首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amino acid uptake and respiration by marine heterotrophs   总被引:5,自引:0,他引:5  
The concentration and turnover of dissolved free amino acids were measured in samples from 25 and 100 m on three occasions at a station 6 miles off the California (USA) coast. Individual amino acid concentrations varied from undetectable (<0.05 g/l) to 3 g/l, the total amino acid concentration from 1.8 to 8.5 g/l. The greater concentration of total amino acids was always found at 25 m. The predominant amino acids were serine, lysine, aspartate, glutamate and alanine; reliable analyses could not be made for glycine because of a high blank. For the 10 individual amino acids studied, the rate of heterotrophic turnover ranged from undetectable to 1.2 g/l day-1; serine, aspartate, alanine and glutamate showed the highest rates. In samples from 25 m, the rates were 15 to 20 times higher than those taken from 100 m. The total calculated flux of the amino acids studied varied from 0.015 to 3.2 g/l day-1 and amounted to 1–10% of photosynthetic carbon dioxide fixation.  相似文献   

2.
Rates of oxygen consumption, ammonia excretion and phosphate excretion were measured on a hydromedusae (Aglantha digitale), pteropods (Limacia helicina, Clione limacina), copepods (Calanus finmarchicus, C. glacialis, C. hyperboreus, Metridia longa), an amphipod (Parathemisto libellula), a euphausiid (Thysanoessa inermis) and a chaetognath (Sagitta elegans), all of which were dominant species in the Barents Sea during early summer 1987. Water and ash contents and elemental composition (C and N) were also analysed on the specimens used in these metabolic experiments. Between species variations were 67.8% to 94.7% of wet weight in water content, 6.4% to 56.5% of dry weight in ash content, 16.7% to 61.0% of dry weight in carbon content, and 4.3% to 11.2% of dry weight in nitrogen content. Oxygen consumption rates ranged from 0.33 to 13.8 l O2 individual-1 h-1, ammonia excretion rates, from 0.0072 to 0.885 gN individual-1 h-1 and phosphate excretion rates, from 0.0036 to 0.33 g P individual-1 h-1. In general, higher rates were associated with larger species, but considerable differences were also seen between species. The ratios between the rates (O : N, N : P, O : P) exhibited a wide species-specific variation, indicating differences in dominant metabolic substrates. Typical protein oriented metabolism was identified only in S. elegans. From the results of metabolic rate measurements and elemental analyses, daily losses of body carbon and nitrogen were estimated to be 0.50 to 4.15% and 0.084 to 1.87%, respectively, showing faster turnover rates of carbon than that of nitrogen. Comparison of daily loss of body carbon of the Barents Sea zooplankton with that of the Antarctic zooplankton indicated reduced rates of the former (63% on average).  相似文献   

3.
A technique for measuring rates of RNA and DNA synthesis in sedimentary microbial communities has been adapted from methods developed for marine and freshwater microplankton research. The procedure measures the uptake, incorporation and turnover of exogenous [2, 3H]-adenine by benthic microbial populations. With minor modification, it is applicable to a wide range of sediment types. Measurement of nucleic acid synthesis rates are reported from selected benthic marine environments, including coral reef sediments (Kaneohe Bay, Oahu, Hawaii), intertidal beach sands (Oahu and southern California) and California borderland basin sediment (San Pedro Basin), and comparisons are made to selected water-column microbial communities. Biomass-specific rates of nucleic acid synthesis in sediment microbial communities were comparable to those observed in water-column assemblages (i.e., 0.02 to 2.0 pmol deoxyadenine incorporated into DNA [ng ATP]-1 h-1 and 0.2 to 8.9 pmol adenine incorporated into RNA [ng ATP]-1 h-1). DNA synthesis rates were used to calculate carbon production estimates ranging from 2 g C cm-3 h-1 in San Pedro Basin sediment (880 m water depth) to 807 g C cm-3 h-1 in coral reef sediment from the Kaneohe Bay. Microbial community specific growth rate, (d-1), estimated from DNA synthesis rates in surface sediments ranged from 0.1 in San Pedro Basin to 4.2 in Scripps Beach (La Jolla, California) intertidal sand.  相似文献   

