首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Simultaneous sorption of lead and chlorobenzene by organobentonite   总被引:10,自引:0,他引:10  
Lee JJ  Choi J  Park JW 《Chemosphere》2002,49(10):1309-1315
Clays or organoclays have been used as a barrier to prevent the transport of hazardous contaminants in landfills. However, clays are known to effectively sorb mostly inorganic contaminants, while organoclays are mainly used for organic contaminants. Since the organoclays are basically clay particles modified with cationic surfactants, there might exist an optimal coverage of cationic surfactant on the clay particles to sorb both inorganic and organic contaminants. In order to determine the optimal mass of cationic surfactants on the bentonites, sodium bentonites were treated with various ratios of hexadecyltrimethylammonium (HDTMA) to bentonites. Chlorobenzene and lead were selected as representative contaminants. When either chlorobenzene or lead exists as a single contaminant, chlorobenzene sorption increased with increasing HDTMA to bentonite ratios, and lead sorption decreased with increasing HDTMA to bentonite ratios. Sorption of chlorobenzene was a function of HDTMA coverage on the bentonites, while lead sorption was much more influenced by the initial lead concentration rather than the mass of HDTMA added to the bentonites.  相似文献   

2.
A series of experiments were carried out to determine the effect of surfactants at low concentrations on the sorption of atrazine by natural sediments. With surfactant concentrations ranging from 0 to 20 mg/ L, anionic and cationic surfactants appreciably reduce the adsorption of atrazine, while nonionic surfactant decreases the adsorption of atrazine at concentrations equal to or less than 1 mg/L and increases adsorption at higher concentrations. Desorption of atrazine in the presence of different sodium dodecylbenzene sulfonate (SDBS) concentrations shows that a portion of the bound pesticide resists desorption in the SDBS free system. However, the addition of SDBS accelerates the desorption of atrazine. Furthermore, the nature of sediment and the contacting sequence of SDBS, at 10 mg/L, with the sediment, also influence the adsorption of atrazine. The conclusions in this study could be explained partially by the effect of the type and concentration of surfactants and the characteristics of sediments.  相似文献   

3.
Sánchez L  Romero E  Peña A 《Chemosphere》2003,53(8):843-850
Packed columns were prepared with an agricultural soil to examine the ability of two organic soil modifiers, biosolid and the cationic surfactant tetradecyl trimethyl ammonium bromide (TDTMA), to alter the leaching of the insecticide methidathion. Ion chloride was used as a tracer of water flow and the mathematical model PESCOL was selected to predict the mobility of the insecticide. The biosolid addition (SB column) delayed the breakthrough curves for methidathion with respect to the non-amended soil (S) column. The cationic surfactant TDTMA, alone or combined with the biosolid (SS and SBS) and previously incorporated in the soil column, caused the highest retardation of this pesticide in the soil columns. Theoretical retardation factors (TRf) were similar to the experimental Rf values for the S and SB columns, and predicted the high retention observed in the SBS and SS columns. The simulation with PESCOL predicted the experimental results.  相似文献   

4.
We investigated dissipation and sorption of atrazine, terbuthylazine, bromacil, diazinon, hexazinone and procymidone in two contrasting New Zealand soils (0–10 cm and 40–50 cm) under controlled laboratory conditions. The six pesticides showed marked differences in their degradation rates in both top- and subsoils, and the estimated DT50 values for the compounds were: 19–120 (atrazine), 10–36 (terbuthylazine), 12–46 (bromacil), 7–25 (diazinon), 8–92 (hexazinone) and 13–60 days for procymidone. Diazinon had the lowest range for DT50 values, while bromacil and hexazinone gave the highest DT50 values under any given condition on any soil type. Batch derived effective distribution coefficient (K d eff) values for the pesticides varied markedly with bromacil and hexazinone exhibiting low sorption affinity for the soils at either depth, while diazinon gave high sorption values. Comparison of pesticide degradation in sterile and non-sterile soils suggests that microbial degradation was the major dissipation pathway for all six compounds, although little influence of abiotic degradation was noticeable for diazinon and procymidone.  相似文献   

