首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
小型CAF气浮设备处理滇池含藻水的试验研究   总被引:2,自引:0,他引:2  
采用自制的小型涡凹型气浮(CAF)设备处理滇池含藻水,结果表明,在气浮时间为1min,分离时间为6min的条件下,聚硅硫酸铁铝(PFASSI)用量为40mg/L时,对藻类和浊度的净化效率最大分别为801%和786%;在聚丙烯酰胺(PAM)的用量为2mg/L时,对藻类和浊度的净化效率分别为959%和932%。使用PFASSI(20mg/L)和PAM(1mg/L)的组合絮凝剂时,滇池含藻水的含藻量由557mg/L降到557mg/L,浊度由375度降到27度,二者的去除率分别为99%和928%。  相似文献   

2.
混凝-微气泡气浮法处理含藻废水的研究   总被引:3,自引:1,他引:2  
采用日本菊池环保株式会社生产的新型TCRI-17微气泡气浮装置混凝气浮处理北京某富营养化景观水体的含藻废水,其结果表明,当混凝剂用量分别为PAC 40 mg/L和PAM 2 mg/L,混凝2 min, 气浮2 min时,SS和COD去除率分别达到98.4%和85.7%。与混凝沉降相比,可减少PAC用量1/3,且节省处理时间。由于微小气泡停留时间长,气浮效率高,且有增加水中溶解氧的作用,可促进水体的净化,具有较强的技术优势。  相似文献   

3.
微气泡气浮(微气浮)是快速高效清除水体暴发藻类的一条新途径。在不投加絮凝剂前提下利用微气浮技术清除藻水中的藻细胞。结果表明,气浮装置在进气量0.2~0.3mL/min、溶气水流量400L/h、压力0.65~0.70MPa时,气浮时间较长,微气泡直径最小。以自来水作为溶气水时,微气浮技术对藻水叶绿素a的去除率为62.0%~73.0%,产生的藻渣含水率为96.5%~98.8%。利用微气浮技术进行实际水体除藻时,宜将气浮装置进水口布设在藻类暴发层以下的清水层。综合考虑处理能耗成本及处理效果,溶气水和藻水体积比宜控制在1.4左右,藻类最佳气浮时间为3~6min,藻渣最佳收集时段为微气浮完成后的14min内。  相似文献   

4.
陶瓷印花废水处理的混凝剂及工艺条件   总被引:1,自引:1,他引:0  
采用混凝剂聚合氯化铝(PAC)、聚丙烯酰胺(PAM)、聚合硫酸铁(PFS)对陶瓷印花废水进行混凝沉降处理,监测水样的吸光度、浊度、悬浮物,以脱色率、浊度去除率、悬浮物去除率评价混凝处理的效果。结果表明:PAC是陶瓷印花废水沉降处理的理想混凝剂;水样的吸光度、浊度、悬浮物随混凝剂用量增大和沉降时间延长而呈降低趋势,而脱色率、浊度去除率、悬浮物去除率随混凝剂和沉降时间的增大呈增大的趋势;PAC投加量为20mg/L,沉降时间约为24h,水样脱色率达到90.0%,而当PAC投加量达到100mg/L,沉降时间约为4h,陶瓷印花水的脱色率可达到96.0%。证明了药剂用量的增加与沉降时间的延长对混凝过程具有增效作用。  相似文献   

5.
聚合氯化铝铁去除微污染水体中藻类的研究   总被引:5,自引:2,他引:3  
以聚合氯化铝铁(PAFC)为絮凝剂,H2O2为预氧化剂,用正交实验研究了PAFC处理微污染水体中藻类和降低浊度,得出正交实验中各因素的主次关系及对除藻和除浊度的影响,研究表明,ρPAFC是影响除藻和除浊度的重要因素.在最佳处理条件,即ρPAFC为20 mg/L,ρH2O2为6 mg/L,pH为7,搅拌时间为4 min,能使水体中藻细胞街度从9.4×107 cells/L降至3.16×106 cells/L,除藻率为96.6%,浊度降至0.70 NTU,除浊度率达93.0%.  相似文献   