4.
Nitrogen excretion rates of demersal macrozooplankton were measured together with nitrogen concentrations in the water column and sediments in lagoons of Heron Reef and One Tree Reef, Great Barrier Reef, Australia, during August and November 1991. Excretion rates increased with body weight, and weight-specific excretion rates of the demersal macrozooplankton were comparable to those of pelagic zooplankton and meiofauna in the Great Barrier Reef. Values of demersal macrozooplankton abundance from previous studies and excretion rates from this study were combined to estimate fluxes of ammonium from demersal macrozooplankton in coral reef lagoons. The estimated fluxes in the water column and sediments were 12 M NH4 m-2 d-1 and 34 M NH4 m-2d-1, respectively. These fluxes were compared with reported fluxes of ammonium in coral reef lagoons in the Great Barrier Reef, Australia. The estimated flux from the demersal macrozooplankton in the water column was 29 and 9% of those reported for microheterotroph regeneration and phytoplankton utilization, respectively. It was 10% of the reported advective flux during periods of low advection and 13% of the maximum efflux from sediments computed from diffusion models. The estimated flux from the demersal macrozooplankton in the sediments exceeded those reported for meiofauna, and was 5 to 32% and 2 to 13% of those reported for ammonification and utilization in sediments, respectively. The potential importance of demersal macrozooplankton in mediating sediment-water column exchanges in the absence of diffusive effluxes and when they swarm is discussed.  相似文献   

5.
G. Schneider 《Marine Biology》1989,100(4):507-514
The population dynamics, ammonia and inorganic phosphate excretion, and nutrient regeneration of the common jellyfish Aurelia aurita was investigated from 1982 to 1984 in the Kiel Bight, western Baltic Sea. During summer 1982, medusae abundance ranged between 14 and 23 individuals 100 m-3, biomass was estimated at about 5 g C 100 m-3 and the mean final diameter of individuals was 22 cm. Abundance, based on numbers, in 1983 and 1984 was an order of magnitude lower; biomass was less than 2 g C 100 m-3 and jellyfish grew to 30 cm. During the summers of 1983 and 1984, A. aurita biomass constituted roughly 40% of that of the total zooplankton>200 m. In 1982, for which zooplankton data were lacking, it was assumed that medusae biomass was greater than that of all other zooplankton groups. Total ammonia excretion ranged between 6.5 and 36 mol h-1 individual-1, whereas inorganic phosphate release was 1.4 to 5.7 mol h-1 individual-1. Allometric equations were calculated and exponents of 0.93 for NH4–N release and 0.87 for PO4–P excretion were determined. Nitrogen and phosphorus turnover rates were 5.4 and 14.6% d-1, respectively. In 1982, the medusae population released 1 100 mol NH4–N m-2 d-1, about 11% of the nitrogen requirements of the phytoplankton. The inorganic phosphate excretion (150 mol m-2 d-1) sustained 23% of the nutrient demands of the primary producers. In the other two years the nutrient cycling of the medusae was much less important, and satisfied only 3 to 6% of the nutrient demands. It is suggested that in some years A. aurita is the second most important source of regenerated nutrients in Kiel Bight, next to sediment.  相似文献   

6.
Growth characteristics and nutrient uptake kinetics were determined for zooxanthellae (Gymnodinium microadriaticum) in laboratory culture. The maximum specific growth rate (max) was 0.35 d-1 at 27 °C, 12 hL:12 hD cycle, 45 E m-2 s-1. Anmmonium and nitrate uptake by G. microadriaticum in distinct growth phases exhibited Michaelis-Menten kinetics. Ammonium half-saturation constants (Ks) ranged from 0.4 to 2.0 M; those for nitrate ranged from 0.5 to 0.8 M. Ammonium maximum specific uptake rates (Vmax) (0.75 to 1.74 d-1) exceeded those for nitrate (0.14 to 0.39 d-1) and were much greater than the maximum specific growth rate (0.35 d-1), suggesting that ammonium is the more significant N source for cultured zooxanthellae. Ammonium and nitrate Vmax values compare with those reported from freshly isolated zooxanthellae. Light enhanced ammonium and nitrate uptake; ammonium inhibited nitrate uptake which was not reported for freshly isolated zooxanthellae, suggesting that physiological differences exist between the two. Knowledge of growth and nutrient uptake kinetics for cultured zooxanthellae can provide insight into the mechanisms whereby nutrients are taken up in coral-zooxanthelae symbioses.Contribution No. 1515 from the University of Maryland Center for Environmental and Estuarine Studies, Chesapeake Biological Laboratory, Solomons, Maryland 20688-0038, USA  相似文献   

