulence model was used for turbulence modelling and pollutant sources were added at ground level over the road but not over the pavements. Results for the air flow showed the formation of a longitudinal vortex within the street canyon, as found by other researchers. Pollutant concentrations were predicted with the highest values occurring at the leeward walls of the upwind buildings, and the lowest values on the windward walls of the downwind buildings. The accuracy of these simulations was examined by comparing the predicted results with field observations. Reasonable agreement was obtained, confirming the difference between concentrations on the leeward and windward walls. The results show that the dispersion characteristics can be simulated in terms of structural configurations.  相似文献   

3.
The impact of the street configurations on pollutants dispersion from vehicles exhausts within urban canyons was numerically investigated using a computational fluid dynamics (CFD) model. Three-dimensional flow and dispersion of gaseous pollutants were modeled using standard kappa - epsilon turbulence model, which was numerically solved based on Reynolds-averaged Navier-Stokes equations by the commercial CFD code FLUENT. The concentration fields in the urban canyons were examined in three cases of street configurations: (1) a regular-shaped intersection, (2) a T-shaped intersection and (3) a Skew-shaped crossing intersection. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated against wind tunnel results in order to optimize the turbulence model. Numerical predictions agreed reasonably well with wind tunnel results. The results obtained indicate that the mean horizontal velocity was very small in the center near the lower region of street canyon. The lowest turbulent kinetic energy was found at the separation and reattachment points associated with the corner of the down part of the upwind and downwind buildings in the street canyon. The pollutant concentration at the upwind side in the regular-shaped street intersection was higher than that in the T-shaped and Skew-shaped street intersections. Moreover, the results reveal that the street intersections are important factors to predict the flow patterns and pollutant dispersion in street canyon.  相似文献   

4.
Flow and Pollutant Dispersion in Street Canyons using FLUENT and ADMS-Urban   总被引:1,自引:0,他引:1  
This paper is devoted to the study of flow within a small building arrangement and pollutant dispersion in street canyons starting from the simplest case of dispersion from a simple traffic source. Flow results from the commercial computational fluid dynamics (CFD) code FLUENT are validated against wind tunnel data (CEDVAL). Dispersion results from FLUENT are analysed using the well-validated atmos pheric dispersion model ADMS-Urban. The k − ε turbulence model and the advection-diffusion (AD) method are used for the CFD simulations. Sensitivity of dispersion results to wind direction within street canyons of aspect ratio equal to 1 is investigated. The analysis shows that the CFD model well reproduces the wind tunnel flow measurements and compares adequately with ADMS-Urban dispersion predictions for a simple traffic source by using a slightly modified k − ε model. It is found that a Schmidt number of 0.4 is the most appropriate number for the simulation of a simple traffic source and in street canyons except for the case when the wind direction is perpendicular to the street canyon axis. For this last case a Schmidt number equal to 0.04 gives the best agreement with ADMS-Urban. Overall the modified k − ε turbulence model may be accurate for the simulation of pollutant dispersion in street canyons provided that an appropriate choice for coefficients in the turbulence model and the Schmidt number in the diffusion model are made.  相似文献   

5.
In present study horizontal and vertical distribution of traffic-related pollutants (CO and SO(2)) within the street canyons in (CO and SO(2)) Varanasi, India was monitored. The results showed that average horizontal profiles of traffic-related pollutant concentrations within street canyon at leeward side were approximately same as that of windward side. However, the vertical concentration of both the pollutants decreases with height above the ground and study indicated that CO and SO(2) concentrations at different heights below the roof showed clear vertical self-gradient. CO and SO(2) concentration decreased with height and the minimum value occurred at the roof. It was concluded from the observed results that pollutants from vehicular exhaust emissions in the street canyon of Varanasi were evenly distributed. This result may be due to the fact that wind vortices are not formed. Therefore, urban planners can use this type of streets so that there is proper ventilation and dispersal of pollutants.  相似文献   

6.
This paper studies the effects of building orientations on the gaseous pollutant dispersion released from vehicles exhaust in street canyons through computational fluid dynamics (CFD) numerical simulations using three kε turbulence models. Four building orientations of the street canyon were examined in the atmospheric boundary layer. The numerical results were validated against wind-tunnel results to optimize the turbulence models. The numerical results agreed well with the wind-tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height in the street canyon was on the windward side for the building orientations θ?=?112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the building orientation increases from θ?=?90°. The concentration in the cavity region for the building orientation θ?=?90° was higher than for the wind directions θ?=?112.5°, 135°, and 157.5°. The wind velocity and turbulence energy increase as the building orientation increases. The finding from this work can be used to help urban designers and policy-makers in several aspects.  相似文献   

