首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
通过对含有臭氧发生器的动态校准仪发生的臭氧浓度进行多角度跟踪审查,对其臭氧浓度的复现性进行了评估。总体上,动态校准仪臭氧发生器发生的臭氧浓度存在较大漂移,复现性较差,与臭氧组件的稳定性有很大关系。建议参照美国的臭氧传递分级标准,把动态校准仪作为Level 4级别的传递标准,使用专门用于校准的臭氧分析仪作为Level 3级别的传递标准,在子站现场对动态校准仪和监测用臭氧分析仪进行标准传递,并适当增加传递频次。  相似文献   

2.
于2018年4—9月对泰州市环境空气中挥发性有机物(VOCs)组分开展现场观测,结合观测数据分析该市大气中VOCs的时空分布特征。结果表明:观测期间泰州市环境空气中VOCs平均摩尔比为45.1 nmol/mol,其中含氧挥发性有机物占比为57.8%;受周边排放源和地理位置影响,下风向点位的VOCs测定值高于其他点位;VOCs月均最高值出现在6月,与臭氧月均最高值出现时间一致,7—9月气团出现老化,导致臭氧生成能力减弱;观测期间VOCs中甲苯/苯(T/B)比值范围为0.201 9~5.130 3,且大部分T/B比值2,说明溶剂、油气和液化石油气挥发等排放源对泰州市环境空气中VOCs的影响较为显著。  相似文献   

3.
基于化学发光臭氧(O3)检测方法,将氮氧化物分析仪(Thermo Model 42i-TL)改装为O3分析仪,测试其性能,并与紫外光度法O3分析仪(Thermo Model 49i)同时应用于外场观测,开展比对测试试验。结果显示:该改装仪器的测量性能优于Thermo Model 49i,其零点噪声为0.10×10-9(体积分数,下同),最低检出限为0.20×10-9,量程噪声为0.42×10-9,示值误差为0.1%满量程(F.S.)。在比对试验过程中,化学发光法O3分析仪运行稳定,测量结果与商品化的Thermo Model 49i所测定的O3浓度数值的变化趋势高度一致(R2=0.998)。化学发光法O3分析仪相较于Thermo Model 49i具有更低的噪声,其日间(09:00—17:00)O3浓度示值显著低于Thermo Model 49i,且...  相似文献   

4.
于2014年10月采用GC-MS挥发性有机物(VOCs)在线监测系统在武汉城区开展大气VOCs连续监测,并分析VOCs体积分数的时间变化特征、光化学活性差异及来源。结果表明,武汉城区总VOCs体积分数为45.16×10-9,从高到低依次为烷烃烯烃芳香烃;VOCs日变化呈双峰型特征,峰值分别出现在6:00—8:00和19:00—23:00;T/B和E/E的平均比值分别为0.94和0.61,表明气团受机动车影响显著,且存在老化现象;烯烃对OH消耗速率(LOH)和臭氧生成潜势(OFP)的贡献率最大,芳香烃次之,烷烃最低;以3-甲基戊烷为机动车排放示踪物,计算得出非机动车源对乙烯、甲苯和间/对-二甲苯的贡献率分别为85%、55%和70%。  相似文献   

5.
于2019年在南通市采用TH-300B大气挥发性有机物(VOCs)在线分析仪对57种VOCs开展在线监测,对比分析了VOCs组分变化、季节变化、日变化特征,并用最大增量反应活性(MIR)估算了VOCs的臭氧生成潜势(OFP),找到了南通市VOCs的优控物种.结果表明,2019年南通市VOCs平均体积分数为15.57×1...  相似文献   

6.
以国内监测系统在用的臭氧校准仪为二级传递标准对臭氧监测仪开展了实验室校准,通过计算单次校准所得校准曲线的斜率和截距,符合中国相关标准中关于臭氧监测仪的校准指标:多点校准所得校准曲线的斜率为0.95~1.05,截距为-5~5 nmol/mol。进一步对2台臭氧监测仪进行了稳定性测试,12个月内臭氧监测仪的斜率变化为0.976 05~1.008 42,截距变化为-0.669 00~0.577 93 nmol/mol,臭氧监测仪的斜率、截距均符合臭氧监测仪校准指标的要求。稳定性测试表明,TF 49i型臭氧监测仪和EC 9810型臭氧监测仪经校准后均可用于实验室内臭氧标准传递比对工作。实验中臭氧监测仪更换臭氧涤除器、仪器零件后校准曲线的斜率均有明显变化,建议更换耗材后需采用高浓度臭氧对臭氧监测仪进行饱和并再次校准。  相似文献   