7.
The in situ decomposition rate of urea was measured using 14C-labelled urea at 3 areas in the North Pacific Ocean: Sagami Bay on the southern coast of central Japan, the northwestern Pacific central waters and the subarctic Pacific waters. The mean values of the decomposition rates of urea in surface waters of these areas were 44.5, 1.51 and 1.32 mol urea m-3 d-1, respectively. These rates decreased with depth. High rates of urea carbon incorporation into particulate matter and the CO2 liberation from urea carbon into seawater were obtained in light bottles in the euphotic zone, while low rates were found in dark bottles. The turnover rates of urea in the 3 areas were calculated respectively as 12, 113 and 110 d at the surface, and the values increased with depth.  相似文献   

8.
Assimilation rates of 15N-labelled ammonium, urea, and nitrate by plankton in the upper euphotic zone were measured in 2 summer, 2 winter, and 1 spring cruise in the central North Pacific Ocean. Average rates of ammonium plus urea assimilation could not be determined precisely, but were estimated to be 7 to 25 g-at. N m-3 day-1. Indirect evidence suggested that non-photosynthetic microorganisms contributed to these rates. Nitrate assimilation was negligible in the upper waters considered in this report (above the chlorophyll maximum and the nutricline). Potential, nitrate-saturated rates were in the range 1 to 8 g-at. N m-3 day-1. Seasonal comparison showed lowest rates of both carbon and nitrogen assimilation rates per chlorophyll a in winter.  相似文献   

9.
Zooplankton ingestion of phytoplankton carbon in the iceedge zone of the Eastern Bering Sea was measured using a deck incubation approach in 1982. Using further samples collected in 1983, the plant cell carbon to cell volume ratio was estimated at 0.0604 pg m–3 from an experimentally determined particulate carbon to seston volume relationship. The application of this conversion to the results of experimental incubations of natural plant stocks with net-caught zooplankton produced ingestion rates of 68.8 and 10.26 mg C g–1 grazer d–1 for copepods and euphausiids, respectively. Extrapolating these rates to in situ zooplankton biomass at the edge of the seasonal ice pack yielded carbon flux rates through the zooplankton community ranging between 6.5 and 32.8 mg C m–2 d–1. This consumption amounted to less than 2% of the daily phytoplankton production in the ice-edge zone.  相似文献   

10.
W. Hickel 《Marine Biology》1974,24(2):125-130
Seston composition [particulate organic carbon (POC), particulate nitrogen (PN), phyto- and microzooplankton numbers and biomass] was investigated in the bottom waters of Great Lameshur Bay, St. John, Virgin Islands (USA), in October, 1970 during Tektite II Mission 17–50. Mean values of 67.4 g POC · I-1 and 7.2 g PN · I-1 were determined. A mean phytoplankton carbon content of 42.2 g · I-1 and zooplankton carbon content of 5.5 g · I-1 were calculated from counts. The phytoplankton consisted mainly of dinoflagellates 71.2% phytoplankton carbon. Copepods were the dominant zooplankters (61.8% zooplankton carbon), followed by larvaceans (30.9% zooplankton carbon). Organic carbon content of counted zooplankton faecal pellets ranged between 0.4 and 1.6 g · I-1, and amounted probably to about 15% of the total zooplankton carbon value. Plankton and detritus components as possible food for coral-reef animals are discussed. The ratio carbon: nitrogen of suspended particles is compared to that of sedimented matter.  相似文献   

11.
Microheterotrophic dissolved free amino acid (DFAA) utilization, and microbial community and bacterial community carbon production and growth were studied using 3H-labeled organics as tracers in marine surface-film and subsurface (10 cm) waters off Baja California in November 1983. DFAA utilization was generally more rapid during the day (0.14 to 0.38 nM h-1) than at night (0.04 to 0.14 nM h-1) in surface-film and subsurface waters, but the percent of utilized amino acid which was respired was always greater during the night (22 to 57%) compared to the day (14 to 18%). Utilization of DFAA-carbon was estimated to range from 0.3 to 5.3 g C l-1 d-1 for all stations studied. In six of the 8 samples examined, the percentage of microbial carbon accounted for by the bacterial component of the population (1.4 to 5.9%) was strikingly similar to the percentage of microbial carbon production accounted for by bacterial carbon production (1.9 to 5.1%). In all of these six samples, total microbial specific-growth rates and bacterial specific-growth rates were approximately equivalent (0.9 to 2.2 d-1 for the microbial community; 0.7 to 1.9 d-1 for bacteria). The two exceptions were samples apparently influenced by transient flagellate populations migrating into the surface or subsurface waters at night. These observations support the conclusion that surface films contain unique and highly active microbial populations.  相似文献   