6.
在一定温度下,将聚二甲基二烯丙基氯化铵(PDMDAAC)溶解在聚合硫酸铁(PFS)中,制成稳定的均相复合溶液。采用FT-IR和X-射线衍射对其固体结构进行了分析。考察了液体复合絮凝剂的稳定性和固体复合絮凝剂的吸湿溶解性能,及其对生活污水的处理效果。结果表明:在60℃以下制备的液体复合絮凝剂具有良好的稳定性,固体复合絮凝剂具有良好的溶解性和比PFS更强的吸湿性;复合絮凝剂不是由PDMDAAC与PFS简单的机械混和,而是互相融合的复合体系;具有比PFS更优的去污性能和与PFS类似的较宽的最佳投药范围和pH适用范围。对浊度和COD分别为105、2和187.5mg/L,pH值为7.59的生活污水,复合絮凝剂中Fe^3 和PDMDAAC最佳用量分别为54.15和4.27mg/L,对COD的去除率为77.14%,比PFS在用量为81.22mg/L时的最佳效果高12%。  相似文献   

7.
反冲洗周期是生物除铁除锰滤池的一个重要运行参数,实验中分别设定反冲洗周期为24、48和72h,考察反冲洗周期对成熟稳定运行的滤柱出水铁、锰、氨氮和浊度的影响。结果表明,不同反冲洗周期,滤柱对铁、锰和氨氮均有很好的去除效果,出水中的总Fe、Mn“和NH?-N的平均浓度分别为0.018、0.003和0.016mg/L,0.010、0.001和0.014mg/L,0.013、0.001和0.014mg/L,均远低于国家标准,说明反冲洗周期变化对三者的去除效果没有影响。反冲洗周期为24、48和72h时,出水平均浊度分别为0.27、0.38和0.57NTU,反冲洗周期越长,出水浊度越高。滤柱沿程浊度分析发现,浊度主要在0~O.4m去除,出水浊度与滤层厚度无关。反冲洗后5rain出水浊度为3.16NTU,15min降到了1NTU以下,25min降到了0.5NTU,60min大约降到了反冲洗前的水平。  相似文献   

8.
为了解2种新分离微藻的净化和资源化潜力,研究比较了其生长、氮磷去除和营养特性。结果表明,栅藻和月牙藻的最大生物量(干重)分别为0.78g/L和0.53g/L;最大生物量(干重)增长速率分别为0.05g/(L·d)和0.03g/(L·d)。培养至第23天,栅藻和月牙藻对TN的去除率分别为85.1%和72.5%;对TP的去除率为82.6%和79.7%,但栅藻较月牙藻更易释放较多的No2--N进入藻液。稳定期时,栅藻、月牙藻的粗蛋白质含量和粗蛋白产量(干重)分别为31.8%、19.2%和0.24g/L、0.09g/L;粗脂含量和粗脂产量(干重)分别为7.81%、9.26%和0.06g/L、0.05g/L。综上,与月牙藻相比,栅藻具有明显的生长、氮磷去除和营养优势,在进行水产养殖废水的净化和资源化利用上可作为优选藻种。  相似文献   

9.
以砂石和活性炭作为填料,自制厌氧生物滤床系统,并对系统进行驯化,发现完成驯化后的稳定系统具有良好的去铬(VI)能力。废水在系统中经过2h运行,加入碳源的试验组与不加碳源的对照组的铬(VI)去除率分别为87.33%和66.3l%。恒流泵最佳流量为47mL/min,外加碳源后,铬(VI)的浓度由60mg/L左右降到0.5mg/L以下,需要4h,而对照组需要14h,铬(VI)浓度由64.66mg/L提高到75.53mg/L时,对本系统负面影响甚微,提高到95.47mg/L时,系统出水达标所需时间延长到7.5h。本系统具有耐受一定程度的浓度冲击以及进一步驯化、提高处理负荷的潜力。  相似文献   

