首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对北京2015年11月26日~12月2日出现的PM_(2.5)严重污染过程进行研究,分析了此次事件的污染特征和气象条件,结合HYSPLIT模型,用聚类方法对研究期间抵达北京的地面(500m)和高空(3000m)逐时72h气流后向轨迹聚类,并分析了地面和高空方向上气流轨迹对北京PM_(2.5)浓度的影响.运用潜在源贡献因子分析法和浓度权重轨迹分析法分别模拟了此次PM_(2.5)的主要潜在源区.结果表明,研究期间,北京PM_(2.5)小时均浓度数值变化较大.低温,高湿度和微风为北京PM_(2.5)严重污染过程的出现创造了适宜条件.不同方向气流轨迹对北京PM_(2.5)的影响在空间上存在显著差异.西北方向气流是影响北京PM_(2.5)浓度的主要气流轨迹,而地面来自南部的气流对北京PM_(2.5)浓度的影响也不能忽视.对北京PM_(2.5)的WPSCF和WCWT分析表明,蒙古国中西部、新疆东部、内蒙古中西部、山西北部、河北和山东北部对北京PM_(2.5)质量浓度贡献分别在0.7,200μg/m3以上,表明这些地区是影响此次北京PM_(2.5)的重要潜在源区.  相似文献   

2.
基于NCEP/NCAR全球再分析气象资料和2015-2017年PM_(2.5)浓度,利用HYSPLIT模型研究不同气流轨迹对广州PM_(2.5)浓度的影响,以及污染输送路径和潜在源区空间分布特征。结果表明:(1)广州2015-2017年PM_(2.5)平均浓度为36.5μg/m~3,逐月平均PM_(2.5)浓度1月份最高,为49.3μg/m~3,轻度污染及以上时次比例达15.66%,6月份最低,为20.8μg/m~3,无轻度及以上污染时次。(2)PM_(2.5)平均浓度在不同情景类型下的浓度高低顺序依次为:污染日干季清洁日湿季,其中污染日的PM_(2.5)平均浓度是清洁日的近3倍,干季的PM_(2.5)平均浓度是湿季的1.4倍;不同情景类型下的PM_(2.5)浓度日变化特征基本都在白天时段低(16时最低),晚上时段高(21-22时最高),日变化幅度为污染日干季清洁日湿季。(3)在干季,影响广州的气流轨迹路径主要有5类:东北路径、东南路径、西北路径、西南路径及偏西路径,其中第2类东南路径对广州PM_(2.5)平均浓度的贡献最高;而在湿季,影响广州的气流轨迹路径主要有4类:偏南路径、东南路径、偏北路径及西南路径,其中第3类偏北路径对广州PM_(2.5)浓度的贡献最高。(4)基于潜在源贡献因子和浓度权重轨迹分析法分析表明,广州PM_(2.5)浓度潜在源贡献较大的区域主要集中在广州东部的东莞、惠州、深圳、肇庆、中山等周边地区,该研究可为确定广州污染潜在源贡献区以及区域联防联控提供参考。  相似文献   

3.
苏锡常地区PM2.5污染特征及其潜在源区分析   总被引:3,自引:1,他引:2  
利用2014年12月—2015年11月苏锡常地区国控大气环境质量监测站发布的逐时数据,分析了研究区PM_(2.5)浓度的季节变化和空间分布特征,并利用HYSPLIT模型分析了大气污染物的输送路径及苏锡常地区PM_(2.5)的潜在源区.结果表明,苏锡常地区PM_(2.5)浓度日均值变化趋势基本一致,均呈现冬季高、夏季低的规律.PM_(2.5)浓度四季空间差异显著,不同监测站之间的差异较小.四季PM_(2.5)浓度与其它污染物之间相关性显著.单位面积污染物排放量与空气质量分布的空间错位,表明该地区PM_(2.5)污染与区域性污染物迁移有较大关系.苏锡常地区气流后向轨迹季节变化特征明显,冬、春、秋季的气流主要来自西北内陆地区,夏季气流以东南和西南方向输入居多.聚类分析表明,来自内陆的污染气流和来自海洋的清洁气流是苏锡常地区两种主要输送类型,外源污染气流不仅直接输送颗粒物,还贡献了大量的气态污染物.山东南部、江苏西部、安徽东部、浙江北部及江西西北地区对苏锡常冬季PM_(2.5)浓度贡献较大,春、夏、秋季的潜在源区主要分布在苏锡常本地和周边城市.  相似文献   