5.
Laboratory studies were conducted to determine the sorption behaviour of six commonly used pesticides (acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon) on Hungarian brown forest soil with clay alluviation (Luvisol) using the batch equilibrium technique. The sorption isotherms could be described by the Freundlich equation in non-linear form (n < 1) for all compounds, however in case of diazinon using the extended Freundlich equation proved to be a better approach. The adsorption constant related soil organic carbon content (Koc) calculated from Freundlich equation were 314 for acetochlor, 133 for atrazine, 2805 for carbendazim, 1589 for diazinon, 210 for imidacloprid and 174 for isoproturon. The octanol-water partition coefficients (Pow), which can be a useful parameter to predict of adsorption behaviour of a chemical on soil, and dissociation coefficients of these pesticides were calculated based on the chemical structure of them using a computerized expert system. The octanol-water partition coefficients were determined experimentally from high performance liquid chromatographic parameters as well. Good agreement was observed between experimental and the computer expert system estimated data. Computer estimated log Pow values ranged 0.5 and 3.86 for the examined pesticides, with imidacloprid and diazinon being the least and most hydrophobic respectively. Experimentally determined logPow ranged between 0.92 and 3.81 with the same tendency. It can be concluded that the Freundlich adsorption constants (Kf) are slightly related to the octanol-water partition coefficients of investigated chemicals, nevertheless no close correlation could be established because of the influence of further characteristics of solutes and soil.  相似文献   

6.
The effect of a city refuse compost (CRC) and of an anionic surfactant (sodium dodecyl sulphate (SDS) on the leaching of diazinon (0,0-diethyl 0-2-isopropyl-6-methylpyrimidin-4-yl-phosphorothioate) in the soil was studied using packed soil columns. Breakthrough curves showed the existence of various regimes of pesticide adsorption related to the pesticide and organic material nature and the soil properties. Leaching rate and mass transfer of diazinon decrease following the addition of CRC to the soil and increase after the addition of SDS. The degree of increase or decrease was found to depend strongly on the amendment dose added, especially in the case of SDS. The results afford basic data on which to base the possible use of the organic amendments studied in physicochemical methods designed to prevent the pollution of water by hydrophobic pesticides (immobilization) or to restore soils contaminated by these compounds (leaching).  相似文献   

7.
A study was made of the influence of the application of sewage sludge on the degradation of pesticides in the soil. Two kinds of sludge were used, with different characteristics, one from an urban treatment plant and one from a food processing plant. Three organophosphorus insecticides, fenitrothion, diazinon and dimethoate, were studied. The relative importance was determined of the chemical and biological degradation processes, which involved experiments on soil and sterile soil samples. A comparative study was also made of the degradation of pesticide residues and the evolution of the microbial population. The application of sludge seems to have a complex effect on the degradation of pesticides, determined by the bioavailability and biodegradability of their active ingredient. The biodegradation of pesticide residues brings about alterations in the microorganism population of the soil.  相似文献   

8.
Sorption and cosorption of organic contaminant on surfactant-modified soils   总被引:5,自引:0,他引:5  
Gao B  Wang X  Zhao J  Sheng G 《Chemosphere》2001,43(8):1095-1102
Three kinds of soils were modified with the cationic surfactants, hexadecyltrimethylammonium (HDTMA) bromide and tetramethylammonium (TMA) bromide to increase their sorptive capabilities. Sorption of chlorobenzene in simulated groundwater by these soils was investigated. HDTMA-modified soil has a higher ability to sorb chlorobenzene from simulated groundwater than unmodified soil. TMA-modified soil did not show the superiority. HDTMA thus can be used to modify soil to improve its sorption capability. Cosorption of chlorobenzene in simulated groundwater in the absence or presence of nitrobenzene and dichloromethane on HDTMA-modified soil was also investigated. Nitrobenzene facilitated sorption of chlorobenzene on all HDTMA-modified soil. Dichloromethane did not influence the sorption of chlorobenzene by HDTMA-modified soil. The results suggest that HDTMA-modified soil is a highly effective sorbent for chlorobenzene and multiple organic compounds did not impede the uptake of chlorobenzene.  相似文献   