7.
An integrated method for the prediction of the spatial pollution distribution within a street canyon directly from a microscopic traffic simulation model is outlined. The traffic simulation package Paramics is used to model the flow of vehicles in realistic traffic conditions on a real road network. This produces details of the amount of pollutant produced by each vehicle at any given time. The authors calculate the dispersion of the pollutant using a particle tracking diffusion method which is superimposed on a known velocity and turbulence field. This paper shows how these individual components may be integrated to provide a practical street canyon pollution model. The resulting street canyon pollution model provides isoconcentrations of pollutant within the road topography.  相似文献   

8.
Titanium dioxide is the most important photocatalysts used for purifying applications. If a TiO2- containing material is left outdoors as a form of flat panels, it is activated by sunlight to remove harmful NOx gases during the day. The photocatalytic efficiency of a TiO2-treated mortar for removal of NOx was investigated in the frame of this work. For this purpose a fully equipped monitoring system was designed at a pilot site. This system allows the in situ evaluation of the de-polluting properties of a photocatalytic material by taking into account the climatologic phenomena in street canyons, accurate measurements of pollution level and full registration of meteorological data The pilot site involved three artificial canyon streets, a pollution source, continuous NOx measurements inside the canyons and the source as well as background and meteorological measurements. Significant differences on the NOx concentration level were observed between the TiO2 treated and the reference canyon. NOx values in TiO2 canyon were 36.7 to 82.0% lower than the ones observed in the reference one. Data arising from this study could be used to assess the impact of the photocatalytic material on the purification of the urban environment.  相似文献   

9.
In urban conditions, car exhaust gases are often emitted inside poorly ventilated street canyons. One may suppose however that moving cars can themselves produce a certain ventilation effect in addition to natural air motions. Such ventilation mechanism is not sufficiently studied so far. A similarity criterion relating the vehicle- and wind-induced components of turbulent motion in an urban street canyon was proposed in 1982 by E. J. Plate for wind tunnel modelling purposes. The present study aims at further evaluation of the criterion and its applicability for a variety of wind and traffic conditions. This is accomplished by joint analyses of data from numerical simulations and wind tunnel measurements.  相似文献   

10.
以ENVI-met为数值模拟平台,采用人行道和墙面污染物浓度为评价指标,在保持街谷建筑平均高度不变(建筑面积不变)的前提下,设置27个情景开展街谷建筑高度非均匀性对空气污染影响的对比模拟研究。结果发现:在不同风速条件下街谷建筑高度的非均匀性对街谷污染均具有较大的减轻作用。非均匀程度越大,污染强度减轻作用越大;错列式非均匀方式对污染的减轻作用大于行列式;非均匀性对街谷墙面污染的减轻作用大于人行道污染减轻作用。  相似文献   

11.
A measuring campaign was conducted in a street canyon (Runeberg St.) in Helsinki in 2003–2004. The concentrations of NO x , NO2, PM10 and PM2.5 were measured at street level and at roof level at an urban background location. This study utilises the data measured from 1 Jan to 30 April, 2004, when wind speed and direction measurements were also conducted on-site at the roof level. The computational fluid dynamics model ADREA-HF was used to compute the street concentrations, and the results were compared with the measurements. The predictions for the selected cases agreed fairly well (within < 25 % for 15 min average values) with the measured data, except for two cases: a windward flow in case of a low wind speed, and a moderate southerly flow parallel to the street canyon. The main reasons for the differences of predictions and measurements are the negligence of traffic-induced turbulence in the modelling and an under-prediction of ventilation of urban background air from a crossing street. Numerical results are presented for various example cases; these illustrate the formation of the vortices in the canyon in terms of the wind direction and speed and the influence of the characteristics of the flow fields on the concentration distributions.  相似文献   