4.
针对郑州市2017年12月~2018年2月的冬季气象数据和大气污染物质量浓度在线监测数据,分析了气象条件对颗粒物浓度的影响.通过混合型单粒子拉格朗日综合轨迹(HYSPLIT)方法模拟了郑州市冬季48 h的气流后向轨迹,同时进行了聚类分析,并使用潜在源贡献因子(PSCF)方法和浓度权重轨迹(CWT)方法分析了郑州市冬季PM_(2.5)的潜在污染来源和不同潜在源区对郑州市大气PM_(2.5)浓度的贡献.结果表明,低风速、高湿度和较少的降水是造成颗粒物污染严重的重要气象因素;超过60%的后向轨迹来自西北方向,其次是来自京津地区的轨迹占比为25.6%,而来自南边和东边的轨迹只占7.5%和6.1%,但对应着较高的PM_(2.5)浓度;郑州市冬季PM_(2.5)的潜在源区主要是北部的京津冀传输通道城市,包括焦作、开封、新乡、鹤壁、濮阳、安阳、邯郸和邢台,此外,相邻省份包括山西省、湖北省和安徽省部分区域对郑州市大气PM_(2.5)污染水平也有着较大的影响和贡献.  相似文献   

5.
川南自贡市大气颗粒物污染特征及传输路径与潜在源分析   总被引:5,自引:5,他引:0  
川南自贡市大气颗粒物污染比较严重, 2015~2018年PM_(10)和PM_(2.5)平均浓度分别为(95.42±9.53)μg·m~(-3)和(65.95±6.98)μg·m~(-3),并有明显的下降趋势,冬季PM_(10)和PM_(2.5)浓度远高于其它季节, 1月平均浓度最高,分别为(138.08±52.29)μg·m~(-3)和(108.50±18.05)μg·m~(-3),夏季平均浓度最低.PM_(2.5)与PM_(10)的平均比值为69.12%,冬季比值约为夏季的1.17倍,空气污染以PM_(2.5)为主.采用拉格朗日混合单粒子轨迹模型(HYSPLIT)和全球资料同化系统的GDAS气象数据,对自贡市细颗粒物(PM_(2.5))浓度和逐日72 h后向轨迹进行计算和聚类研究,利用潜在源贡献分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨不同季节影响自贡市PM_(2.5)浓度的潜在源区以及不同源区的污染贡献.结果表明,自贡市近地面四季多受东南风、偏西风和西北风控制,高浓度PM_(2.5)多出现在0~2 m·s~(-1)的低风速区;不同季节、不同输送路径对自贡PM_(2.5)污染影响的差异显著,春季主要受到来自偏西和偏北方向短距离输送气流的影响,夏季污染轨迹主要来自短距离输送的东南气流,秋季主要受来自资阳,经遂宁、重庆和内江的短距离输送气流的影响,冬季除受到资阳、遂宁和内江等周边城市的影响外,还受到来自西藏中部的远距离输送气流影响;除夏季外,自贡市潜在源区主要位于重庆西部与川南交界区域,冬季的主要贡献区范围最广、贡献程度最大,夏季潜在源区范围最小且贡献程度最弱.  相似文献   

6.
《环境科学与技术》2021,44(4):80-88
文章针对2019年12月长沙市冬季气象数据和大气污染物质量浓度在线监测数据,分析大气污染特征及气象因素,通过HYSPLIT后向轨迹模型和NCEP的GDAS气象数据对12月及污染过程的3个阶段逐时72 h气流后向轨迹进行聚类,利用潜在源贡献因子(PSCF)和浓度权重轨迹(CWT)揭示长沙市冬季PM_(2.5)的潜在源区及其贡献特征。结果表明:12月长沙市PM_(2.5)平均浓度分别为77.12μg/m~3,其中阶段Ⅱ(185.9μg/m~3)阶段Ⅰ(80.9μg/m~3)阶段Ⅲ(59.1μg/m~3),相关性分析和特征雷达图表明,污染过程以一次颗粒物的排放为主;风速上升过程长沙市PM_(2.5)污染方位由西南方向南方转移,不利气象条件促进了污染过程PM_(2.5)的积累和爆发;聚类分析显示长沙市12月来自湘鄂交界处的轨迹3最频繁,来自福建和广东的轨迹4携带PM_(2.5)浓度最高。阶段Ⅰ偏燃煤型污染显著,受安徽、江西和湖南3个省份的气流轨迹影响;阶段Ⅱ偏二次型污染受福建和广东气流轨迹影响;阶段Ⅲ转变为偏综合型和其他类型污染,与北方气流占比相对阶段Ⅱ上升有关,主要受来自江西和福建交界处的轨迹1影响浓度和占比均为最大;WPSCF和WCWT结果显示,长沙市PM_(2.5)浓度的主要源区位于湖南西南、北部及广东、湖北等地。  相似文献   