9.
Gao B  Yang L  Wang X  Zhao J  Sheng G 《Chemosphere》2000,41(3):419-426
Three soils were modified with two kinds of cationic surfactants in order to increase their sorptive capabilities for organic contaminants. Sorption of diesel fuel oil in water by these modified soils had been investigated. Modified soils can effectively sorb diesel fuel oil from water. The sorption capability of modified soils is: HDTMA-black soil > HDTMA-yellow brown soil > HDTMA-red soil > TMA-black soil > TMA-yellow brown soil > TMA-red soil. Sorption of diesel fuel oil by natural soils and HDTMA modified soils is via partition, the sorption isotherms can be expressed by Henry equation, and logK(SOM) is 2.42-2.80, logK(HDTMA) is 3.37-3.60. Sorption isotherms of TMA modified soils can be expressed by Langmuir equation, the saturation sorption capacities are 1150 (TMA-black soil), 750 (TMA-yellow-brown soil), 171 mg/kg (TMA-red soil), respectively. A diesel fuel oil degradation micro-organism (Pseudomonas sp.) was isolated in the lab. To test the influence of the modified soils on the micro-organism, various growth curves of Pseudomonas in different conditions were drawn. Pseudomonas can grow very well with natural soils and TMA modified soils. The acclimation period of Pseudomonas is reduced. As to HDTMA modified soils, HDTMA loading amount is very important. When HDTMA loading amount is no higher than 0.5 CEC, the micro-organism can grow very well after a long acclimation period.  相似文献   

10.
Preparations of organobentonite using nonionic surfactants   总被引:12,自引:0,他引:12  
Shen YH 《Chemosphere》2001,44(5):989-995
Due to hydrophilic environment at its surface, natural bentonite is an ineffective sorbent for nonpolar nonionic organic compounds in water even though it has high surface area. The surface properties of natural bentonite can be greatly modified by simple ion-exchange reactions with large organic cations (cationic surfactants) and this organobentonite is highly effective in removing nonionic organic compounds from water. Cationic surfactant derived organobentonites have been investigated extensively for a wide variety of environmental applications. In this study, the preparation of organobentonite using nonionic surfactants has been investigated for the first time. Results indicate that nonionic surfactants intercalates into the interlamellar space of bentonite and may demonstrate higher sorption capacity than cationic surfactant. It is possible to create large interlayer spacing and high organic carbon content organobentonite by use of nonionic surfactants with suitable balance between the hydrocarbon and ethylene oxide chain lengths. In addition, nonionic surfactant derived organobentonites are more chemically stable than cationic surfactant derived organobentonites.  相似文献   

11.
The formation of the insecticide methidathion (S-[(5-methoxy-2-oxo-1,3,4-thiadiazol-3(2H)-yl)methyl] O,O-dimethyl phosphorodithioate) complexes with inorganic cation-saturated (Mg2+, Ca2+, Cu2+, and Ni2+) montmorillonites was investigated. The nature and structure of the complexes was determined by X-ray diffraction and infrared spectroscopy. The arrangement of the pesticide molecule in the interlayer space was also considered from ab initio calculations using simpler related molecules. The insecticide methidathion penetrated the interlayer spaces of the homoionic clay samples. The ligand-cation interactions in these complexes depend on the nature and characteristics of the saturating cations. Mechanisms involving water bridges and direct coordination with the exchange cation were proposed for the adsorption of methidathion by inorganic cation-saturated montmorillonites. The effect of the inorganic cations on the sorption of the cationic surfactant tetradecyltrimethylammonium bromide (TDTMA) by montmorillonite was also studied and the subsequent sorption of methidathion in TDTMA+-Montmorillonite determined. Van der Waals bonds constitute the methidathion adsorption mechanism by montmorillonite saturated with TDTMA+. The arrangements of methidathion and of the cationic surfactant molecules in the montmorillonite interlayer space were demonstrated.  相似文献   