7.
根据2015年9个城市53台现场臭氧分析仪的现场比对核查结果,比较研究了稳健统计方法和一般统计方法在评价国控网臭氧自动监测数据准确性和精密性上的应用。研究表明:稳健统计能够在不剔除异常数据的前提下降低异常值对正确评价臭氧自动监测数据质量的影响,适合评价现场比对核查结果;采用Hubers方法进行稳健统计,2015年国控网臭氧日常浓度点相对偏差的95%置信区间约为-0.1%至4.5%,95%预测区间为-14.0%~18.3%,变异系数约为9.5%,数据质量仍有提升空间。  相似文献   

8.
为了解环境空气臭氧累积规律,利用2017年沈阳市环境空气臭氧浓度数据,统计分析臭氧累积速率,并利用回归方法拟合并优化臭氧浓度及其累积速率的时间序列模型,同时结合气温、风力、臭氧前体物等时序变化情况分析臭氧浓度的影响因素。研究发现:沈阳市臭氧月均浓度年变化、日均浓度年变化以及小时浓度日变化时序曲线均呈现单峰形态;年变化中,6月的臭氧浓度最大,4月臭氧累积速率达到最大值;日变化中,14:00臭氧浓度达到最大值,09:00—11:00臭氧累积速率最大,19:00—20:00臭氧迅速消减。温度、风速同臭氧浓度之间均有较好的正相关性。臭氧前体物二氧化氮、挥发性有机物与臭氧浓度之间均呈明显的负相关性。  相似文献   

9.
利用2016—2020年陕西省环境空气质量自动站的臭氧监测数据,分析西安市大气环境中臭氧污染的时间变化趋势及空间分布特征。从时间分布来看,西安市臭氧年均质量浓度呈先上升后下降的波动变化趋势,且浓度值略高于全国平均水平;臭氧月均浓度具有明显的季节变化特征,月超标天数和月均质量浓度均在6月达到峰值;臭氧质量浓度日变化规律在全年和四季完全一致,均呈单峰型,日内小时平均质量浓度超标最多时段集中在15:00—16:00;臭氧与NO2、CO均呈“此消彼长”的负相关关系。从空间分布来看,西安市12个国控评价点位的O3-8 h浓度分布变化大致分为单峰型和持续递减型,浓度主要集中在40~80μg/m3;国控点和省控点的臭氧浓度时间分布趋势一致,空间分布存在区域性差异;全市20个区县(开发区)的臭氧污染呈现南北中心城区高、东西远郊区低的空间分布特征。总之,西安市臭氧污染的时空分布主要受到气象条件、污染物排放和城市布局差异的综合性影响。  相似文献   

10.
对2020年4月—2021年3月北京市建成区挥发性有机物(VOCs)的化学特征、污染来源及其对臭氧(O3)污染的影响进行了研究。结果显示:O3日最大8 h滑动平均值在臭氧季(4—9月)均值为134 μg/m3,是非臭氧季(10月至次年3月)均值(59.6 μg/m3)的2.2倍。臭氧季VOCs体积浓度均值为14.3×10-9,明显低于非臭氧季(21.1×10-9),可能与光化学反应速率和VOCs来源的季节性差异有关。臭氧生成潜势(OFP)贡献率排名前10位的物种在臭氧季和非臭氧季相似,均包括间/对-二甲苯、甲苯、乙烯、邻二甲苯、异戊烷、正丁烷、丙烯、反式-2-丁烯和1,2,4-三甲基苯,但排名有所差异,燃煤源特征明显的乙烯等物种在非臭氧季上升明显,与溶剂使用、油气挥发相关的间/对二甲苯、甲苯、异戊烷和正丁烷等物种在臭氧季上升明显。甲苯/苯的值和异戊烷/正戊烷的值在臭氧季明显高于非臭氧季,反映出机动车排放和油气挥发等在臭氧季影响突出,非臭氧季是燃煤影响显著。基于正交矩阵因子分解模型(PMF),臭氧季解析出机动车尾气排放(40.9%)、溶剂使用(20%)、油气挥发(16.4%)、工业排放(17.6%)和植物排放(5.1%)等5种污染源;非臭氧季解析出机动车尾气(38.9%)、燃烧源(26.3%)、工业排放(17.8%)和溶剂使用(17%)等4种污染源。  相似文献   