7.
利用全球资料同化系统数据(GDAS)和PM_(2.5)实测浓度数据,使用HYSPLIT模型和Trajstat插件的聚类方法和聚类统计模块对2015年12月-2016年2月间到达缙云山空气质量监测站的28个不同气流高度气流进行聚类分析;结合Arc GIS软件计算气流速度和气流密度,以分析山体对PM_(2.5)跨区域输送的影响;运用潜在源贡献(PSCF)分析法及浓度权重轨迹(CWT)分析缙云山PM_(2.5)潜在源贡献率和轨迹权重浓度。结果表明:重庆主城主要受西部气流影响,主城PM_(2.5)异地源多来自该方向;高大山体会减缓气流运行速度,增大气流轨迹密度,阻碍PM_(2.5)的跨区域传输,PM_(2.5)浓度、输送速度和输送方向等会发生改变,山地城市PM_(2.5)浓度受气流输送影响小于平原城市;铜锣山以西重庆段是缙云山PM_(2.5)的极重要源区,源贡献率达到80%以上,重要源区多在四川与重庆接壤区域,横断山脉部分区域气流潜在源贡献率较高。PM_(2.5)的PSCF和CWT分布区域类似,气流轨迹浓度最大值区多位于极重要源区,随着源区重要性等级的减弱,浓度也逐步降低。  相似文献   

8.
区域PM_(2.5)浓度影响因子及显著程度对区域PM_(2.5)浓度模拟和污染控制具有重要意义。该研究应用广义加性模型(GAM)建立模型分析2013年京津冀区域PM_(2.5)浓度与AOD、气象因子(相对湿度、温度、降雨量、大气压、风速)和土地利用类型(水体、林地、耕地、建设用地、裸地)之间的相关关系。结果表明,温度、大气压、AOD、林地、建设用地和裸地显著的影响PM_(2.5)浓度;且温度、AOD、裸地、林地与PM_(2.5)存在复杂相关关系,大气压、建设用地与PM_(2.5)浓度存在线性相关关系。GAM模型R~2为0.952,拟合结果与实测结果的线性回归方程系数为0.959,模型交叉验证后得到R2为0.792。结果表明,利用GAM能有效的识别区域PM_(2.5)浓度的影响因子,根据影响因子进行PM_(2.5)浓度拟合并得到可靠的拟合结果。  相似文献   

9.
为探究天津市各季节PM2.5与O3污染的非本地源贡献情况,本文以2017—2019年为研究时段,应用HYSPLIT模型,基于MeteoInfo软件对不同季节气流后向轨迹进行聚类分析,通过计算潜在源贡献因子(potential source contribution function, PSCF)、浓度权重轨迹(concentration-weighted trajectory, CWT)对天津市PM2.5与O3污染的外来潜在源区以及可能的污染传输途径进行研究. 结果表明:①天津市PM2.5和O3污染均较为严重,且具有明显季节性特征. 天津市各季节的气流变化明显,春、秋两季以西南方向气流为主,夏季以来自渤海的气流为主,冬季则以西北方向气流为主. ②天津市西南方向气流在各季节对应的污染物浓度均较高,春、秋两季西南方向气流携带的ρ(PM2.5)和O3浓度8 h滑动平均值〔简称“ρ(O3-8 h)”〕均最高;夏季,西南方向气流携带的ρ(O3-8 h)最高;冬季,西南方向轨迹携带的ρ(PM2.5)最高. ③西南方向上河北省南部的邯郸市,山东省西部的菏泽市、聊城市,以及河南省北部的开封市、濮阳市、新乡市均为天津市PM2.5与O3污染的主要潜在源区. 此外,冬季张家口市和唐山市对天津市PM2.5污染的潜在影响也较大. 冬季影响天津市PM2.5污染的外来潜在源区情况较为复杂,除西南气流外,其还受西北部与东部气流的影响. 研究显示,天津市大气污染区域联防联控需重点关注河北省南部、河南省北部以及山东省西部城市的潜在输送影响.   相似文献   

