共查询到20条相似文献,搜索用时 15 毫秒
1.
The control of mercury vapor using biotrickling filters 总被引:2,自引:0,他引:2
The feasibility of using biotrickling filters for the removal of mercury vapor from simulated flue gases was evaluated. The experiments were carried out in laboratory-scale biotrickling filters with various mixed cultures naturally attached on a polyurethane foam packing. Sulfur oxidizing bacteria, toluene degraders and denitrifiers were used and compared for their ability to remove Hg 0 vapor. In particular, the biotrickling filters with sulfur oxidizing bacteria were able to remove 100% of mercury vapor, with an inlet concentration of 300-650 microg m(-3), at a gas contact time as low as six seconds. 87-92% of the removed mercury was fixed in or onto the microbial cells while the remaining left the system with the trickling liquid. The removal of mercury vapors in a biotrickling filter with dead cells was almost equivalent to this in biotrickling filters with live cells, indicating that significant abiotic removal mechanisms existed. Sulfur oxidizing bacteria biotrickling filters were the most effective in controlling mercury vapors, suggesting that sulfur played a key role. Identification of the location of metal deposition and of the form of metal was conducted using TEM, energy dispersive X-ray analysis (EDAX) and mercury elution analyses. The results suggested that mercury removal was through a series of complex mechanisms, probably both biotic and abiotic, including sorption in and onto cellular material and possible biotransformations. Overall, the study demonstrates that biotrickling filters appear to be a promising alternative for mercury vapor removal from flue gases. 相似文献
2.
在以焦炭为填料的生物滴滤塔对挥发性脂肪酸臭气的处理研究中考察了空床停留时间、臭气浓度、体积负荷以及进气温度等参数对净化效果的影响。结果表明,空床停留时间较长时对臭气降解有利。在停留时间超过97 s时,能实现完全降解;此外,净化率随臭气浓度和体积负荷的不断增加呈先增加后降低的趋势。当臭气浓度为24.29 mg/m3即臭气的体积负荷为3 g/(m3·h)时,去除率约为96%;当臭气浓度增至1 345.74 mg/m3即体积负荷增至18 g/(m3·h),去除率达100%;然而,当臭气浓度增至4 934.38 mg/m3即体积负荷增至66 g/(m3·h)时,去除率降至73.1%。另外,进气温度对净化率也有一定程度影响。当进气温度较低时,净化效率相对较高。 相似文献
3.
4.
《环境工程学报》2015,(11)
目前,环保政策极其关注污水处理厂的臭气排放并制定了排放标准。本实验依托3个并联的中试生物滴滤塔对污水提升泵站的H2S臭气展开研究,考察不同H2S进气负荷、停留时间、压降和填料填装方式(竹炭-陶粒分层填装、完全混合及全竹炭填装)等因素对H2S去除率的影响。对生物滴滤塔的出气浓度、滤出液p H、SO2-4离子等进行测试分析,建立传质、降解动力学模型,并分析。在停留时间为25 s连续进气条件下,考察进气负荷在0.59~5.00 g H2S/(m3·h)范围内生物滴滤塔对H2S臭气的去除表现效果。研究结果表明,各生物滴滤塔的去除率(RE)都维持在98%以上,而且出气浓度达到厂界废气排放三级标准;相较于完全混合填装方式,分层填装在去除H2S臭气时略显优势。采用Michaelis-Menten方程描述生物滴滤塔的去除表现,表观半饱和常数Ks和最大表观去除速率Vm分别为5.92 m L/m3和5.84 g H2S/(m3·h)。 相似文献
5.
为比较不同生物填料用于城市污水提升泵站除臭的性能,建立4组不同填料的生物滴滤塔(BTF)中试装置,并考察其对污水提升泵站中以H2S为主的市政臭气的去除效果。结果表明,在进气风量为180 m3·h-1,H2S进气浓度控制在7 500~8 500 μg·m-3条件下,竹炭在吸附阶段和挂膜阶段对H2S去除效果均最佳;竹炭生物滴滤塔挂膜速度最快,只需1~2周就可以完成挂膜,H2S主要集中在塔底填料层500 mm位置以下被降解,塔顶出气浓度稳定在(30±2)μg·m-3,压降稳定在(78.7±0.5)Pa,滤出液中SO42-浓度最高达到117.04 mg·L-1,塔内pH为2.0~3.0,降解H2S的微生物为嗜酸性菌。 相似文献
6.