11.
选择某喷涂企业附近环境空气为采样点位,在3个监测时段(5、9、11月)基于成分监测车在线监测107种挥发性有机物(VOCs),分析环境空气中VOCs污染特征和成分,结合走航监测车进行溯源分析,利用MCM模式结合敏感性实验研究了臭氧生成机制。结果表明:5月A时段的VOCs总浓度(247.43 μg/m3)高于其他2个监测时段(134.29、107.07 μg/m3),体现了VOCs季节性的变化趋势;3个监测时段VOCs浓度均以含氧有机物为主,其占比分别为44.36%、55.30%和37.90%,其次为芳香烃和烷烃,但不同监测时段同类VOCs占比各不相同,体现了不同季节VOCs浓度的差异性。3个监测时段均排在浓度排名前10位的物种有6种,分别为乙醇、丙酮、对/间二甲苯、苯、二氯甲烷和甲苯,说明该监测点位存在稳定污染排放源。走航溯源监测获得空气点位及附近喷涂企业内VOCs浓度和成分特征,结果显示环境大气中的VOCs主要组分来自喷涂企业厂区使用的挥发性溶剂的排放和油性漆的挥发排放。研究臭氧生成潜势(OFP)可知,芳香烃的OFP值在3个监测时段占比最高,对臭氧生成贡献较高的物种主要有对/间二甲苯、甲苯等芳香烃,乙醇和甲基丙烯酸甲酯等含氧有机物,异戊二烯和丙烯等烯烃类物种。MCM模式结果显示:5月A时段监测期间的臭氧光化学生成速率大于9月B时段和11月C时段,O3生成过程主要受甲基过氧自由基(CH3O2)+NO 和过氧化羟基自由基(HO2)+NO 控制。相对增量反应敏感性实验结果显示:3个监测时段臭氧生成均处于VOCs控制区,5月A时段,控制异戊二烯、芳香烃类物种可以大幅减少臭氧的生成,9月B时段需主要控制芳香烃和含氧有机物的排放,11月C时段则需控制芳香烃物种的排放。就VOCs单体而言,3个监测时段减少对/间二甲苯的浓度,对臭氧生成影响较大。走航溯源耦合在线监测方法可以实现臭氧污染快速原位溯源。  相似文献   

12.
臭氧对机体的影响及其卫生标准的探讨   总被引:1,自引:0,他引:1  
臭氧是现代城市的主要污染物之一,是光化学烟雾的主要成份(约占90%),自40年代末以来,光化学烟雾污染事件多次出现于洛杉矶、纽约、东京等一些世界大城市,给人们带来多种危害臭氧的化学特性决定其本身具有强烈的杀菌、灭活病毒及消除异臭等作用,尤其对霉味的地下设施除臭效果更佳。此外,臭氧还能分解有害的有机物。如B(a)P、CCE、艾氏剂等有害物经臭氧作用后能迅速分解。在最近甲肝大流行之后,  相似文献   

13.
广州城区冬季黑碳气溶胶污染特征及其来源初探   总被引:11,自引:4,他引:7  
于2007年12月至2008年2月利用黑碳(Aethalometer)和气体在线现测仪(Thermo 42i型二氧化硫、43i型氮氧化物争49i型臭氧分析仪)和MAWS自动气象站获得了大气细粒子中每5分钟黑碳气溶胶(BC)浓度,每1小时SO2、NO2、NO和O3浓度和风速、风向等气象因子观测数据.结果发现,黑碳日均值浓度值为10.5±7.7 μg/m3,浓度变化范围为2.7~34.8 μg/m3.非降雨期BC有相对明显的两个峰值和一个谷值;降雨期BC昼间呈单调上升,夜间呈单调降低.通过对BC与气体污染物相关性分析并结合城市污染源分布,发现BC的最主要来源是工业燃煤和机动车尾气排放.  相似文献   

14.
使用WRF/CAMx模型及化学过程分析(CPA)模块,系统研究了广东省夏、秋季的臭氧生成敏感性与生成速率。夏季,广州与东莞等珠三角中部地区臭氧生成主要对VOCs敏感,郊区的臭氧生成速率较大,珠江口地区是重要的臭氧生成源区,夏季白天(08:00-17:00)平均净臭氧生成速率可达37μg/(m^3·h),位于珠三角东北部的天湖白天平均净臭氧生成速率约为25μg/(m^3·h)。秋季,珠江口西岸臭氧生成主要对VOCs敏感,秋季臭氧生成速率显著低于夏季。夏、秋季珠三角大部分地区臭氧生成敏感性从早上对VOCs敏感逐步过渡到下午对NO_x敏感,广东其他大部分地区则全天均为NOx敏感,一般在VOCs敏感区中的臭氧生成速率与化学消耗速率均较大。中心城区的臭氧生成弱,臭氧净化学消耗强。  相似文献   

