首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A review of wetland impacts authorized under the New Jersey Freshwater Wetlands Protection Act (FWPA) was conducted based on permitting data compiled for the period 1 July 1988 to 31 December 1993. Data regarding the acreage of wetlands impacted, location of impacts by drainage basin and watershed, and mitigation were analyzed. Wetland impacts authorized and mitigation under New Jersey's program were evaluated and compared with Section 404 information available for New Jersey and other regions of the United States.Under the FWPA, 3003 permits were issued authorizing impacts to 234.76 ha (602.27 acres) of wetlands and waters. Compensatory mitigation requirements for impacts associated with individual permits required the creation of 69.20 ha. (171.00 acres), and restoration of 16.49 ha (40.75 acres) of wetlands. Cumulative impacts by watershed were directly related to levels of development and population growth.The FWPA has resulted in an estimated 67% reduction [44.32 ha (109.47 acres) vs 136.26 ha (336.56 acres)] in annual wetland and water impacts when compared with Section 404 data for New Jersey. For mitigation, the slight increase in wetland acreage over acreage impacted is largely consistent with Section 404 data.Based on this evaluation, the FWPA has succeeded in reducing the level of wetland impacts in New Jersey. However, despite stringent regulation of activities in and around wetlands, New Jersey continues to experience approximately 32 ha (79 acres) of unmitigated wetland impacts annually. Our results suggest that additional efforts focusing on minimizing wetland impacts and increasing wetlands creation are needed to attain a goal of no net loss of freshwater wetlands.  相似文献   

2.
To test the effectiveness of the 404 permit program in preventing a net loss of wetland resources, 75 Section 404 projects permitted in the years 1987–1989 and located in a portion of southern California were evaluated. From this group of projects, 80.47 ha of wetlands were affected by Section 404 permits and the Army Corps of Engineers required 111.62 ha of wetland mitigation. To verify the successful completion of each mitigation project, all 75 project sites were visited and evaluated based on the amount of dead vegetation, growth and coverage, and the number of invasive species. Based on the field verification results, the actual amount of completed mitigation area was 77.33 ha, resulting in a net loss of 3.14 ha of wetland resources in the years 1987–1989. By comparing the types of wetlands lost to the types of wetlands mitigated, it is apparent that, in particular, freshwater wetlands are experiencing a disproportionately greater loss of area and that riparian woodland wetlands are most often used in mitigation efforts. The net result of these accumulated actions is an overall substitution of wetland types throughout the region. Results also indicate that, typically, large-scale mitigation projects are more successful compared to smaller projects and that successful compliance efforts are not evenly distributed throughout the region. We recommend that better monitoring, mitigation in-kind, mitigation banking, and planning on a regional or watershed scale could greatly improve the effectiveness of the Section 404 permitting program.  相似文献   

3.
The present US Federal wetland management strategy under Section 404 of the Clean Water Act does not account for the differences in the natural values of wetlands and their different vulnerability to development pressure. The strategy, aimed at reducing the regulatory burden, provides for different levels of wetland protection, primarily by designating certain activities in or affecting wetlands as essentially harmless, having only minor impacts even when considered for their cumulative effects. Such activities are authorized under general permits precluding any evaluation of project impacts. A sounder, yet practical, rationale for wetland management and regulatory relief should be linked to the scarcity of certain wetland habitats, the habitat diversity or carrying capacity, the degree of degradation from past development, and the incremental losses already incurred within the same wetland ecosystem. The regulatory effort should be concentrated where these characteristics indicate high-value wetlands.Wetland impacts appear to fit into five basic orders of magnitude; these pertain to the relative cost and difficulty of impact mitigation. Up to 13 ecological and public-interest variables can modify the seriousness of the basic impact. Together, the basic orders of impact and modifying variables describe the theoretical framework for wetland management. However, a practical rationale for better wetland management must be constrained to factors not requiring a field investigation in advance of project planning for construction and development.This article was produced in part from work funded by the Office of Technology Assessment (OTA) of the United States Congress for use in its study, Wetlands: Their Use and Regulation. The views expressed do not necessarily represent those of OTA.  相似文献   

