首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 686 毫秒
1.
高架桥对街道峡谷内大气颗粒物输运的影响   总被引:1,自引:1,他引:0  
随着我国城市汽车保有量的迅速攀升,城市中心区域的空气质量与生态环境急剧恶化.利用计算流体力学(CFD)数值模拟,研究了3种H/W(街道建筑物高度/峡谷宽度)下高架桥对街道峡谷内颗粒物扩散的影响.建立了街道峡谷内机动车尾气中颗粒物扩散模型,并给出了边界条件.采用标准k-ε模型与离散相模型对街道峡谷内部气流运动、颗粒物扩散及浓度分布进行了模拟计算,并计算了高架桥对风场及颗粒物扩散的影响.结果表明:H/W越大,街道峡谷内颗粒物浓度越高,同时颗粒物平均滞留时间越长.相对于没有高架桥的街道峡谷,高架桥附近区域风场变化明显,但对建筑物墙壁、地面及峡谷顶层处影响较小.街道峡谷内存在高架桥时,在墙壁较低处颗粒物浓度增加.   相似文献   

2.
街道峡谷地面源污染物扩散规律的风洞试验研究   总被引:8,自引:1,他引:8  
在风洞中1/250街道峡谷模型的底板内释放示踪气体,通过对浓度分布特征的观测,分析了街道峡谷 面湖泊污染物的扩散过程及其与街道建筑物结构,风向及排放源强度等因素之间的关系,探讨了中性边界层风洞模拟微尺度湍流扩散过程的相似准则与相似参数,为建立街道峡谷地面源污染物扩散模型提供了物理基础。  相似文献   

3.
城市街道峡谷气流和污染物分布的数值模拟   总被引:12,自引:8,他引:12  
应用计算流体力学(CFD)软件中的FLUENT软件模拟了典型城市街道峡谷中的气流和污染物分布状况.建立的模型包括不同形状的建筑物所构成的街道峡谷和存在高架桥的街道峡谷.研究结果表明:①不同形状的建筑物改变了街道峡谷内的风和湍流分布,从而对街道峡谷内污染物的分布产生很大的影响,在几何比例相同的街道峡谷里,建筑物外形越趋向于流线型,街道峡谷里污染物的地面浓度越小;②高架桥对街道峡谷内污染物浓度的影响取决于高架桥相对于街道峡谷的高度和宽度,高度越高、宽度越窄的高架桥其地面污染物的浓度越低;③ FLUENT软件对街道峡谷大气环境的模拟结果基本合理,可用于研究城市大气环境问题.   相似文献   

4.
基于AERMOD线源模式的城市路网一次PM2.5排放扩散特征研究   总被引:1,自引:0,他引:1  
机动车排放的一次细颗粒物(PM_(2.5))易在城市交通密集区域和高峰时段扩散积累,形成高浓度的排放热点区域,对人体健康影响显著.本研究基于本地化机动车路网排放清单,应用AERMOD扩散模型对北京市六环内区域进行线源扩散模拟,探讨城市路网一次PM_(2.5)扩散浓度的时空变化规律与排放特征、气象条件和临时控制措施的关系.研究表明,在典型工作日的排放水平下,冬季工作日的机动车源一次PM_(2.5)模拟浓度日均值为2.94μg·m-3,夏季工作日为1.95μg·m-3.两季24 h浓度变化均呈夜间浓度高于日间的特点,但两季峰值在气象条件和排放强度的双重作用下又有所区别.冬季早晚高峰峰值浓度分别为日均浓度的2.3和1.7倍,而夏季早晚高峰由于扩散条件相对较好并未明显形成一次PM_(2.5)峰值.研究还以APEC峰会为例,评估峰会期间临时交通管控措施的影响.结果发现,在相似的季节气象条件下,APEC峰会期间机动车源一次PM_(2.5)模拟浓度日均值较峰会前削减50.1%,凌晨5:00达到小时最大削减率66.6%.冬夏季工作日机动车源一次PM_(2.5)扩散浓度的空间分布呈偏态分布,65%的浓度集中在30%的网格面积上.以冬季工作日为例,高浓度热点区域主要集中在各环路快速路、易拥堵主干道及省道、国道和高速路上,以上道路应成为排放控制的重点对象.  相似文献   