12.
Nitrogen regeneration accompanying the bacterial degradation of a variety of amino acids supplied at 10.0 M to samples of coastal plankton communities collected near Halifax, Nova Scotia, Canada was examined. A lag period characterized by a low rate of amino acid uptake and ammonia release was typically followed by a dramatic increase in the rates of uptake and ammonia release. The duration of the lag period varied with the amino acid tested. The ratio of the final ammonia concentration to the nitrogen supplied as amino acid was taken as the regeneration ratio. This value varied from 0.58 to 0.86 for L-arginine and 0.38 to 1.17 for the other amino acids tested, with an average value of 0.74. The presence of inorganic fixed nitrogen at 10.0 M had no effect on the degradation of L-arginine. Other organic compounds supplied at 10.0 M decreased the lag period for L-arginine uptake and degradation. Glucose supplied at 50.0 M decreased the nitrogen regeneration ratio, but did not further decrease the lag for L-arginine degradation. Carbon respiration ratios for L-arginine, L-glutamate, and L-lysine were 0.70, 0.68, and 0.65 when the nitrogen regeneration ratios were 0.86, 0.38, and 0.77, respectively.  相似文献   

13.
The abundance and biomass of marine planktonic ciliates were determined at monthly intervals at two stations in Southampton Water between June 1986 and June 1987. The two stations, an outer one at Calshot and an inner one at N. W. Netley, were subject to differing marine and terrestrial influences. The potential ciliate production at cach station on each visit was estimated from these data. Enumeration of ciliates and measurements of biovolume were performed on Lugol's iodinepreserved samples and potential production was calculated using a predictive relationship based on temperature and cell volume. Heterotrophic ciliate abundance and biomass were greatest at both stations during spring and summer months, with respective maxima of 16x103 organisms 1-1 and 219 g Cl-1 recorded at N. W. Netley. Estimates of the potential production of the ciliate community ranged from <1 to 18 g Cl-1 d-1 at Calshot and <1 to 141 g Cl-1 at N. W. Netley, with annual values of 2 and 9 mg Cl-1 yr-1, respectively. Abundances, biomass and potential production estimates were generally greater at N. W. Netley than at Calshot. Carbon flow through the ciliate community was assessed using annual production values from both this study and the literature. The annual ciliate carbon requirement was equivalent to 9 and 11% of annual primary production at Calshot and N. W. Netley, and potential annual ciliate production was equivalent to 34% and >100% of the energy requirements of metazoan zooplankton at these locations, although comprising only 8 and 10% of their available food.  相似文献   

14.
D. Deibel 《Marine Biology》1988,99(2):177-186
Because of the abundance and size of Oikopleura vanhoeffeni its quantitative role as a suspension feeder in cold ocean waters needs to be defined. To minimize the effect of manipulation and containment, and to assess the effect of naturally occurring factors on clearance rate, I used an in situ latex microbead technique in Logy Bay, Newfoundland, from February 1985 to June 1986. Individual clearance rates ranged from 8–944 ml h-1, increasing exponentially with increasing trunk length. Partial correlation and principal components analysis indicated that trunk length and the concentration of ingestible chlorophyll a accounted for a majority of the variation in clearance rate. At densities of 4–110 m-3, O. vanhoeffeni populations removed from >1 to 13% of the standing stock of ingestible food particles each day. Grazing by near-surface populations was lowest during the spring diatom bloom (>1.4% of daily particle production removed per day), and was highest in June during the post-bloom crash (4 to 10% of daily production removed). Some populations in mid-depth waters had much higher population clearance rates (ca. 50% of daily production removed) because of a greater proportion of large animals. The median percentage daily ration (g Cxg C-1xd-1x100%) of 64% accounted for observed house production rates (1 to 2 d-1, with each house=23% of body carbon).  相似文献   