4.
Regulatory context for cumulative impact research   总被引:5,自引:0,他引:5  
Wetlands protection has become a topic of increased public attention and support, and regulation of wetlands loss under Section 404 of the Clean Water Act has received high priority within the US Environmental Protection Agency (EPA). Despite this, the nation is continuing to experience serious wetlands losses. This situation reflects the contentious nature of wetlands protection; it involves fundamental conflicts between environmental and development interests. Better information is needed to support regulatory decision making, including information on cumulative impacts. Currently, consideration of cumulative impacts, although required by various federal regulations, is limited. One reason is that most regulatory decisions are made on a permit-specific, site-specific basis, whereas cumulative impacts must be assessed on a broader, regional scale. In addition, scientific information and methods necessary to support cumulative impact assessment have been lacking. An anticipatory, planning-oriented framework to complement the existing site-specific permit review program is needed to support more effective consideration of cumulative impacts; such an effort is beginning to emerge. In addition, EPA is supporting research to provide better information on cumulative effects. It is recommended that the EPA program place initial emphasis on synthesis and analysis of existing information, on maximizing its use in decision making, and on information transfer. Recommended approaches include correlation of historic wetlands losses with loss of wetlands function and values, regional case studies, and development of indices of cumulative impact for use in permit review.Formerly Director, Office of Federal Activities, US Environmental Protection Agency  相似文献   

5.
    
Hydric soils are used as supportive evidence for wetland delineations by federal and state agencies and by the private sector in North Carolina, USA. An analysis of hydric soil distribution and hydric soil characteristics was conducted with county soil surveys and soil taxonomy of the USA. Approximately 100 hydric soils have been used for soil mapping in North Carolina, and they represent seven of the ten soil orders in soil taxonomy. An estimated 23% (2.9 million ha) of the land surface area in North Carolina supports hydric soils. Approximately 96% of the known hydric soil acreage was found in the coastal plain of North Carolina. Over one-third of the soils were hydric Ultisols, which represented close to 10% of the land surface area. The other soil orders with extensive hydric soil acreage included Histosols, Inceptisols, and Entisols. The soil orders were separated into great groups of soil taxonomy to discuss soil profile characteristics. Landscape positions and associated wetland communities were also presented. In North Carolina, a statewide inventory of wetlands does not exist and soil surveys offer a resource for a first approximation of wetland boundaries.  相似文献   

6.
Both permit requirements and ecological assessments have been used to evaluate mitigation success. This analysis combines these two approaches to evaluate mitigation required under Section 404 of the United States Clean Water Act (CWA) and Section 10 of the Rivers and Harbors Act, which allow developers to provide compensatory mitigation for unavoidable impacts to wetlands. This study reviewed permit files and conducted field assessments of mitigation sites to evaluate the effectiveness of mitigation required by the US Army Corps of Engineers for all permits issued in Orange County, California from 1979 through 1993. The 535 permit actions approved during this period allowed 157 ha of impacts. Mitigation was required on 70 of these actions, with 152 ha of enhanced, restored, and created habitat required for 136 ha of impacts. In 15 permit actions, no mitigation project was constructed, but in only two cases was the originally permitted project built; the two cases resulted in an unmitigated loss of 1.6 ha. Of the remaining 55 sites, 55% were successful at meeting the permit conditions while 11% failed to do so. Based on a qualitative assessment of habitat quality, only 16% of the sites could be considered successful and 26% were considered failures. Thus, of the 126 ha of habitat lost due to the 55 projects, only 26 ha of mitigation was considered successful. The low success rate was not due to poor enforcement, although nearly half of the projects did not comply with all permit conditions. Mitigation success could best be improved by requiring mitigation plans to have performance standards based on habitat functions.  相似文献   

7.
Coal companies are reluctant to include wetland development in reclamation plans partly due to a lack of information on the resulting characteristics of such sites. It is easier for coal companies to recreate terrestrial habitats than to attempt experimental methods and possibly face significant regulatory disapproval. Therefore, we studied a young (10 years) wetland on a reclaimed surface coal mine in southern Illinois so as to ascertain soil and water characteristics such that the site might serve as a model for wetland development on surface mines. Water pH was not measured because of equipment problems, but evidence (plant life, fish, herpetofauna) suggests suitable pH levels. Other water parameters (conductivity, salinity, alkalinity, chloride, copper, total hardness, iron, manganese, nitrate, nitrite, phosphate, and sulfate) were measured, and only copper was seen in potentially high concentrations (but with no obvious toxic effects). Soil variables measured included pH, nitrate, nitrite, ammonia, potassium, calcium, magnesium, manganese, aluminum, iron, sulfate, chloride, and percent organic matter. Soils were slightly alkaline and most parameters fell within levels reported for other studies on both natural and manmade wetlands. Aluminum was high, but this might be indicative more of large amounts complexed with soils and therefore unavailable, than amounts actually accessible to plants. Organic matter was moderate, somewhat surprising given the age of the system.  相似文献   