12.
Air quality modelling is primarily the quantative approach. It is more difficult as it demands input data accuracy, uncertainties and the efficient methodologies to judge the extent of models accuracy. As a result, model validation has to be regarded as an integral part of the modelling process. Furthermore, models are often validated on a limited number of testcases therefore, appropriate evaluation procedure must be implemented to ensure these models will be applicable for various conditions. The study presented here was carried out to evaluate theWinOSPM (Preliminary version of windows based Operational Street Pollution Model) for air pollutants viz. CO, NO, NO2, NOx and C6H6 for three street canyons of Nantes (France) and for the three base years 1999, 2000, and 2001. Each street canyon selected for this study has typical and unidentical features. The rue de Strasbourg and Boulevard Victor Hugo have many building exceptions whereas rue Crébillon has not any. Application of the model above to the three street canyons revealed that WinOSPM could be used in the case when measurements are not available. This was justified from the results at rue Crébillon. The special interest was in the benzene modelled values as its content in fuel has been targeted to reduce to 1% for the years 2000 and onwards (from its 5% until the year 1999). The 50 to 70% reduction in the benzene concentrations is found for both the years i.e. in 2000 and 2001. This has further justified that air quality models are useful and interesting tools in optimising emission reduction strategies. Moreover, it is also the new pollutant added to the measurement campaign of Air Pays de la Loire (APL) for the city of Nantes. For benzene weekly averages are estimated from the hourly-modelled values for all the streets and compared with that of measurements. They are found in excellent agreement with each others. For other pollutants annual means and percentiles were compared. The statistical analysis was done to evaluate the models performance using index of agreement and correlation coefficient. The index of agreement (d) and correlation coefficient (r) for all the streets show that estimated concentration levels are in good agreement with that of measurements. From the index of agreements, it can be inferred that model has very less potential for errors. The models sensitivity to building-exceptions was also tested for the rue de Strasbourg. Results did not reflect this feature very well. It is perceived that the influence of this feature might have been suppressed in averaging the annual hourly values. This influence is apparently seen in hourly average time series variations. Finally, WinOSPM model was found a simple but very useful model. It could very well represent the detailed flow and dispersion conditions in urban streets.  相似文献   

13.
A measuring campaign was conducted in the street canyon 'Runeberg street' in Helsinki in 1997. Hourly concentrations of carbon monoxide (CO), nitrogen oxides (NOX), nitrogen dioxide (NO2) and ozone (O3) were measured at the street and roof levels, and the relevant hourly meteorological parameters were measured at the roof level. The hourly street level measurements and on-site electronic traffic counts were conducted during the whole year 1997, and roof level measurements were conducted during approximately two months, from 3 March to 30 April in 1997. The Operational Street Pollution Model (OSPM) was used to calculate the street concentrations and the results were compared with the measurements. The overall agreement between measured and predicted concentrations was good for CO and NOx, but the model slightly overestimated the measured concentrations of NO2. The database, which contains all measured and predicted data, is available for a further testing of other street canyon dispersion models.  相似文献   

14.
Validation of a Street Canyon Model in Two Cities   总被引:3,自引:0,他引:3  
A street canyon model has been formulated based on work published by Hertel and Berkowicz. An outline is given of the theoretical approach used, followed by a modelling of nitrogen oxides and carbon monoxide measurements from sites at Cromwell Road, Central London and Stratford Road, Birmingham. Modelled concentrations were compared with observed mixing ratios for both sites. At Cromwell Road, good agreement was achieved for one month but which was not reproduced as well for the other two months tested. There is uncertainty as to the effect of one of the side streets and whether the general flow is altered during periods of marked solar heating. Also emissions from vehicles may vary from those assumed. The interpretation of the Stratford Road site's results was less straightforward with complications concerning background pollutant levels and changes in emissions from interrupted traffic flow.  相似文献   

15.
This paper is concerned with a preliminary experimental investigation of the interaction between large turbulent structures, generated in the wake of a circular cylinder, and the rough-wall turbulent boundary layer separated flow immediately downstream of a simple street canyon type geometry represented by backward-facing step. The motivation for the work was to provide some initial data for the validation of a 3-D k- turbulence model used for the prediction of flows and pollutant dispersion within the urban canopy. The aim has been to assess the extent of the perturbation of a simulated street canyon caused by regular large-scale eddies generated upstream. The research has involved the use of thermal anemometry to determine mean velocity and turbulence characteristics both upstream and downstream of the step, together with the mean reacttachment length for the recirculating flow. The results indicate that the presence of the cylinder in the flow reduces the reattachment length. In addition, the periodic structures generated in the cylinder wake are rapidly mixed with the turbulence in the step shear layer such that no periodicity is detected at the reattachment zone.  相似文献   