7.
生物滴滤器净化低浓度甲苯废气的非稳态工况研究 总被引:2,自引:0,他引:2
生物法处理大气污染物时,经常会遇到条件波动或污染物间歇排放等非稳态工况。在不同非稳态条件下,考察了甲苯废气间歇排放对生物滴滤器净化性能的影响。实验方案分3种情况:无甲苯废气排放、无循环液供应或同时没有甲苯废气和循环液的供应。间歇排放时间从2~47 d不等。结果表明,不管何种形式的停运或故障,甲苯净化能力4 d以内基本不下降;停运时间超过5 d,则甲苯去除能力严重下降,仅为原来的1/3~1/2;停运时间在10 d以内,24 h内即可恢复,47 d的长期停运,3 d内也可恢复净化能力。 相似文献
8.
生物法处理大气污染物时,经常会遇到条件波动或污染物间歇排放等非稳态工况。在不同非稳态条件下,考察了甲苯废气间歇排放对生物滴滤器净化性能的影响。实验方案分3种情况:无甲苯废气排放、无循环液供应或同时没有甲苯废气和循环液的供应。间歇排放时间从2-47d不等。结果表明,不管何种形式的停运或故障,甲苯净化能力4d以内基本不下降;停运时间超过5d,则甲苯去除能力严重下降,仅为原来的1/3-1/2;停运时间在10d以内,24h内即可恢复,47d的长期停运,3d内也可恢复净化能力。 相似文献
9.
S L Klemeston 《Journal - Water Pollution Control Federation》1977,49(6):1001-1005
10.
Abiotic and biological mechanisms of nitric oxide removal from waste air in biotrickling filters 总被引:5,自引:0,他引:5
Nitric oxide (NO) may participate in the ozone layer depletion and forming of nitric acid. Abiotic and biological mechanisms of NO removal from waste gases were studied in a biotrickling filter. The abiotic NO removal rate in the biotrickling filter was estimated by a review of the literature. The abiotic and biological removals were also verified in the biotrickling filter. The result has shown that chemical oxidation and bionitrification were both involved in the NO removal. It was found that the NO removal in high concentration (approximately 1000 ppm or higher) was in large measure the result of abiotic removal in both gas-phase and liquid-phase reactions. When NO concentration is low (less than approximately 100 ppm), bionitrification was the main process in the NO removal process in the biotrickling filter. 相似文献
11.
生物焦炭滴滤塔降解苯乙烯废气的中试启动研究 总被引:2,自引:0,他引:2
苯乙烯废气既是一种挥发性有机化合物(VOCs),又属于我国恶臭气体控制的范围之内。其作为一种化工原料和有机溶剂广泛应用于工业生产中。生物法处理有机废气具有运行费用低和没有二次污染等优点。采用焦炭填料滴滤塔对苯乙烯废气的处理进行了中试启动研究。启动过程中,进气浓度范围是50~114 mg/m3,去除率为30%~45%左右,最高可达90%左右。所采用的焦炭填料可以认为是一种环境友好型填料,废弃后可作为燃料,值得推广。 相似文献
12.
Dezhao Liu Anders Feilberg Anders Michael Nielsen Anders Peter S. Adamsen 《Chemosphere》2013,90(4):1396-1403
Biological air filtration for reduction of emissions of volatile sulfur compounds (e.g., hydrogen sulfide, methanethiol and dimethyl sulfide) from livestock production facilities is challenged by poor partitioning of these compounds into the aqueous biofilm or filter trickling water. In this study, Henry’s law constants of reduced volatile sulfur compounds were measured for deionized water, biotrickling filter liquids (from the first and second stages of a two-stage biotrickling filter), and NaCl solutions by a dynamic method using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) at a temperature range of 3–45 °C. NaCl solutions were used to estimate salting-out constants up to an ionic strength of 0.7 M in order to evaluate the effect of ionic strength on partitioning between air and biofilter liquids. Thermodynamic parameters (enthalpy and entropy of phase exchange) were obtained from the measured partition coefficients as a function of temperature. The results show that the partition coefficients of organic sulfur compounds in the biotrickling filter liquids were generally very close to the corresponding partition coefficients in deionized water. Based on the estimated ionic strength of biofilter liquids, it is assessed that salting-out effects are of no importance for these compounds. For H2S, a higher enthalpy of air–liquid partitioning was observed for 2nd stage filter liquid, but not for 1st stage filter liquid. In general, the results show that co-solute effects for sulfur compounds can be neglected in numerical biofilter models and that the uptake of volatile sulfur compounds in biotrickling filter liquids cannot be increased by decreasing ionic strength. 相似文献
13.
