首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Owing to the necessity of delivering food to offspring at colonies, breeding seabirds are highly constrained in their foraging options. To minimize constraints imposed by central-place foraging and to optimize foraging behavior, many species exhibit flexible foraging tactics. Here we document the behavioral flexibility of pursuit-diving common murres Uria aalge when foraging on female capelin Mallotus villosus in the northwest Atlantic. Quite unexpectedly, being visual foragers, we found that common murres dived throughout the day and night. Twenty-one percent of recorded dives (n = 272 of 1,308 dives) were deep (≥50 m; maximum depth = 152 m, maximum duration = 212 s), bringing murres into sub-0°C water in the Cold Intermediate Layer (CIL; 40–180 m) of the Labrador Current. Deep dives occurred almost exclusively during the day when murres would have encountered spatially predictable aggregations of capelin between 100 and 150 m in the water column. Temperatures within the CIL shaped trophic interactions and involved trade-offs for both predators and prey. Sub-0°C temperatures limit a fish’s ability to escape from endothermic predators by reducing burst/escape speeds and also lengthening the time needed to recover from burst-type activity. Thus, while deep diving may be energetically costly, it likely increases certainty of prey capture. Decreased murre foraging efficiency at night (indicated by an increase in the number of dives per bout) reflects both lower light conditions and changing prey behavior, as capelin migrate to warmer surface waters at night where their potential to escape from avian predators could increase.  相似文献   

2.
The diving behaviour of king penguins (Aptenodytes patagonicus) was studied on the Falkland Islands, where a small population (ca. 300 fledglings year–1) is located at the geographical limit of their breeding range. King penguins rearing newly hatched chicks were equipped with time-depth recorders before leaving for sea. In total, 20,175 dives >3 m were recorded from 12 birds during 15 foraging trips with a mean duration of 5.7±2.3 days. The majority of the trips was directed up to 500 km to the northeast of the breeding colony in slope waters of, and oceanic waters beyond, the Patagonian shelf. Mean time spent underwater accounted for 42±9% of the foraging trip. Mean dive depth achieved was 55±16 m; maximum dive depth recorded was 343 m. Mean dive duration was 159±25 s; maximum dive duration was 480 s. The mean vertical distance covered was 140±65 km trip–1; and on average birds covered 25 km day–1. Synchronous diving behaviour was observed in two birds for a period of about 24 h after leaving the colony. Dive depth correlated positively with: (1) light intensity, (2) dive duration and (3) vertical velocities, thus confirming previous findings obtained from conspecifics at other breeding sites and indicating comparable diving behaviour. However, separation of dives according to their profile—V-, U-, or W-shaped—revealed significant differences between certain dive parameters. For a given depth range, bottom time was longer and vertical velocities higher in W-dives than in U-dives. This, together with a higher number of W-dives at dawn and dusk, suggests that foraging is more effective during W-dives than U-dives, and during twilight. These findings imply that king penguins have to make more complex decisions, individually and socially, on the performance of the subsequent dive than previously thought.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

3.
4.
5.
Summary Males of the primitive orthopteran, Cyphoderris strepitans, provide their mates with two types of nuptial food gift during mating: 1) females feed while coupled on the fleshy metathoracic wings of the male and the resultant flow of haemolymph and 2) the spermatophore transferred by the male includes a gelatinous spermatophylax which the female eats after mating. During the peak breeding interval, virgin males secure significantly more matings than their numbers relative to non-virgin males would predict. We tested the hypothesis that non-virgin males, having lost a substantial portion of available energy through previous investment in females, call significantly less than virgin males. Reduced calling should result in the attraction of fewer females and/or a greater risk of intrusion from competing males and consequently, a lowered mating success. Calling activity of male C. strepitans of varying mating status was monitored with a sound activated relay apparatus for two consecutive nights following their capture. Males were of three experimental groups, virgin, freshly wounded males (mated on the same night of capture), and old-wound males (mated at least one night prior to capture). Our cata showed a significant short-term reduction in signalling activity as a consequence of mating. Whereas there was no difference in the time spent calling by virgins on the first and second nights following capture, freshly wounded and oldwound males called significantly less on the first night than on the second. Furthermore, the proportion of males calling on both nights was significantly greater for the virgin and old-wound groups than for freshly wounded males. When the duration over which males called on the first night was compared with that of the second, virgin males showed no difference whereas old-wound males called for significantly shorter intervals on the first night. These results indicate that the cost of a large nutrient investment in females lowers the energy level in males below the threshold required for a prolonged signalling period. After a refractory interval during which males feed and replenish their energy reserves, calling levels equivalent to those which occur prior to mating are regained. Active female choice may also contribute to the reduced mating success of non-virgins, but this possibility remains untested.  相似文献   