10.
南京地区秋季灰霾天气特征及其水溶性离子分析   总被引:2,自引:0,他引:2  
文章利用PM2.5颗粒物质量浓度分析仪(MET ONE 1020)、气溶胶激光雷达(Sigma MPL-4B)、气溶胶在线离子分析仪(Marga1S)于2013年秋季在江苏省环境监测中心6楼顶对大气细粒子(PM2.5)、大气边界层、气溶胶化学组分的进行系统的同步观测与分析,研究表明2013年11月期间,南京发生5次霾污染过程,当月PM2.5日均值浓度高达192.4μg/m3;灰霾期间,能见度较低,近地面出现消光层,大部分时间段消光值大于0.4;灰霾期间无秸秆焚烧事件,K+浓度的可能来源于土壤,SO42-、NO3-、NH4+3种离子均值占比分别为27.8%、38.1%、21.6%;此外,南京地区存在严重的二次转化,灰霾期间SOR和NOR值分别为0.388和0.276,移动源对大气污染的贡献也越来越显著,[NO3-]/[SO42-]月均值为1.28;后向轨迹推算表明,第1次、第3次、第5次灰霾期间大气污染物主要来自于南京的西北方向,第2次和第4次灰霾期间大气污染主要来自于南京的西南方向。  相似文献   

11.
为探索成都市PM_(2.5)污染物的空间来源及其演化机制,该文首先应用后向轨迹模型对灰霾期间抵达成都市的大气气团进行模拟,结果显示灰霾期间本地气团对成都市PM_(2.5)污染物的贡献远超过中远距离的外来气团,占比高达90%以上,局地空间内处于一种静稳状态。其次应用多重分形消除趋势波动分析法对灰霾期间PM_(2.5)的浓度序列进行多重分形分析,研究表明成都市灰霾期间PM_(2.5)浓度具有多重分形特征。最后运用相位随机替代法与随机重构法,对静稳条件下导致PM_(2.5)浓度多重分形特征的原因进行分析。结果表明灰霾期间,长期持续性在PM_(2.5)演化过程中占据主导地位,进而认为此次灰霾期间PM_(2.5)演化的长期持续性是其主要的内在动力机制,此时成都市大气空间内各局部空间PM_(2.5)浓度在多种要素的相互作用下逐步发展为一种相互同步的、均衡的平衡态。  相似文献   

12.
利用HYSPLIT后向轨迹模式和NCEP的GDAS气象数据(2014年5月1日~2015年4月30日),对抵达北京城区的逐小时3日气流后向轨迹按季节聚类,并结合PM_(2.5)质量浓度地基观测数据,分析不同输送途径的空间特征及其对北京城区PM_(2.5)聚集的贡献.利用潜在源贡献作用(PSCF)和浓度权重轨迹(CWT)分析方法,揭示研究期内北京城区不同季节PM_(2.5)的潜在源区分布及其贡献特性.结果表明:北京城区PM_(2.5)输送途径的季节特征明显,不同输送途径对北京城区PM_(2.5)的贡献差异显著.春季贡献源区主要位于中国西部地区、华北及黄淮平原,夏季贡献源区主要位于山东、苏北及黄海地区,秋季主要位于冀南、鲁西、鲁中及苏鲁豫皖交界地区,冬季主要位于冀南、鲁西北、晋北、陕西、内蒙中部及蒙古国南部.来自山东与冀南的气流轨迹四季均对应PM_(2.5)高值;冬春两季来自西北的气流轨迹也对应较高PM_(2.5)值.  相似文献   