5.
通过现场观测研究西安市和平路街谷内的PM_(2.5)浓度时空变化特征及其影响因素.在2015年4月8~10日进行了街谷内PM_(2.5)浓度、车流量、风速、温湿度等参数的日变化规律和PM_(2.5)浓度空间分布规律的观测实验.观测结果显示西安市和平路街谷内PM_(2.5)浓度值较高,日间PM_(2.5)浓度呈"凹"字形变化,早晚PM_(2.5)浓度相对较高,在16:00前后PM_(2.5)浓度到达一天当中的最低值.PM_(2.5)浓度与温度、湿度有良好的相关性,对应R2值分别达到0.75和0.81.静风天气条件下,由温度变化引起的大气边界层伸缩运动被发现是影响街谷内污染物扩散的主要因素.  相似文献   

6.
随着经济增长和城市发展 ,汽车排放已经成为我国一些大城市空气污染的主要来源。本文在分析城市街道流场和湍流场特征的基础上 ,改进了丹麦开发的OSPM街道峡谷汽车污染扩散模式 ,并开发出城市交通路口汽车污染扩散模式 ,建立了适合我国车辆特征的汽车源排放模式 ,为准确模拟我国城市交通导致的空气污染 ,从而进行有效的控制决策 ,提供了科学的方法手段。本文定量给出了由于涡流导致的峡谷流场和湍流场的特点 ,以及因交通引起的湍流的变化规律。用K ε流体动力学模型 ,计算了二维街道峡谷流场和湍流场结果 ,与实际测量数据有较好的一致性。由丹麦开发的OSPM街道峡谷汽车污染扩散模式 ,经过模式中街道底部风速系数的修改 ,可以较好地模拟北京街道汽车污染的扩散规律。在OSPM模式的基础上 ,本文研究开发了一个简单的模拟城市街道十字路口汽车污染扩散的模式 -OSIPM。经实测数据验证 ,该模式可以较准确地模拟十字路口的污染扩散规律。MOBILE汽车源排放因子模式计算获得的北京市排放因子 ,与根据实测污染浓度用OSPM扩散模式反算出的结果相比 ,发现模式计算结果比实际值约高出30 %。本研究的主要成果包括 :(1)定量给出了由于涡流导致的峡谷流场和湍流场的特点 ,以及因交通引起的湍流的变化规律。(2)用K ε流体  相似文献   

7.
X1692加201989城市街道峡谷内机动车排放污染物的扩散规律/张化天(中国环科院大气所)…//环境科学研究/中国环科院一2(X犯,15(1)一51一54环图X一6 街道峡谷中机动车排放污染物的扩散取决于屋顶风向和风速,并受街道峡谷宽高比、峡谷两侧街区建筑物高度的对称性和高度分布及街区形状等因素的影响。街道峡谷宽高比接近1时,递升型峡谷以及宽阔街道有利于污染物的扩散;可以通过改变街道线源附近街区内建筑物的高度来明显降低污染物浓度。城市建筑规划中若科学考虑上述影响可以减少街道峡谷内污染物的积聚。图3参20X1692(X)叩1夕关)都市及广域大…  相似文献   