6.
Vigilance behaviour in gregarious species has been studied extensively, especially the relationship between individual vigilance and group size, which is often negative. Relatively little is known about the effect of conspecifics on vigilance in non-obligate social species or the influence of sociality itself on antipredator tactics. We investigated predator avoidance behaviour in the yellow mongoose, Cynictis penicillata, a group-living solitary forager, and compared it with a sympatric group-living, group-foraging herpestid, the meerkat, Suricata suricatta. In yellow mongooses, the presence of conspecifics during foraging—an infrequent occurrence—reduced their foraging time and success and increased individual vigilance, contrary to the classical group-size effect. Comparing the two herpestids, sociality did not appear to affect overt vigilance or survival rates but influenced general patterns of predator avoidance. Whereas meerkats relied on communal vigilance, costly vigilance postures, and auditory warnings against danger, yellow mongooses avoided predator detection by remaining close to safe refuges and increasing “low-cost” vigilance, which did not interfere with foraging. We suggest that foraging group size in herpestids is constrained by species-distinct vigilance patterns, in addition to habitat and prey preference.  相似文献   

7.
Many studies comparing the behaviour of individuals of different genders or species showed that animal body mass and forage quality/quantity are key elements of the foraging ecology of herbivores. Since body mass could also influence the animal’s sensitivity to predation risk, its vigilance behaviour should consequently be affected. Alpine ibex (Capra ibex) is characterised by a strong dimorphism among males of different ages, thus representing an ideal case study for testing the Jarman-Bell principle, avoiding possibly misleading effects resulting from the comparison between different species or genders. We analysed the fine-scale foraging behaviour of male ibex in order to assess the effect of body mass and the effects of vegetation quality/quantity on both foraging and vigilance behaviour. Our results showed that smaller males were more selective than larger ones, on account of their lower capability of digesting plant. Smaller males scanned the environment more frequently than larger ones. Male ibex grazed more selectively in sites with high quality forage and their bite rate increased as forage biomass decreased. Vigilance frequency increased with increasing forage biomass as, under these circumstances, ibex are able to prolong anti-predator vigilance while chewing bites that have already been cropped. Our findings highlight the effects of body mass per se on both foraging and anti-predator behaviours in herbivores, thus supporting the Jarman-Bell principle. Foraging can arguably be considered a very flexible behaviour with high evolutionary relevance as it enables herbivores to optimally adjust their total energy intake under varying conditions of food resources.  相似文献   

8.
Foragers show adaptive responses to changes within their environment, and such behavioural plasticity can be a significant driving force in speciation. We investigated how lactating Antarctic fur seals, Arctocephalus gazella, adapt their foraging within two contrasting ecosystems. Location and diving data were collected concurrently, between December 2003 and February 2004, from 43 seals at Bird Island, where krill, Euphausia superba, are the main prey, and 39 at Heard Island, where mostly fish are consumed. Seals at Heard Island were shorter and lighter than those at Bird Island and they spent longer at sea, dived more frequently and spent more time in the bottom phase of dives. Generalized additive mixed effects models showed that diving behaviours differed between the islands. Both populations exploited diel vertically migrating prey species but, on average, Heard Island seals dived deeper and exceeded their estimated aerobic dive limits. We propose that the recovery of the Heard Island population may be limited by the relative inaccessibility and scarcity of food, whereas at Bird Island, the presence of abundant krill resources helps sustain extremely high numbers of seals, even with increased intra- and inter-specific competition. Both populations of fur seals appear to be constrained by their physiological limits, in terms of their optimal diving behaviour. However, there does appear to be some flexibility in strategy at the level of trip with animals adjusting their time at sea and foraging effort, in order to maximize the rate of delivery of energy to their pups.  相似文献   

9.
The electrosensory capabilities of wobbegong sharks are of particular interest, partly because very little is known about their behavioural ecology and specifically because of their unusual ambush predatory strategy and benthic lifestyle. While several biological functions of electroreception have been proposed, less consideration has been given to the functional significance of interspecific differences in the morphology and topographic distribution of the ampullary organs. The morphology of the ampullary organs was examined in four species of wobbegong shark, and the distribution of electroreceptive pores was mapped in two species. The ampullary systems of wobbegongs are similar in morphology to other marine elasmobranchs. The number of alveoli per ampullae is not significantly different between the four species; however, differences are seen between ampullary cell size in some species. Ampullary pore distribution patterns are relatively unique, with the majority of pores occurring on the dorsal region of the head. Wobbegongs feed primarily on demersal teleost fishes, and as the benthic and well-camouflaged wobbegong remains motionless, these fish could be easily detected by the dorsal pores when swimming within range.  相似文献   