生物焦炭滴滤塔降解苯乙烯废气的中试启动研究 总被引:2,自引:0,他引:2
苯乙烯废气既是一种挥发性有机化合物(VOCs),又属于我国恶臭气体控制的范围之内。其作为一种化工原料和有机溶剂广泛应用于工业生产中。生物法处理有机废气具有运行费用低和没有二次污染等优点。采用焦炭填料滴滤塔对苯乙烯废气的处理进行了中试启动研究。启动过程中,进气浓度范围是50—114mg/m^3,去除率为30%~45%左右,最高可达90%左右。所采用的焦炭填料可以认为是一种环境友好型填料,废弃后可作为燃料,值得推广。 相似文献
14.
Shilong He Liping Wang Jiangcen Xu Ningning Yin 《Journal of the Air & Waste Management Association (1995)》2013,63(10):1203-1207
Because of the characteristics of low operating cost and convenient operation, the biotrickling filter is extensively researched and used to treat low concentration waste gas contaminated by volatile organic compounds (VOCs) and other odors. In this paper, two laboratory-scale biotrickling filters were constructed and toluene was selected as the sole carbon source, and the effects of different waste-gas flow configuration patterns on the purification capacity and the microbial community functional diversity of biotrickling filters were evaluated. The results indicated that the flow-directional-switching (FDS) biotrickling filter had better purification performance, and the maximum elimination capacity reached 480 g·m?3·hr?1, which was 17.1% higher than conventional unidirectional-flow (UF) biotrickling filter. Comparing the purification capacities of different sections in two biotrickling filters, the maximum toluene elimination capacity of section III in FDS system could reach 542 g·m?3·hr?1, which was 2.8 times as great as that in UF system, which resulted from the difference of elimination capacity in two systems. By analyzing the metabolic activity of two systems by community-level physiological profiling (CLPP) with Biolog (Biolog Inc., Hayward, CA) ECO-plate technique, metabolic activity in three sections of FDS system was higher than that of UF system. The metabolic activity was the highest in section III of FDS system and 46.8% higher than that of UF system. Shannon index and McIntosh index of section III in FDS system were 6.2% and 31.5% higher, respectively, than those of UF system.
Implications: The flow-directional-switching (FDS) biotrickling filter had a better purification performance than unidirectional-flow (UF) biotrickling filter at high inlet loadings, because FDS produced a more uniform distribution of biomass and microbial metabolic capacity along the length of the packed bed without diminishing activity and removal capacity in the inlet section. 相似文献
15.
以竹炭为填料,采用高效生物滴滤塔(BTF)中试装置处理污水提升泵站产生的以H2S为主的废气,考察了喷淋时间和喷淋频率对塔内轴向H2S去除率、滤出液中SO42-浓度和pH、塔内压降的影响。结果表明:当生物滴滤塔系统的空塔停留时间为6.43 s,喷淋时间和喷淋频率分别为1 min·次-1和1次·(60 min)-1,BTF对H2S去除效果最好,去除率达99.0%以上,达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级厂界排放标准;BTF滤出液中的pH值稳定在2.0~3.0之间,塔内的微生物为嗜酸性硫氧化菌;BTF对H2S的降解符合Michaelis-Menten动力学模型,在适宜喷淋条件下,BTF内的表观半饱和常数(Ks)和最大表观去除速率(Vm)分别为86.8 mg·m-3和22.3 g·(m3·h)-1,系统具有较高的抗负荷冲击能力。 相似文献
16.