12.
Sorption of hydrophobic organic compounds onto organoclays   总被引:2,自引:0,他引:2  
Lee SY  Kim SJ  Chung SY  Jeong CH 《Chemosphere》2004,55(5):781-785
The behavior and fate of nonionic hydrophobic organic compounds (HOCs) in the environment are mainly controlled by their interactions with various components of soils and sediments. Due to their large surface area and abundance in many soils, smectites may greatly influence the fate and transport of the contaminants in the environment. In our experiments, HOC sorption by hexadecyltrimethylammonium (HDTMA)-modified smectite linearly increased with the amount of HDTMA added to the clay. However, tetramethylammonium (TMA)- and dodecyltrimethylammonium (DTMA)-modified smectites showed not only inferiority in their sorption of HOC compared with the HDTMA-smectite, but also a partially decreased HOC sorption at specific surfactant loading levels. This means that the sorption of organoclays for organic contaminants was significantly influenced by the amount and size of the surfactants added on the clay. In addition, it seems that the interlayer structure (e.g., pore size) formed at each surfactant loading level plays an important role to adsorb HOC in different amount.  相似文献   

13.
The objective of this study was to investigate the influence of salinity on the effectiveness of surfactants in the remediation of sediments contaminated with phenanthrene (PHE). This is an example of a more general application of surfactants in removing hydrophobic organic compounds (HOCs) from contaminated soil/sediment in saline environments via in-situ enhanced sorption or ex-situ soil washing. Salinity effects on surfactant micelle formation and PHE partitioning into solution surfactant micelles and sorbed surfactant were investigated. The critical micelle concentration of surfactants decreased, and PHE partition between surfactant micelles and water increased with increasing salinity. Carbon-normalized partition coefficients (Kss) of PHE onto the sorbed cationic surfactant increased significantly with increasing salinity, which illustrates a more pronounced immobilization of PHE by cationic surfactant in a saline system. Reduction of PHE sorption by anionic surfactant was more pronounced in the saline system, indicating that the anionic surfactant has a higher soil washing effectiveness in saline systems.  相似文献   

14.
Dimeric cationic surfactants with different lengths of carbon chains were synthesised, and then these surfactants were added to the activated sludge samples to evaluate the dewaterability and settleability. The adsorbability of cationic surfactants on activated sludge was also studied. By comparing the dewatering performances of different cationic surfactants, the effect mechanisms of cationic surfactant are elucidated. The dimeric cationic surfactants can not significantly improve the filtration performance of activated sludge, however, they can apparently decrease the moisture content in filtration cake and bound water content.  相似文献   

15.
16.
The influence of organic matter and clay contents on headspace solid phase microextraction (HS-SPME) determination of triazine and organophosphorus pesticides in different soils was studied. The results of the study showed that content of soil organic matter dominantly participated in sorption of triazines (simazine, atrazine and prometryn) to soil, while sorption of organophosphorus pesticides (phorate and tebupirimfos) could not be explained only by contents of dominant soil sorption components (soil organic matter and clay). Sorption of all pesticides studied to different soil types was similar at their lower concentrations while the influence of soil composition was expressed at higher concentration levels. Except for phorate, the obtained sorption trends were different from those obtained by direct SPME mode (DM-SPME) and exhaustive liquid-solid extraction (LSE) method. These results indicated that most likely co-extractants from the analyzed medium complicated evaporation and diffusion of the pesticides to the PDMS fiber during HS-SPME sampling.  相似文献   

17.
Solla SR  Martin PA 《Chemosphere》2011,85(5):820-825
Reptiles often breed within agricultural and urban environments that receive frequent pesticide use. Consequently, their eggs and thus developing embryos may be exposed to pesticides. Our objectives were to determine (i) if turtle eggs are capable of absorbing pesticides from treated soil, and (ii) if pesticide absorption rates can be predicted by their chemical and physical properties. Snapping turtle (Chelydra serpentina) eggs were incubated in soil that was treated with 10 pesticides (atrazine, simazine, metolachlor, azinphos-methyl, dimethoate, chlorpyrifos, carbaryl, endosulfan (I and II), captan, and chlorothalonil). There were two treatments, consisting of pesticides applied at application rate equivalents of 1.92 or 19.2 kg a.i/ha. Eggs were removed after one and eight days of exposure and analyzed for pesticides using gas chromatography coupled with a mass selective detector (GC-MSD) or high performance liquid chromatography (HPLC). Absorption of pesticides in eggs from soil increased with both magnitude and duration of exposure. Of the 10 pesticides, atrazine and metolachlor generally had the greatest absorption, while azinphos-methyl had the lowest. Chlorothalonil was below detection limits at both exposure rates. Our preliminary model suggests that pesticides having the highest absorption into eggs tended to have both low sorption to organic carbon or lipids, and high water solubility. For pesticides with high water solubility, high vapor pressure may also increase absorption. As our model is preliminary, confirmatory studies are needed to elucidate pesticide absorption in turtle eggs and the potential risk they may pose to embryonic development.  相似文献   