13.
镇江市四季PM2.5污染特征与潜在源区分析   总被引:1,自引:1,他引:0       下载免费PDF全文
利用2017年3月1日—2018年2月28日镇江市环境监测站提供的逐时数据,对镇江市PM_(2. 5)污染特征进行分析,并结合HYSPLIT-后向轨迹模型,综合运用轨迹聚类及PSCF、CWT分析方法,计算了不同季节影响镇江城区PM_(2. 5)的主要气流输送路径及镇江市PM_(2. 5)的主要潜在源区。结果表明:镇江市PM_(2. 5)浓度季节分布特征明显,冬季PM_(2. 5)浓度最高,夏季最低。四季PM_(2. 5)浓度日变化均呈两峰一谷型分布,且夜间普遍高于白天,周末高于工作日。四季PM_(2. 5)浓度与NO_2、CO相关系数较高,表明工业排放与交通源可能是镇江市PM_(2. 5)的主要来源。镇江地区气流输送存在显著的季节变化特征:春季西北偏西及东北方向气流轨迹占主要优势;夏季气流主要来自东北、东南及西南方向;秋季以东北及偏东气流为主;冬季西北气流轨迹占绝对优势。镇江四季PM_(2. 5)浓度受本地及周边城市的局地污染输送影响较大,主要潜在源区集中分布在江苏本地及其周边的山东、安徽、浙江、上海等地。春、夏、秋季这些地区对镇江PM_(2. 5)浓度贡献值基本为35~75μg/m~3;冬季该贡献值较大,均在75μg/m~3以上,最高值可达到150μg/m~3以上;同时,冬季受北方污染输送影响,河北、京津冀等地也是主要潜在源区,贡献值为35~75μg/m~3。  相似文献   

14.
北京野鸭湖湿地观测站大气颗粒物变化特征   总被引:1,自引:0,他引:1  
利用北京延庆野鸭湖湿地生态气象观测站2013年PM_(2.5)和PM_(10)连续观测资料,统计分析野鸭湖地区大气颗粒物的变化特征及气象影响因素。研究结果表明:野鸭湖观测站PM_(2.5)和PM_(10)年平均浓度分别为45.7μg/m3和80.2μg/m~3,超标率分别为17.8%和11.4%,以《环境空气质量标准》二级标准统计。PM_(2.5)和PM_(10)均在1月达到峰值,7月出现最低值。各季PM_(2.5)/PM_(10)值在37.8%~69.9%之间,春季以PM_(10)污染为主,冬季以PM_(2.5)为主。各季节PM_(2.5)和PM_(10)日变化中夏季出峰最早,冬季最晚,冬春季PM_(2.5)浓度为双峰型,夏秋季为单峰型;PM_(10)的日变化仅春季与PM_(2.5)略有不同,晚上峰值强度远大于早上。野鸭湖地区颗粒物污染受本地源和外来源的共同影响,东北气流易造成颗粒物积累,而西南气流有利于颗粒物稀释扩散。典型污染过程显示,持续的东北风控制、风速2.0 m/s左右、平均相对湿度在80.0%左右利于颗粒物浓度的增加;而偏西气流和较高温度、较低湿度能共同起到缓解污染的作用。  相似文献   

15.
针对2014年5月24-31日期间江苏省南部的一次典型的灰霾天气过程,结合地面环境空气自动监测站数据(AQI、PM_(10)和PM_(2.5))、近地面能见度数据、激光雷达垂直探空结果、气象条件数据,对此次区域灰霾污染的近地面特征和空间特征进行了分析。发现此次灰霾污染过程可以分为2个阶段:第一个阶段,5月24-25日,空气质量由良逐渐增重为中度污染,其中25日11时AQI峰值达到200,近地面能见度2.2 km。近地面PM_(10)和PM_(2.5)的峰值浓度分别为215μg/m~3和150μg/m~3,该阶段PM_(2.5)/PM_(10)的比值均值达到0.6;无锡地区2.5 km高度范围内分布大量的强消光性粒子,导致消光系数超过0.8 km~(-1),退偏振度不足0.1,以局地球形细粒子为主;第二个阶段,26-31日空气质量再次恶化,污染程度累积,27日23时、29日21时、31日3时达到484、239和231。26-31日,近地面首要污染物是PM_(10),PM_(10)的均值210μg/m3,PM_(2.5)的均值97.7μg/m~3,PM_(2.5)/PM_(10)的比值均值低于0.5;大气中分布的颗粒态污染物粒子的不规则程度增大,大气消光系数略有减弱,约0.6 km~(-1),退偏振度系数大于0.3,说明此阶段大气中含有较多的浮尘粒子。其中,27日消光系数有突然增大的过程,这与江苏地区的秸杆燃烧过程密切。通过后向轨迹与卫星监测的火点分布,表明27、28日的气流轨迹将大量的不完全燃烧的生物质粒子带到观测站点附近。近地面的气象条件分析发现,26-29日,随近地面的大气压力从1 000 h Pa降至993 h Pa,相对温度从80%以上降至不足45%,峰值超过6 m/s,直接使得空气中颗粒物增多。  相似文献   