10.
Summary The commonly studied standard anti-predatory environment presents animals with spatially-distinct feeding sites and refuges from attack, neither of which necessarily obstructs predator detection. In contrast, tree-trunks provide animals with a markedly non-standard environment in which the foraging substrate itself may be a refuge from attack that unavoidably obstructs predator detection. Thus anti-predatory behavior in this environment should be influenced not only by a perceived risk of attack, but also by the nature of the refuge/foraging substrate itself. Downy woodpeckers (Picoides pubescens) are a common tree-trunk foraging animal, and an experimental analysis of their behavior suggests that they respond appropriately to their non-standard anti-predatory environment. In particular, anti-predatory vigilance varies strongly with changes in tree trunk diameter. Two modes of vigilance were apparent. In stationary vigilance, woodpeckers maintained the position of their feet while rotating their bodies side-to-side to peer around the trunk; mobile vigilance involved movement around the trunk itself. Both the frequency and angle of rotation of stationary vigilance increased with trunk diameter, as did the frequency of mobile vigilance. The woodpeckers also held their heads farther away from the trunk surface as diameter increased. All of these measures of vigilance increased under a greater perceived risk of predation. As might be expected given these results, downy woodpeckers avoided thick trunks; they did not, however, prefer the thinnest (least obstructive) available trunks. These preferences may reflect the influence of trunk diameter on thermo-ecological and/or anti-predator considerations not related to vigilance. Overall, this arboreal environment provides an unusual perspective on anti-predator decision-making with several implications for tree-trunk foraging animals in general.  相似文献   

11.
12.
Seabird populations contain large numbers of immatures––in some instances comprising >50% of the fully grown adults in the population. These birds are significant components of marine food webs and may contribute to compensatory recruitment and dispersal, but remain severely understudied. Here, we use GPS-PTTs, radio-tracking and analysis of stable carbon (δ13C) and nitrogen (δ15N) isotopes to investigate the movements and foraging ecology of immature seabirds. Our study focussed on immature northern gannets Morus bassanus aged 2–4 attending non-breeding aggregations alongside a large breeding colony. GPS-PTT tracking of five birds revealed that immatures have the ability to disperse widely during the breeding season, with some individuals potentially prospecting at other colonies. Overall, however, immatures were faithful to the colony of capture. During returns to the focal colony, immatures acted as central place foragers, conducted looping and commuting flights, and analysis of the variance in first-passage time revealed evidence of area-restricted search (ARS) behaviour. In addition, stable carbon (δ13C) and nitrogen (δ15N) isotope analyses indicate that immatures were isotopically segregated from breeders. Our findings provide insights into the foraging, prospecting and dispersal behaviour of immature seabirds, which may have important implications for understanding seabird ecology and conservation.  相似文献   

13.
Shifts in the diet of top predators can be linked to changes in environmental conditions. In this study, we tested relationships between environmental variation and seasonal changes in diet of a top predator, the grey-headed albatross Thalassarche chrysostoma, breeding at Bird Island, South Georgia in an austral summer of 1999/2000. Oceanographic conditions in that year around South Georgia were abnormal (i.e. anomalously high sea surface temperature to a relative 19-year long-term mean). The diet of grey-headed albatrosses showed high seasonal variation, shifting from cephalopods (42.9 % by mass) in late February to Antarctic krill Euphausia superba (58.3 %) in late April, and grey-headed albatrosses breeding performance was low (16.8 %). This study shows these albatrosses did not manage to find sufficient alternative prey and highlight the risk to top predators if there is an increase in the frequency or severity of food shortages in Antarctic waters.  相似文献   

14.
15.
Exotic species have been observed to be more prevalent in sites where the richness of native species is highest, possibly reflecting variation among sites in resources, propagule supply, heterogeneity, or disturbance. However, such a pattern leaves unclear whether natives at species-rich sites are subject to especially severe impacts from exotics as a result. We considered this question using path models in which relationships between exotic cover and native richness were evaluated in the presence of correlated environmental factors. At 109 sites on serpentine soils across California, USA, exotic cover was positively correlated with total native herbaceous richness and was negatively correlated with the richness of both serpentine-endemic and rare native herbs. However, in path models that accounted for the influences of soil chemistry, disturbance, overstory cover, and regional rainfall and elevation, we found no indication that exotic cover reduced any component of native herb richness. Rather, our results indicated similarities and differences in the conditions favoring exotic, native, endemic, and rare species. Our results suggest that, in spite of some localized impacts, exotic species are not exerting a detectable overall effect on the community richness of the unique native flora of Californian serpentine.  相似文献   