15.
Respiration and excretion by the ctenophore Mnepiopsis leidyi   总被引:1,自引:0,他引:1  
Respiration (dissolved oxygen and carbon dioxide) and excretion (dissolved organic carbon, inorganic and organic nitrogen and phosphorus) rates were measured for a variety of sizes of Mnemiopsis leidyi over a temperature range of 10.3° to 24.5°C. Both respiration and excretion rates were a direct linear function of animal weight and very temperature sensitive (Q104). Oxygen uptake ranged from 155 to 489 g at O/(g dry weight) day-1 and carbon dioxide release from 43 to 166 M. Organic carbon made up about 38% of the total carbon released. Inorganic nitrogen excretion, exclusively in the form of ammonium, comprised 54% of the total nitrogen release and ranged from 10 to 36 M NH4/(g dry weight) day-1. Average release of dissolved primary amines (expressed as glycine equivalents) equaled 43% of the organic nitrogen fraction. Inorganic phosphorus release ranged from 2.0 to 4.9 M/(g dry weight) day-1 and made up about 72% of the total phosphorus loss. The turnover of elements in the body was calculated as 5 to 19% per day for carbon and nitrogen, depending on the temperature, and an even higher 20 to 48% per day for phosphorus. These values are comparable to rates observed for small, active zooplankton.  相似文献   

16.
Benthic community respiration and the cycling of N and P were seasonally investigated in the unprotected, sandy sediments (Z5m) of the nearshore zone of the Georgia Bight, USA in 1981 and 1982. Nutrient exchange across the sediment-water interface was calculated from a diffusive model, measured by in-situ enclosure experiments and estimated from whole core incubations. Seasonally changing pore water profiles indicated that the sediments were not in steady-state with respect to N and P and showed the characteristics of enhanced interstitial water movement by benthic animals. Over an annual period the total flux of nitrogen measured in situ averaged 1812 mol m-2 d-1 from the sediments. NH 4 + flux accounted for the vast majority of the total directly measured N flux (77%), followed by nitrate + nitrite (14%), and dissolved organic nitrogen (9%). Phosphorus flux averaged 537 mol m-2 d-1. A large ratio of in-situ fluxes to calculated diffusive fluxes (5.2:1) indicated flux enhancement due to benthic animal activity. ammonium fluxes measured in situ did not agree well with the rate of NH 4 + produced in incubated whole cores (11.7 mmol m-2 d-1). Relative rates of C, N and P release throughout the year fluctuated considerably. Generally, nutrient fluxes were not simply related to respiration or temperature. As respiration was highly correlated with temperature, however, this suggested that respiration-regeneration was temporarily decoupled from exchange across the sediment-water interface. The annual C-N-P flux stoichiometry was 130:3.1:1. Using the rate at which NH 4 + was produced in incubated cores the stoichiometry was 120:21:1. The anomalously low N flux measured in situ was attributed to a combination of denitrification and wave-and current-induced sediment nutrient flushing. The potential for sediment flushing is high as experiments showed that sediments were fluidized or resuspended down to 25 cm during large storms. Benthic nutrient flux contributed 40% to the annual P but only 11% to the annual N requirements of the pelagic primary producers.This is Contribution No. 558 from the University of Georgia Marine Institute. This work was supported by the Georgia Sea Grant College Program maintained by the National Oceanic and Atmospheric Administration, US Department of Commerce, under Grant No. NA80AA-D-00091  相似文献   

17.
Orthophosphate (P) uptake on a seasonal basis in surface waters and in vertical profiles was directly proportional to the standing stocks of phytoplankton and bacterioplankton in the outer Los Angeles Harbor and in southern California coastal waters during 1978–1979. A phytoplankton-enriched size fraction (PEF) which was retained on a 1 m pore-size filter contained 83% of the total chlorophyll a but only 18% of the total bacteria. A bacterioplankton-enriched size fraction (BEF) which passed the 1 m filter but was retained on a 0.2 m filter contained 82% of the total bacteria but only 17% of the total chlorophyll a. PEF and BEF accounted for 91 and 9% of the microbial carbon, respectively. The differential uptake of 10 radiolabeled substrates more fully characterized PEF and BEF. 33P uptake occurred in both PEF and BEF, accounting for 47 and 53%, respectively, of the total uptake. 33P uptake by both size fractions was inhibited by low concentrations of 2,4-dinitrophenol (DNP), N-ethylmaleimide (NEM) and carbonyl cyanide, m-chlorophenylhydrozone (CCCP). Darkness and low levels of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) selectively inhibited 33P uptake by PEF; valinomycin selectively inhibited 33P uptake by BEF. An experiment measuring 33P uptake velocity versus P concentration produced sigmoidal saturation kinetics at high levels of exogenous P. Kinetic parameter analyses according to the Hill equation gave a V max of 7.12 nmol l–1 h–1 and aK t of 0.41 nmol l–1 for PEF, and a V max of 5.17 nmol l–1 h–1 and aK t of 112 nmol l–1 for BEF. Consideration of relative surface areas of phytoplankton and bacterioplankton, their 33P uptake rates in light and dark, and estimates of the population turnover times emphasizes the potential importance of bacterioplankton in community phosphorus metabolism.  相似文献   