8.
用FLUENT模式对中性大气、单个建筑的气流扰动情况进行模拟,并以风洞试验数据检验模拟效果;将模拟方法应用于类似城市建筑阵列条件的大气污染扩散问题,并且与现场示踪试验比较. 结果表明:FLUENT对建筑扰动条件的平均风场模拟效果良好,FAC2(模拟值与试验值之比在0.5~2之间的比例)在水平与垂直风速下分别达到77.9%与61.0%;对湍流特征量的模拟偏差稍大,K(湍流动能)虽总体偏小,但FAC2仍达到了54.6%. 选择湍流闭合的标准K-ε(ε为湍流动能耗散率)方案、重整化群K-ε方案和雷诺应力模型方案对结果的影响均不大. 采用FLUENT模拟了类似城市街区建筑阵列条件的大气扩散个例, 模拟结果反映了建筑扰动导致的扩散烟流轴线相对于平均风向的非常规偏移,并且扩散浓度与示踪试验结果相符较好,下风向32与63m处的侧向模拟浓度峰值的相对误差分别为72.5%与36.9%. 相比于高斯模式ISC3,FLUENT对复杂建筑阵列条件的扩散模拟结果更符合实际,如污染物向上风向扩散以及在建筑物周围堆积与绕流的现象. FLUENT扩散模拟还显示:近源处相邻建筑街道峡谷中的最大浓度沿下风向“阶跃”式减小,排放源所在街道峡谷中的最大浓度可比相邻街谷中的高几倍甚至1个数量级以上.   相似文献   

9.
城市街道峡谷内机动车排放污染物的扩散规律   总被引:4,自引:1,他引:4  
街道峡谷中机动车排放污染物的扩散取决于屋顶风向和风速,并受街道峡谷宽高比、峡谷两侧街区建筑物高度的对称性和高度分布及街区形状等因素的影响.街道峡谷宽高比接近1时,递升型峡谷以及宽阔街道有利于污染物的扩散;可以通过改变街道线源附近街区内建筑物的高度来明显降低污染物浓度.城市建筑规划中若科学考虑上述影响可以减少街道峡谷内污染物的积聚.   相似文献   

10.
街道峡谷中机动车排放污染物的扩散取决于屋顶风向和风速,并受街道峡谷宽高比,峡谷两侧街区建筑物高度的对称性和高度分布及街区形状等因素的影响,街道峡谷度比接近1时,递升型峡谷以及宽阔街道有利于污染物的扩散,可以通过改变街道线源附近街区内建符物的高度来明显降低污染浓度,城市建筑规则中若科学考虑上述影响可以减少街道峡谷内污染物的积聚。  相似文献   

11.
X169200700743城市街道峡谷气流和污染物分布的数值模拟/蒋德海(南京大学大气科学系)…∥环境科学研究/中国环科院.-2006,19(3).-7~12环图X-6应用计算流体力学(CFD)软件中的FLUENT软件模拟了典型城市街道峡谷中的气流和污染物分布状况.建立的模型包括不同形状的建筑物所构成的街道峡谷和存在高架桥的街道峡谷.研究结果表明:①不同形状的建筑物改变了街道峡谷内的风和湍流分布,从而对街道峡谷内污染物的分布产生很大的影响,在几何比例相同的街道峡谷里,建筑物外形越趋向于流线型,街道峡谷里污染物的地面浓度越小;②高架桥对街道峡谷内污…  相似文献   

12.
屋顶形状对街道峡谷内污染物扩散的影响   总被引:4,自引:3,他引:1  
采用Spalart-Allmaras湍流模型,通过求解二维连续性方程,Navier-Stokes方程及污染物输运方程,模拟了具有不同屋顶形状的街道峡谷的流场及交通污染物浓度场.计算结果与风洞试验结果总体趋势一致.由于屋顶形状的不同,峡谷内的流场会形成顺时针或逆时针方向的旋涡,从而影响建筑物迎风面与背风面污染物浓度分布.在各种屋顶形状的街道峡谷中,壁面污染物浓度的相对大小与其附近的速度分布有直接关系.通过对街道峡谷建筑屋顶高度处垂直方向污染物通量的计算和比较,说明了不同屋顶形状的街道峡谷平均流扩散和湍流扩散的强弱,污染物湍流扩散通量值有可能为正或为负;同时,峡谷内剩余污染物浓度的大小表明了屋顶形状对污染物扩散出街道峡谷难易的影响.   相似文献   