采用净化甲苯专用菌种对生物膜填料塔净化处理高流量负荷下低浓度甲苯废气的技术进行了初步实验研究。实验结果表明 ,当气体流量在 0 8m3 /h、进口浓度为 10 5mg/m3 、停留时间 18 3s时 ,甲苯的去除率可达到 6 1 90 % ,出口甲苯浓度低于国家对现有企业的排放标准 (≤ 6 0mg/m3 )。适宜的操作温度应控制在 19~ 2 5℃之间 ,氮磷营养添加量的配比应控制为C∶N∶P =2 0 0∶5∶1,操作压降与气体流量呈线性关系。结合实验数据 ,对相关的基础理论进行了初步探讨。 相似文献
17.
《国际环境与污染杂志》2011,38(3):245-255
Accumulations and spatial and dynamic variations of biofilms in the media of a biotrickling filter were simulated using mathematical models for Volatile Organic Compound (VOC) removal. Toluene was selected as the model VOC. Effects of toluene concentration and gas Empty Bed Contact Time (EBCT) on VOC removal were also investigated. Results showed that biofilm thickness increased with increased operation duration and the growth rate of biofilms increased with increased inlet toluene concentration and EBCT at a constant toluene loading. The profiles of the thickness and growth rate of biofilms along the medium depth dropped gradually at a certain time. 相似文献
18.
生物滴滤法去除低浓度苯乙烯 总被引:2,自引:1,他引:2
通过装载改性聚乙烯填料的生物滴滤塔进行废气中的苯乙烯生物降解实验。结果表明,通过快速排泥法挂膜,该反应器可在较短周期内实现微生物的驯化。苯乙烯入口浓度和空床停留时间(EBRT)是影响反应器性能的重要因素,当EBRT分别为60、45、30和15 s以及对应的入口浓度分别为950、430、350和200 mg/m3时,可实现达标排放。循环喷淋液中的硝酸盐(亚硝酸盐)对生物滴滤池的影响十分明显,在初始阶段,亚硝酸根很快被耗尽,硝酸根则相对缓慢。当循环液中的TN从102.63 mg/L下降到24.24 mg/L时,滴滤池的去除效率由94.48%下降到43.16%,部分原因是降低NOx-的浓度减弱了反硝化作用对VOC碳源的利用。 相似文献
19.
This research aimed at investigating the biodegradation of phenol contaminated-air streams in biotrickling filter. The effect of inlet concentration (200-1000 ppmv) and empty bed contact time (EBCT) (15-60 s) were investigated under steady state, transient and shock loading, and shutdown periods. Upon rapid start up operation, inlet phenol concentrations of up to 1000 ppmv did not significantly affect the performance of the biotrickling filter at EBCT of 60 s, so that removal efficiency was well greater than 99%. In addition, the EBCT as low as 30 s did not have detrimental effects on the efficiency of the bioreactor and phenol removal was greater than 99%. Decreasing the EBCT to 15s reduced the removal efficiency to around 92%. The maximum elimination capacity obtained in the biotrickling filter was 642 g(phenol) m(-3) h(-1), where the removal efficiency was only 57%. Results from the transient loading experiments revealed that the biotrickling filter could effectively handle the variations of the inlet loads without the phenol removal capacity being significantly affected. 相似文献
20.
生物滴滤塔净化苯乙烯废气的实验研究 总被引:1,自引:2,他引:1
采用生物滴滤(BTF)系统对含苯乙烯的有机废气进行了生物净化实验并研究该系统VOCs生物降解性能。实验表明,苯乙烯进气浓度低于20 mg/m3时BTF去除效率可达92%以上,出口苯乙烯浓度低于1.6 mg/m3,达到GB14554-1993中规定的排放标准;该BTF装置对苯乙烯的去除负荷在2.0 g/(m3.h)左右;系统稳定运行时循环液COD、浊度和pH等都保持稳定,无脱落生物膜积累现象;生物滴滤塔系统适宜的气液比为300;系统总压降约100 Pa,鲍尔环填料和聚氨酯发泡填料混合装填方式可以降低系统压降并有利于微生物挂膜。 相似文献