10.
针对干法腈纶废水的特点及目前混凝剂产品使用现状,采用无机混凝剂单一与无机/有机混凝剂复配进行混凝实验,确定最佳混凝剂和最佳混凝条件.结果表明:(1)单一无机混凝剂处理干法腈纶废水时,聚合硫酸铁(PFS)的混凝效果要好于其他无机混凝剂.当废水pH为11.03、PFS用量为700 mg/L时,COD去除率达到20.89%,较现有干法腈纶生产厂家普遍采用的混凝处理方法提高了7.89%~10.89%.(2)PFS与聚丙烯酰胺(PAM)复配的混凝效果明显比单一PFS好;PFS与阳离子型PAM复配的混凝效果最好,其最佳用量分别为400、7 mg/L,COD由1 700.00 mg/L降到1 331.44 mg/L,去除率达到21.68%,较现有干法腈纶生产厂家普遍采用的混凝处理方法提高了8.68%~11.68%.  相似文献   

11.
水葫芦对萘的降解作用研究   总被引:8,自引:0,他引:8  
分别在静态和动态两种条件下,以水葫芦为对象,对水生植物净化塘处理萘污水进行研究。结果表明,在静态试验中,水葫芦净化塘对浓度为2.5、6.5和16.1mg/L萘污水的7d净化率分别为97.1%、93.7%和90.4%。动态试验中,相同浓度萘污水7d后的出水净化效率分别为99.2%—99.9%、97.3%—98.6%和94.6%—96.7%。进水浓度分别为1.2mg/L和6.5mg/L萘污水在水葫芦净化塘中的最佳停留时间分别为5d和7d,水葫芦净化塘动态过程的净化效率高于静态过程。  相似文献   

12.
介绍了水解.接触氧化.气浮工艺在宠物食品加工废水中的应用。实践表明,在进水CODCr、BOD5和SS分别为2500mg/L、1600mg/L和250mg/L的情况下,出水的CODCr、BOD5和SS分别为70mg/L、15mg/L和40mg/L,达到了《污水综合排放标准》(GB8978.96)一级标准。经过1年半的运行表明,该工艺具有运行稳定性好、处理效率高、操作管理方便的优点。  相似文献   

13.
对nano-SiO2与PAC复配使用强化混凝处理城市污水进行了实验研究。探讨了nano-SiO2在水中的分散效果、nano-SiO2强化混凝的工艺条件及强化效果。实验表明,与常规PAC强化混凝相比,nano-SiO2强化混凝能有效提高城市污水的除污效果、改善矾花沉降性能、缩短沉淀时间、提高城市污水化学絮凝强化一级处理工艺的抗冲击能力。同时投加nano-SiO2(25mg/L)与PAC(75mg/L)后,先快速搅拌(250r/min)2min,然后慢速搅拌(60r/mln)8min,再沉淀3min,出水COD、TP及浊度去除率分别为50.47%、79.84%和90.93%,较单独投加PAC(75mg/L)分别提高28.43%、39.94%和62.18%。  相似文献   

14.
高气泡表面积通量浮选柱气浮除藻的研究   总被引:1,自引:0,他引:1  
湖泊、水库等水源的富营养化,使藻类去除成为饮用水生产的重要任务。本研究采用高气泡表面积通量浮选柱气浮除藻,考察了混凝剂、气泡表面积通量和浮选柱高度等因素的影响。试验表明,高气泡表面积通量浮选柱气浮可高效地去除绿藻、硅藻和蓝藻,叶绿素a和藻类去除率达95%以上,比传统浮选柱气浮和沉降作业有较大幅度提高。与普通气浮柱比较,高气泡表面积通量浮选柱增加了气泡与藻的碰撞几率,防止因大表观充气速率造成的紊流和扰动,使气泡/藻结合体有相对静态的浮升环境,避免了气泡/藻结合体在浮升过程中的脱落,实现对藻类的迅速捕集和转移。  相似文献   

15.
实验研究了pH值、七水硫酸镁用量、十二烷基硫酸钠用量和气浮时间对酸性大红3R混凝气浮处理的影响。对比了混凝气浮和混凝沉淀处理酸性大红3R的效果。结果表明,pH值的调节和混凝剂的投加对酸性大红3R混凝气浮的处理效果影响较大,浮选剂对气浮效率有一定提高,杂质可在较短时间内浮出,混凝气浮起到一定深度处理效果。当混凝剂用量为647 mg/L,浮选剂用量为2 mg/L,pH值为11,气浮时间为3 min时,吸光度和色度去除率分别达到87.7%和84.9%。紫外-可见光谱图显示在pH为13时苯环、萘环或杂环不饱和体系会吸收—OH助色基团。  相似文献   