13.
为考察江苏省南部地区重点排放源对南京市秋季细颗粒物(PM_(2.5))的贡献率及O_3生成敏感性,采用强力法针对特定排放源及污染物设置不同的排放情景,利用化学传输模拟系统Models-3/Community Multi-scale Air Quality(CMAQ)分析模拟区域内不同情景下地表PM_(2.5)及O_3浓度变化。2012年10月,电厂、钢铁和水泥的污染物排放对南京市PM_(2.5)浓度的平均贡献率分别为6.0%、25.5%和15.9%,对国控站点的贡献率分别为7.2%、17.7%和16.2%。钢铁对下风向区域的地表PM_(2.5)浓度的影响显著高于电厂及水泥部门的排放。从不同情境下模拟O_3地表浓度变化结果看出,南京市城区及下风向区域的O_3浓度随VOC排放削减降低,随NO_x排放削减升高,因而判定南京市秋季O_3生成属于VOC控制区。  相似文献   

14.
利用移动监测方法采集2016年7月14—16日上海市不同功能街区及道路环境的PM2.5、PM10、水膜高度等数据,研究城市不同街区及道路环境PM2.5和PM10浓度分布规律及影响因素。结果表明:降水对PM2.5具有明显的去除效果,水膜高度与颗粒物浓度的变化存在负相关关系。生活区和虹桥商务区内的颗粒污染物以细颗粒为主,虹桥商务区和工业区的部分微环境分别由于工地和路面扬尘的影响会出现PM2.5~10浓度严重升高的现象。小陆家嘴商务区的污染物扩散较好,不易堆积,该街区内没有污染十分严重的区域。实测证明,并不是所有的高架桥都会加重街道峡谷内的空气污染,合理的街道峡谷构造条件下,高架桥对街道峡谷内污染物扩散影响不大。  相似文献   

15.
借助计算流体动力学(CFD)模式Fluent分析中性层结下边界入流风场(即风速和风向)扰动对地面点源释放情景下城市大气扩散过程的影响,其中边界入流条件以风速和湍流动能廓线的形式给出.研究发现CFD模式能够合理刻画实际城市中的特征流型(如涡旋,峡谷效应等),而且模拟的风速、风向和湍流动能均与观测数据吻合较好.敏感性试验结果表明,城区内的流场和湍流以及与之密切相关的污染物空间分布对边界入流风速和风向的扰动十分敏感.而这可能是造成已有研究中浓度模拟值与观测值不一致的主要原因之一.因此,在模拟城市大气扩散过程时应当考虑边界入流风场不确定性对模拟结果的影响.  相似文献   

16.
X169 200501312 街道峡谷中汽车排放的CO气体扩散特性的数值模拟/陈朗…(北京理工大学爆炸灾害预防、控制国家重点实验室)//安全与环境学报/北京理工大学.-2004,4(4).-70-73 环图X-142 为了研究平行街道中汽车排放的污染气体扩散特性,本文采用RaNG k-ε湍流模型和污染气体扩散方程对几种不同结构的平行街道进行了二维数值模拟,得到厂峡谷内的流场和质量浓度场分布。结果表明,与单个街道峡谷相比,平行街道内污染气体扩散特性有很大不同,通过增加街道单侧建筑物的高度,可使污染气体容易扩散,减少污染气体在峡谷巾的聚集。图9参8 X169 200501313 基于高斯线源模式的主要尾气扩散模型综述/王文…(北京交通大学交通运输学院)//交通环保/  相似文献   

17.
城市高架道路对局地大气环境影响的数值模拟研究   总被引:3,自引:0,他引:3  
根据城市高架和街道的布局与几何特点,设计了多种典型的街道峡谷模型。应用k-ε湍流模型和污染物浓度扩散方程,采用数值模拟技术预测了这些带高架的城市街道峡谷内湍流流场和污染物浓度场。研究表明,高架道路的存在改变了街道峡谷内大气的流动结构和汽车排放污染物的传输扩散特性。高架道路空间位置的布设及高架与街道建筑物间的间隙,对城市街道峡谷的局地大气环境有显著影响。因此,在确定布设高架位置和设计规划街道布局时,应尽量避免引起“盖子效应”而造成严重的地面局地大气污染。  相似文献   