16.
银川地区大气颗粒物输送路径及潜在源区分析   总被引:4,自引:0,他引:4  
利用Traj Stat软件和全球资料同化系统数据,计算了2014—2016年银川市逐日72 h气流后向轨迹,并采用聚类分析方法,结合银川市同期PM~(10)和PM~(2.5)质量浓度数据,分析了银川年及四季气流轨迹特征及其对银川颗粒物浓度的影响.同时,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨了影响银川颗粒物质量浓度的潜在源区及不同源区对银川颗粒物质量浓度的贡献.结果表明,输送距离最长、高度最高、移速最快的西北气流轨迹占总轨迹的比例最高,达66.7%,且气团移动速度和高度与轨迹距离呈正比;输送高度较低、距离最短、移速最慢的北方气流轨迹占总轨迹数的24.3%;东南气团占总轨迹数的9%,输送距离和移速介于前两者之间,但输送高度较西北气流和北方气流低.四季各类气流轨迹变化特征与年变化特征基本一致,春、秋、冬三季,中、短距离西北气流占气流轨迹总数的比例最高,夏季东南气流占比最高,且夏季南方气流和北方气流占比较春、秋两季高,冬季未出现南方气流和北方气流,春季和冬季气流轨迹输送距离普遍比夏季和秋季长;春、夏、秋三季,偏南气流的输送高度均最低,四季长距离西北气流的输送高度均最高.年及四季都表现为西北气流轨迹对应的银川PM_(10)和PM_(2.5)平均浓度均较高,是影响银川颗粒物质量浓度的最重要输送路径,其次是东南气流轨迹,北方气流轨迹对银川颗粒物浓度影响较小.PSCF和CWT分析发现,位于新疆、甘肃、蒙古国、内蒙古、青海的西北源区及四川、陕西的东南源区是影响银川PM_(10)和PM_(2.5)浓度的两个主要潜在源区,各季节区域范围有所差异.  相似文献   

17.
APEC前后北京郊区大气颗粒物变化特征及其潜在源区分析   总被引:1,自引:0,他引:1  
为分析2014年APE(Asia-Pacific Economic Cooperation)会议前后北京郊区大气颗粒物数浓度和质量浓度的变化特征及其主要影响因素,于当年11月在北京怀柔区中国科学院大学雁栖湖校区教学一楼楼顶利用微量振荡天平(TEOM)、扫描电迁移率颗粒物粒径谱仪(SMPS)和空气动力学粒径谱仪(APS)对大气颗粒物质量浓度和数浓度分布进行连续在线监测;同时结合地面气象参数和HYSPLIT轨迹模式,对颗粒物的来源和传输过程进行聚类、潜在源区贡献因子(PSCF)和浓度权重轨迹(CWT)分析.结果表明,APEC期间(11月5—11日)超细粒子(PM_(0.01~1))数浓度、细粒子(PM_(0.5~2.5))数浓度和粗粒子(PM_(2.5~10))数浓度分别为(17720.1±998.7)、(30.9±3.34)和(0.12±0.01) cm~(-3),比非APEC期间(即11月1—4日和11月12—30日)分别降低了28.8%、58.6%和64.7%;APEC期间ρ(PM_(2.5))为(36.1±2.4)μg·m~(-3),比非APEC期间降低55.5%.PM_(0.5~2.5)数浓度和PM_(2.5~10)数浓度降幅远大于PM_(0.01~1)数浓度,这表明APEC期间的减排措施对于PM_(0.5~2.5)和PM_(2.5~10)的控制效果优于PM_(0.01~1),说明APEC期间对PM_(0.5~2.5)、PM_(2.5~10)数浓度进行了更有效的控制.对北京气流后向轨迹聚类分析发现,来自蒙古国、内蒙古、河北西北部、河北南部方向的气流轨迹对应北京郊区的PM_(0.01~1)数浓度最高,为30593 cm~(-3),来自河北西北部、北京、天津、河北南部方向的气流轨迹对应北京郊区的PM_(0.5~2.5)、PM_(2.5~10)的数浓度及ρ(PM_(2.5))均为最高,分别为190 cm~(-3)、0.65 cm~(-3)、168μg·m~(-3).综合潜在源区贡献因子分析法(PSCF)和浓度权重轨迹分析(CWT)的结果分析发现,观测期间北京PM_(0.01~1)与PM_(0.5~2.5)、PM_(2.5~10)的潜在源区存在明显的区别,其中PM_(0.01~1)数浓度的潜在源区分布区域相对较广,主要分布在内蒙古中部、河北西北部、河北中南部和山西东北部等地区,而PM_(0.5~2.5)和PM_(2.5~10)数浓度的潜在源区分布基本一致,而且区域相对较集中,主要分布在河北北部、山西东北部和河北中南部等地区.APEC期间与非APEC期间ρ(PM_(2.5))的源区贡献因子分析和浓度权重轨迹分析表明,APEC期间ρ(PM_(2.5))的主要源区分布比非APEC期间相对较集中,主要位于北京当地、天津等附近地区,该地区对观测点ρ(PM_(2.5))的贡献值在24~40μg·m~(-3)之间.  相似文献   