18.
Sorption of hexadecyltrimethylammonium chloride (HDTMA), a cationic surfactant, on aquifer material from Columbus AFB, Mississippi, U.S.A., was examined. Transport studies using flow-through columns and a box model aquifer showed that an almost stationary zone of HDTMA-modified aquifer material could be produced in situ without a significant decrease in hydraulic conductivity.Perchloroethylene (PCE) and naphthalene sorption isotherms on the HDTMA-modified aquifer material were linear, and sorption coefficients were increased by over two orders of magnitude relative to the unmodified material. The retardation of PCE by insitu emplaced HDTMA zones within a column was examined. Agreement between batch- and column-derived sorption coefficients and breakthrough curve symmetry indicates that local equilibrium was attained. Significant retardation of a naphthalene plume by an in situ emplaced surfactant zone was demonstrated in the box model aquifer system.The experimental results indicate that it is feasible to create in situ a sorbent zone within an aquifer using cationic surfactants. In most situations, the sorbent zone concept needs to be coupled with contaminant degradation processes for sorbent emplacement to be a practical tool in the remediation of groundwater contamination sites. Sorbent zones may be of benefit in the engineering of suitable environments for microbial or abiotic degradation reactions and by providing time slow reactions to occur.  相似文献   

19.
In this study, preliminary tests were conducted aiming to validate the use of ceramic porous cup for collecting soil water samples and monitoring pesticides contents, as usually made for nitrates. Interactions between porous cup and pesticides were examined under different experimental conditions for three herbicides (atrazine, isoproturon, 2,4-D) and one insecticide (carbofuran).

The results showed that ceramic was not inert for pesticides : as much as 80% of the applied pesticide could be retained during the flowing of the first tenth milliliters of solution. Interactions were attributed to sorption and “screening” of molecules by the porous walls and were related to the ionic character of pesticides. However, retention was not irreversible, since pesticides were quickly released by rinsing with distilled water.

After these tests, porous ceramic cups could be considered as suitable samplers for pesticide determinations in soil solution, contingent on gaining further informations about soil - porous cup - pesticide interactions.  相似文献   


20.
Reliable predictions of the fate and behaviour of pesticides in soils is dependent on the use of accurate ‘equilibrium’ sorption constants and/or rate coefficients. However, the sensitivity of these parameters to changes in the physicochemical characteristics of soil solids and interstitial solutions remains poorly understood. Here, we investigate the effects of soil organic matter content, particle size distribution, dissolved organic matter and the presence of crop residues (wheat straw and ash) on the sorption of the herbicides atrazine and isoproturon by a clay soil. Sorption Kd's derived from batch ‘equilibrium’ studies for both atrazine and isoproturon by <2 mm clay soil were approximately 3.5 L/kg. The similarity of Koc's for isoproturon sorption by the <2 mm clay soil and <2 mm clay soil oxidised with hydrogen peroxide suggested that the sorption of this herbicide was strongly influenced by soil organic matter. By contrast, Koc's for atrazine sorption by oxidised soil were three times greater than those for <2 mm soil, indicating that the soil mineral components might have affected sorption of this herbicide. No significant differences between the sorption of either herbicide by <2 mm clay soil and (i) <250 μm clay soil, (ii) clay soil mixed with wheat straw or ash at ratios similar to those observed under field conditions, (iii) <2 mm clay soil in the presence of dissolved organic matter as opposed to organic free water, were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号