16.
矿化垃圾床+SBR工艺处理渗滤液的论证及研究   总被引:10,自引:0,他引:10  
通过论证,选择了矿化垃圾床 SBR工艺进行渗滤液处理的研究。当两类渗滤液水质CODcr分别为22.648和13.236g/L,NH3-N分别为850和642mg/L时,采用矿化垃圾床 SBR工艺处理垃圾渗滤液取得了良好的效果。试验结果表明,处理后渗滤液CODcr降到小于300mg/L,NH3-N降到小于20mg/L的水平,达到了渗滤液的二级排放标准。  相似文献   

17.
微生物絮凝剂对含藻微污染水的除浊性能研究   总被引:4,自引:1,他引:3  
余莉萍  尹华  彭辉  张娜 《环境污染与防治》2004,26(3):220-221,224
采用微生物絮凝剂JMBF-25和无机絮凝剂复合使用的方法,对含藻微污染水进行处理。结果表明,絮凝剂复合使用降低了无机絮凝剂的使用量,减轻了无机絮凝剂对环境的二次污染。处理含藻微污染水的最佳复配比为ρ(PAC) ρ(JMBF-25)=15mg/L 1.2mg/L或ρ(PFS) ρ(JMBF-25)=8mg/L 2.0mg/L。机理分析表明,絮凝剂JMBF-25絮凝机理以吸附架桥为主。  相似文献   

18.
利用高铁酸钾处理经过改性粉煤灰混凝后的矿井水,形成改性粉煤灰和高铁酸钾联合处理矿井水工艺。研究表明,粉煤灰在使用硫酸改性前后,在投加量为50 g/L,对去除矿井水中浊度的变化是53.18~25.42 NTU,对COD_(Mn)的去除效率也由29%升高到50%;在改性粉煤灰中混入高铁酸钾5 mg/L时,矿井水中浊度和悬浮物分别降到18.3 NTU和10 mg/L,COD_(Mn)去除率为53.23%;此后,上清液中投加高铁酸钾10 mg/L时,水中的浊度由18.3 NTU降到5.1 NTU,悬浮物由10 mg/L降到3 mg/L,COD_(Mn)的总去除率也增加到68.88%。在使用该工艺进行小试时,改性粉煤灰用量为50 g/L,并在其中掺杂高铁酸钾5 mg/L,上清液再用10 mg/L的高铁酸钾处理后,出水水质都优于地表水环境质量Ⅳ级标准。  相似文献   

19.
植物床-沟壕系统的藻类捕获功能   总被引:2,自引:0,他引:2  
采用原位实验验证植物床.沟壕系统的藻类捕获功能。结果表明:该系统能够有效拦截和捕获源水藻类。在水力梯度驱动下,约35%源水进入高位小沟流经植物床内部根孔结构而汇至低位小沟。低位小沟内叶绿素a(Chl-a)浓度显著低于高位小沟(P=0.0239),其降低比例为11.1%。以植物床.沟壕系统为结构形式的根孔净化区其出水Chl-a浓度较源水整体下降了27.0%。估算该片根孔净化区捕获藻类鲜生物量约122kg/d。石臼漾湿地共含根孔净化区11片,按供水25万t/d计,估算捕获藻类鲜生物量约1100kg/d。  相似文献   

20.
采用磁絮凝-吸附技术开展了同步去除黑臭水体浊度、氨氮和总磷(TP)实验.在磁絮凝阶段,通过聚合硫酸铁(PFS)、磁粉(MPs)和聚丙烯酰胺(PAM)复配使用,利用电荷中和作用去除浊度和TP;同时,利用化学吸附沉淀去除TP;在此阶段中,当PFS、MPs、PAM的投加量分别为16.00、100.00、2.20 mg·L-1...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号