15.
本文利用洛阳市老城区豫西宾馆空气质量自动监测点的监测数据,对2012-01~12该区域大气中臭氧污染浓度的连续监测结果及同步气象资料进行了分析。结果表明,洛阳市老城区环境空气中臭氧污染主要表现为臭氧日最大8小时平均浓度污染,全年超过GB3095-2012《环境空气质量标准》中二级标准(0.160mg/m3)的频率为21%。臭氧浓度具有明显的日变化及季节变化特征;由于臭氧污染的季节特点,导致全年污染天数显著增加。通过分析发现气温、风速、降水、太阳紫外线辐射等气象因素对臭氧浓度变化均具有一定影响,臭氧污染气象特征表现为晴朗、高温、低风速的午后时段会出现臭氧的高浓度污染。  相似文献   

16.
对臭氧氧化法污泥减量技术进行了试验研究。试验表明,污泥浓度和臭氧流量均会影响污泥减量效果。当SV%=40,Qo2=20L/h,氧污比为0.15gO3/gMLSS时,污泥去除率最高,达到67.95%,污泥浓度与时间的函数关系为:S=3209.60e-0.1428t(S—MLSS浓度,mg/L;e—指数常数t;—时间,h)。电镜观察表明,经过臭氧氧化,污泥菌胶团密度降低,丝状菌网状结构破坏,细胞质溶出,细胞量明显减少。臭氧氧化法污泥减量技术对于解决污泥问题具有指导意义。  相似文献   

17.
青藏高原典型城市拉萨市近地面臭氧污染特征   总被引:2,自引:1,他引:1  
拉萨市作为青藏高原典型城市,环境空气质量相对较好,但臭氧污染近年来有所凸显。对拉萨市臭氧的现状与污染特征进行分析基础上,探讨臭氧污染的影响因素。结果表明:拉萨市臭氧污染表现出"来得早,去得快"的特征,与内地城市相比,拉萨市臭氧质量浓度在3月即可达到全年平均值(2015年为105μg/m~3),而9月以后将低于全年平均值,并在春末夏初达到峰值;由于青藏高原海拔高,紫外线强,相对内陆地区臭氧均值偏高,2015年拉萨市臭氧年均值比北京市和成都市分别高出7.7%、29.0%,其小时浓度变化呈中午高、早晚低的特征;拉萨市臭氧的浓度变化受空气湿度、日照时间和日均气温的影响;生物质燃料的跨界传输可能也对青藏高原地区臭氧的来源产生一定影响。  相似文献   

18.
环境空气中臭氧API评价探讨   总被引:1,自引:1,他引:0  
环境空气中臭氧API评价应考虑臭氧超标影响范围、臭氧超标小时数和超标平均浓度对臭氧API修正。  相似文献   

19.
青岛市环境空气臭氧污染特征分析   总被引:1,自引:0,他引:1  
冯静  董君  陶红蕾 《干旱环境监测》2013,(4):150-153,173
青岛市是国家环保部确定的臭氧试点监测城市之一。文章结合青岛市市南区东部和四方区空气子站2008—2011年的试点监测数据,从区域差异、时间变化等方面分析了青岛市的臭氧污染特征,结果表明:①二区域臭氧浓度的日分布均呈现“单峰型”,12:00~15:00是一天中臭氧污染最严重的时段;②每月监测累积值市南区东部呈现“双峰型”,四方区呈现“单峰型”;③二区域臭氧污染最突出的月份均为5月;④二区域臭氧平均浓度从高到低季节排序略有差异;⑤2009年二区域臭氧污染最严重,该年四季中春季臭氧污染最为突出。  相似文献   

20.
介绍了瓶装1μmol/mol臭氧前驱体物监测用氮气中57组分挥发性有机物(VOCs)气体标准物质的研制过程,该气体标准物质严格按照《气体分析 校准用混合气体的制备 第1部分:称量法制备一级混合气体》(GB/T 5274.1-2018)所规定的配制气体标准物质的方法采用称量法制备。建立了GC-MS联用结合选择离子扫描(SIM)的分析方法,研究了目标化合物在气瓶中的均匀性和稳定性。57种目标化合物完全满足美国环保署光化学评估监测站(PAMS)关于臭氧前驱体物VOCs在线监测的技术要求。将气体标准物质分别送至中国环境监测总站和英国国家物理实验室(NPL)进行比对分析,结果良好,表明研制的气体标准物质具有较好的压力均匀性和稳定性,符合使用要求。相对扩展不确定度为5%(k=2),使用有效期为1年,取得国家二级标准物质证书,证书编号为GBW(E)083966。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号