18.
Orthophosphate uptake by a natural estuarine phytoplankton population was estimated using two methods: (1) 32P uptake experiments in which filters of different pore sizes were used to separate plankton size-fractions; (2) 33P autoradiography of phytoplankton cells. Results of the first method showed that plankton cells larger than 5 m were responsible for 2% of the total orthophosphate uptake rate. 98% of the total uptake rate occurred in plankton composed mostly of bacteria, which passed the 5 m screen and were retained by the 0.45 m pore-size filter. There was no orthophosphate absorption by particulates in a biologically inhibited control containing iodoacetic acid. Orthophosphate uptake rates of individual phytoplankton species were obtained using 33P autoradiography. The sum of these individual rates was very close to the estimated rate of uptake by particulates larger than 5 m in the 32P labelling experiment. Generally, smaller cells were found to have a faster uptake rate per m3 biomass than larger cells. Although the nannoplankton constituted only about 21% of the total algal biomass, the rate of phosphate uptake by the nannoplankton was 75% of the total phytoplankton uptake rate. Results of the plankton autoradiography showed that the phosphate uptake rate per unit biomass is a power function of the surface: volume ratio of a cell; the relationship is expressed by the equation Y=2x10-11 X 1.7, where Y is gP m-3 h-1 and X is the surface: volume ratio. These results lend support to the hypothesis that smaller cells have a competitive advantage by having faster nutrient uptake rates.  相似文献   

19.
Samples of sediments from Australian seagrass (Zostera capricorni Aschers.) beds were taken in June to August 1983 (for15N experiments) and November 1982 to January 1983 (14N experiments). The ammonium pool turned-over every 0.4 to 0.8 d, as determined with a15N isotope-dilution technique. The ammonium pool in subtidal bare areas turned-over two to three times more slowly than in adjacent seagrass beds. Gross rates ofin situ ammonium regeneration equalled those of utilization, and ranged from 0.04 to 0.35 mol cm-3 d-1, or from 50 to 490 mg N m-2 d-1 over the upper 10 cm of the sediment. The potential rate of glycine utilization, measured with a large excess of glycine added to anaerobic incubations, ranged from 0.21 to 0.39mol cm-3 d-1, butin situ rates were probably much lower. Between 35 and 65% of added15N-glycine was deaminated over 12 h, and the remainder was most likely assimilated by microbes. Evidence for the seagrasses taking up glycine was equivocal, owing to the rapid deamination of the amino acid and the likelihood that they assimilated the labelled ammonium produced from the glycine.  相似文献   

20.
The relative importance of 3 different sources for biological production of nitrite in seawater was studied. Decomposition of fecal pellets of the copepod Calanus helgolandicus (at a concentration of approximately 12 g-at N/l), in seawater medium, released small amounts of ammonia over a 6 week period. It nitrifying bacteria were added to the fecal pellets nitrite was barely detectable over the same period. Decomposition of phytoplankton (present at a concentration of about 8 g-at particulate plant N/l) with added heterotrophic bacteria, released moderate amounts of ammonia over a 12 week period. If the ammonia-oxidizing bacterium Nitrosocystis oceanus was added to the decomposing algae, nitrite was produced at a rate of 0.2 g-at N/l/week. Heterotrophic nitrification was not observed when 7 open-ocean bacteria were tested for their ability to oxidize ammonia. The diatom Skeletonema costatum, either non-starved or starved of nitrogen, produced nitrite when growing with 150 or 50 g-at NO 2 - -N/l at a light intensity of about 0.01 ly/min. When nitrate in the medium was exhausted, S. costatum assimilated nitrite. If starved of vitamin B12, both non-N-starved and N-starved cells of S. costatum produced nitrite in the medium with 150 g-at NO 3 - -N/l. Nitrate was not exhausted and cell densities reached 2x105/ml due to vitamin B12 deficiency. If light intensity was reduced to 0.003 ly/min under otherwise similar conditions, cells did not grow due to insufficient light, and nitrite was not produced. In the sea, it appears that, in certain micro-environments, decomposition of particulate matter releases ammonia with its subsequent oxidation to nitrite. The amounts of these nutrients and the rate at which they are produced are dependent upon the nature of the materials undergoing decomposition and the associated bacteria. In certain other areas of the sea, where phytoplankton standing stock is high and nitrate is non-limiting, excretion by these organisms is a major source of nitrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号