18.
街道峡谷型交叉口内气态污染物扩散的数值模拟   总被引:2,自引:1,他引:1  
对大气边界层内大气湍流和建筑物对道路交叉口处机动车排放气态污染物扩散的影响进行了研究.在计算区域内建立了三维街道峡谷型道路交叉口及其内部机动车排放的模型,并在中性层结条件下,采用CFD(Computational Fluid Dynamics)稳态κ-ε湍流模型和被动标量的输运方程模拟了模型内外的流场和CO浓度场.结果表明:① 在相同高度条件下,交叉口处与处于下风向的街区内CO浓度明显高于其他街区;②风向对污染物的输运起决定性作用,在不同高度平面内CO浓度最大值均出现在平行风向的街区内;③外部大气湍流的驱动使得垂直风向的街区内产生强烈涡旋,涡旋的输运作用导致相同高度下上风向CO浓度较高;④交叉口处气流的掺混导致气流速度降低,使得平行风向的街区内CO可以向两侧垂直风向的街区内扩散,起到了稀释交叉口处地面附近CO浓度的作用.模拟结果与风洞实验结果符合较好,验证了方法的可靠性.   相似文献   

19.
街道峡谷内超细颗粒数浓度和粒径分布特征试验研究   总被引:2,自引:2,他引:0  
测试研究了街道峡谷内4个不同高度处10~487 nm粒径范围内颗粒的数浓度及粒径分布,根据特定条件下的测量结果,得到不同高度处颗粒数浓度粒径分布均呈包含2~3个峰的对数正态分布;一定高度范围内(15~20 m),随高度增加, 核模态数浓度显著降低,其峰值粒径向大粒子方向偏移,积聚模态数浓度和粒径分布变化不如核模显著;随高度继续增大,颗粒数浓度和粒径分布无显著变化.同时对不同测点的PM2.5和CO的浓度进行了测试,得到总颗粒数、总颗粒体积、CO和PM2.5浓度垂直方向多呈幂函数递减规律分布.受环境风速风向影响,测试Ⅰ(高风速,递升型街道峡谷)时总颗粒体积、PM2.5和CO浓度均低于测试Ⅱ(低风速,风向平行于街道峡谷)时,测试Ⅰ时总颗粒数、总颗粒体积、PM2.5和CO浓度的垂直衰减率均低于测试Ⅱ时;无论递升型街道峡谷或风向平行于街道峡谷,总颗粒数浓度垂直衰减率均大于同期CO和PM2.5的垂直衰减率,表明总颗粒数浓度除了受环境空气的稀释作用影响外,同时还受到沉降或凝并等作用的影响.  相似文献   

20.
该文基于CFD软件,建立城市街道峡谷颗粒物扩散的三维模型,采用标准k-ε两方程模型模拟城市街谷内的连续气流场,在此基础上采用离散相模型(DPM)对高宽比为2的街谷内颗粒物浓度场进行了数值模拟,给出了不同风向下空气流场和迎风壁面、背风壁面以及人体呼吸高度处街谷颗粒物浓度的分布。计算结果表明,风向对街谷壁面颗粒物浓度的分布有着显著影响:0°风向下风速为0.4m/s时,街谷壁面颗粒物积累浓度最大,流场呈现出明显的二维特性,不利于颗粒物扩散;其次是45°风向2 m/s风速;90°风向下风速为6m/s时最有利于街谷颗粒物浓度的扩散。外部大气湍流的驱使使得垂直风向街区内产生强烈漩涡,导致相同风速下街谷背风壁面颗粒物浓度均高于迎风壁面颗粒物浓度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号