16.
The foraging, feeding, and escape behaviors of members of four genera of oceanic ctenophores were studied by direct observation in the field during the summer of 1987 (7 July to 7 September) on R. V. Oceanus Cruise 191 to the Northern Sargasso and Slope water, in an area bounded by 34° to 39°N and 67° and 74°W. Patterns of water movement around these ctenophores were studied using fluorescein dye. Bolinopsis infundibulum forages vertically, capturing prey with mucus-covered oral lobes. Species of Ocyropsis forage horizontally and produce a reduced wake, due to the extreme compression of the body and the aboral location of the ctene rows. Prey are trapped by the muscular oral lobes and ingested by the prehensile mouth. In both genera, the auricles are held rigidly, and apparently are used both to reduce the pressure wave as they forage and to startle prey onto the surfaces of the oral lobes. Cestum veneris also forages horizontally, but continually reverses direction. Prey startled by the turbulent wake produced in the previous pass are captured by tentilla that stream over the sides of the body. All three species of Beroe studied swim in a spiral while foraging and produce similar wakes. Prey are ingested by the negative pressure produced by the rapid expansion of the mouth, and with the macrocilia that line the oral portion of the stomodaeum. The escape behavior of species of Bolinopsis, Ocyropsis, and Cestum appears to function primarily to elude nonvisual predators such as Beroe spp. Species of Beroe bend and swim rapidly during the escape response, and will turn themselves inside-out when repeatedly stimulated. The types of prey captured depend in part on an interplay of foraging and feeding mechanisms.  相似文献   

17.
Dicentrarchus labrax is a major finfish of interest in Mediterranean aquaculture. As the development of its hatchery production had gone with an increase of its larval rearing temperature, we studied the effect of a constant high (20°C) and two lower (13 and 15°C) temperatures on its early white muscle growth, with developmental and allometric approaches. D. labrax, sampled at hatching and at three developmental stages corresponding to main events in fish early life (first exogenous feeding, notochord flexion and completion of fin ray counts), were histologically processed in order to follow changes in the white myotomal muscle size, cellularity and localisation of proliferative nuclei. Morphometric analyses showed that, for 13, 15 and 20°C incubated/reared D. labrax, the total cross-sectional area of white muscle increased slowly in eleutheroembryos shorter than 5.2 mm, and four times faster in longer fish (free-swimming larvae). White muscle growth occurred both by hypertrophy (increase in muscle fibre size) and hyperplasia (increase in total number of muscle fibres) in all sampled fish, but both processes were higher in free-swimming larvae than in eleutheroembryos. The morphometric establishment of a higher hyperplastic growth of white muscle in free-swimming larvae was confirmed at immunological level by a high occurrence of proliferative nuclei. Early thermal environment was demonstrated to affect the growth process of white muscle on a different way in eleutheroembryos and free-swimming larvae: in the former, white muscle hypertrophy was stimulated at 20°C and hyperplasia at lower temperature, whereas in the latter, both white muscle hypertrophy and hyperplasia were more stimulated at 20°C than at lower temperatures. This was verified at once when the fish length and the white muscle total cross-sectional area were used as explicative variables.  相似文献   

18.
19.
Phenotypic plasticity may evolve when conditions vary temporally or spatially on a small enough scale. Plasticity is thought to play a central role in the early stages of evolutionary transitions, including major transitions such as those between non-sociality and sociality. The sweat bee Halictus rubicundus is of special interest in this respect, because it is socially plastic in the British Isles: Nests are social or non-social depending on the environment. However, sociality comprises a complex suite of inter-related traits. To further investigate social plasticity in H. rubicundus, we measured traits that are potentially integral to social phenotype at a northern site, where nests are non-social, and a southern site where nests can be social. We found that foundresses at non-social sites were smaller, produced offspring of a size more similar to themselves, initiated nesting later, and took longer to produce their first female offspring. They began provisioning earlier in the day, finished earlier, and collected more pollen loads. Common garden experiments suggested that these differences represent mainly plasticity, as expected for traits involved in the overall plastic social phenotype, with only limited evidence for fixed genetic differences in foraging. Conditions during overwintering did not have major effects on a foundress' subsequent behaviour.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号