18.
利用2013—2016年昆明市7个环境监测站点资料、昆明国家基准气候站气象观测资料和天气图资料,分析了昆明市PM_(2.5)的时空分布特征和PM_(2.5)浓度超标时的典型天气形势及与气象要素的关系。结果表明:昆明市PM_(2.5)污染程度总体较轻;冬春两季,特别是12月、1月、3月、4月PM_(2.5)浓度值和超标率较高;干季PM_(2.5)浓度值明显高于雨季;昆明市主城区PM_(2.5)污染程度高于新城区;昆明市PM_(2.5)浓度超标时的典型地面天气形势分为昆明处于高压底部和弱高压控制两类;当昆明地区500h Pa为槽后西北气流控制且700h Pa存在冷平流,为PM_(2.5)浓度超标时的典型高空天气形势;PM_(2.5)浓度超标时昆明地面风向以ESE—S为主,出现降雨后PM_(2.5)浓度值明显降低。  相似文献   

19.
基于徐州市2014~2017年气溶胶光学厚度(AOD)、地面监测站PM_(2.5)浓度及气象数据,构建经标高订正的AOD(AOD/H)与经湿度订正的PM_(2.5)(PM_(2.5)×f_((RH)))之间的5种不同类型的拟合模型,分析两者在不同季节的相关性;同时利用经验模态分解对AOD/H与PM_(2.5)×f_((RH))进行周期变化分析。结果表明:AOD与PM_(2.5)浓度直接相关程度较低,经过订正后两者的相关程度显著提高;选取乘幂模型为最优拟合模型,利用乘幂模型估计得到的PM_(2.5)浓度与地面监测的经湿度订正的PM_(2.5)浓度呈显著正相关,相关系数在四季分别达到0.752、0.650、0.808和0.942;利用经验模态分解分析得到AOD/H与PM_(2.5)×f_((RH))具有显著的年周期变化特征,均在冬季出现高值,后逐渐降低,在6月前后出现极小值,到秋季又逐渐增大;AOD/H与PM_(2.5)×f_((RH))年变化特征表现出很高的一致性(r=0.888),表明在徐州地区AOD/H对PM_(2.5)×f_((RH))在年周期尺度变化特征研究中能起到良好的指示作用。  相似文献   

20.
利用中国环境监测总站的PM_(2.5)(Particulate Matter with aerodynamic≤2.5μm)数据、ERA-interim再分析资料等,结合混合单粒子拉格朗日综合轨迹模型(HYSPLIT4),重点分析了华北地区PM_(2.5)的时空分布特征及该地区PM_(2.5)重污染对我国东北、长三角地区空气质量的影响。结果表明,华北地区是中国PM_(2.5)的高值区,2015、2016和2017年华北地区年平均PM_(2.5)质量浓度分别为62.1、59.5和56.8μg/m~3,呈减小趋势。该地区冬季PM_(2.5)污染最严重,部分区域的平均浓度甚至超过110μg/m~3。个例研究表明,来自华北的污染物可在大约48 h后输送至东北和长三角地区,分别占当地污染物总量的21%和71%;同时,在冬季弱高压系统和地形的共同影响下,华北地区42%的污染物不易扩散而局限在本地,15%的污染物向长三角方向输送,不易向东北方向输送。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号