16.
Eighty-five measurement campaigns were performed repeatedly to compare the concentration variation profiles along two intra-urban roads—one with open configuration and the other with street canyon effect. Fixed-effects panel data analysis was applied for formulating a model to express the PM10 concentrations along intra-urban roads in terms of parameters like nearby central monitoring data, traffic counts and meteorological conditions with an objective to analyze the PM10 concentration variation patterns along the two roads. Our findings reveal that traffic intensity and metrological conditions exert influence on concentration variation for both types of road configurations while wind velocity only affect the pollutants removal effectiveness of open road configuration. Further analysis unveils that the PM10 concentration distribution profiles within a compact city environment are not always uniform and are dependent on the road configuration. Considerable PM10 concentration differences were observed along the street canyon, and 70% of their variations are attributed to variations in their road aspect ratios. By contrast, no significant concentration difference is observed at open road configurations.  相似文献   

17.
A 3-D Eulerian-Lagrangian approach to moving vehicles is presented that takes into account the traffic induced flow rate and turbulence. The method is applied to pollutants dispersion in a street canyon. The approach is based on CFD calculations using Eulerian approach to the continuous phase and Lagrangian approach to the "discrete phase" of moving objects - vehicles. A commercial CFD code StarCD was used into which the Lagrangian model was integrated. As an example a street canyon is taken into consideration. It has the length of 50 m and the aspect ratio of 1.27. The speed of wind was assigned values of 4, 7 and 12 m/s at the altitude of 300 m. The total height of the domain is 115 m. In the study different traffic situations are considered, namely one-way and two-way traffic with different traffic rates per lane. The predictions show that different traffic situations affect pollutants dispersion in the street canyon and that there are also differences in the pollutants dispersion in case of one- and two-way traffic.  相似文献   

18.
This paper presents a sensitivity analysis and an evaluation of the semi-empirical model known as Operational Street Pollution Model (OSPM). The model is capable of calculating airborne concentrations of exhaust gases emitted by vehicles, within a street canyon. OSPM has been extensively evaluated using data collected over a two year period (1994–1995), during a monitoring campaign carried out in Jagtvej, Denmark. Further evaluation of the model was carried out using data collected in Göttinger Strasse, Hannover (1994) and Schildhorn Strasse, Berlin (1995), both in Germany. In all cases, model runs were carried out for carbon monoxide.Two sets of emission factors were used for the two street canyons in Germany; namely that available within OSPM and another separate set of emission factors derived from data collected in Germany. In the calculation of the latter set, the urban driving patterns and variations in the vehicle fleet composition according to the engine capacity were assumed accordingly. A correlation coefficient of 0.90 between the modelled and measured concentrations was obtained for all the cases considered when using the emission factors of OSPM. A correlation coefficient of about 0.85 was obtained with the newly proposed emission factors when applied to Göttinger and Schildhorn Strasse.  相似文献   

19.
A wind tunnel study was performed to determine the dispersion characteristics of vehicle exhaust gases within the urban canopy layer. The results were compared with those from a field monitoring station located in a street canyon with heavy traffic load. The agreement found was fair. In the second part of the paper it is shown how wind tunnel data can be utilized to supplement and thereby enhance the value of field data for model validation purposes. Uncertainty ranges were quantified which are inherent to mean concentration values measured in urban streets.  相似文献   

20.
Towards the aim of improving the air quality in the urban environment via the application of innovative TiO2 based photocatalytic coverings, a field campaign took place within the frame of the EU PICADA project () to asses the expected depollution efficiency of such materials under realistic conditions. Furthermore, extensive numerical modeling was performed via the application of the RANS CFD code for microscale applications MIMO, in an effort to asses the sensitivity of the developing flow field and the corresponding dispersion mechanism and hence of the depollution efficiency of the PICADA products on a wide range of factors, with most notably the length of the street canyon, the thermal exchange between the heated street canyon walls and the air and the approaching wind direction. For the needs of the PICADA project a new, simple module had to be implemented into MIMO to be able to model the removal of NOx from a street canyon whose walls have been treated with a photocatalytic product. The model simulations results presented in this paper, show that MIMO is indeed capable of predicting the effectiveness of the photocatalytic products in question. At the same time, they reveal a strong dependence of the developing flow and concentration fields inside the field site street canyon configuration on most of the aforementioned factors with most notably the direction of the approaching wind.
N. MoussiopoulosEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号