8.
The purpose of this paper is to develop the principles for a manageable and practical set of performance criteria that will reasonably assure no net loss in a situation in which it cannot be absolutely assured. To this end, the performance criteria proposed for 116 compensatory wetland projects on file with the Army Corps of Engineers in San Francisco, between 1988 and 1995, were examined. The trends discerned in the project proposals were analyzed and evaluated in light of the current state of wetland science. Specific suggestions for the development of uniform criteria in each of four major wetland types—riparian, perennial tidal, perennial nontidal, and seasonal—are discussed, and a system of regulation tying qualitative assessment with quantitative requirements is outlined as a reasonable solution to the enforcement of the no-net-loss policy.  相似文献   

9.
Development projects that impact wetlands commonly require compensatory mitigation, usually through creation or restoration of wetlands on or off the project site. Over the last decade, federal support has increased for third-party off-site mitigation methods. At the same time, regulators have lowered the minimum impact size that triggers the requirement for compensatory mitigation. Few studies have examined the aggregate impact of individual wetland mitigation projects. No previous study has compared the choice of mitigation method by regulatory agency or development size. We analyze 1058 locally and federally permitted wetland mitigation transactions in the Chicago region between 1993 and 2004. We show that decreasing mitigation thresholds have had striking effects on the methods and spatial distribution of wetland mitigation. In particular, the observed increase in mitigation bank use is driven largely by the needs of the smallest impacts. Conversely, throughout the time period studied, large developments have rarely used mitigation banking, and have been relatively unaffected by changing regulatory focus and banking industry growth. We surmise that small developments lack the scale economies necessary for feasible permittee responsible mitigation. Finally, we compare the rates at which compensation required by both county and federal regulators is performed across major watershed boundaries. We show that local regulations prohibiting cross-county mitigation lead to higher levels of cross- watershed mitigation than federal regulations without cross-county prohibitions. Our data suggest that local control over wetland mitigation may prioritize administrative boundaries over hydrologic function in the matter of selecting compensation sites.  相似文献   

10.
Twenty-three Section 404 permits in central Pennsylvania (covering a wetland age range of 1–14 years) were examined to determine the type of mitigation wetland permitted, how the sites were built, and what success criteria were used for evaluation. Most permits allowed for mitigation out-of-kind, either vegetatively or through hydrogeomorphic class. The mitigation process has resulted in a shift from impacted wetlands dominated by woody species to less vegetated mitigation wetlands, a trend that appears to be occurring nationwide. An estimate of the percent cover of emergent vegetation was the only success criterion specified in the majority of permits. About 60% of the mitigation wetlands were judged as meeting their originally defined success criteria, some after more than 10 years. The permit process appears to have resulted in a net gain of almost 0.05 ha of wetlands per mitigation project. However, due to the replacement of emergent, scrub–shrub, and forested wetlands with open water ponds or uplands, mitigation practices probably led to a net loss of vegetated wetlands.  相似文献   

11.
    
ABSTRACT: This paper draws on interviews with Washington State Watershed Planning Leads (Planning Leads) and interactions with local watershed planning units to identify factors that may influence the inclusion of climate change in watershed planning efforts in Washington State. These factors include the interest of individual planning unit members in climate change; Planning Lead familiarity with climate impacts; the influence of trust, leadership, and “genetic knowledge” on planning units; and perceptions of strategic gain. The research also identifies aspects of the planning process that may create opportunities for addressing climate impacts in future planning. These aspects include continuation of watershed planning units after plans are developed; commitment to updating watershed plans; recognition of climate impacts in planning documentation; dedicated incentive funding; and the availability of hydrologic modeling tools for assessing hydrologic impacts. Additional types of technical assistance that could support integration of climate impacts are also identified. It is hoped that the insight provided by this analysis will help individuals involved in stakeholder‐based watershed planning recognize the various dynamics potentially affecting the inclusion of climate change in watershed planning and in doing so, contribute to the development of planning approaches and tools that will support local efforts to adapt to climate impacts.  相似文献   

12.
ABSTRACT: The role of environmental mitigation in permitting decisions under Section 404 of the Clean Water Act and the National Environmental Policy Act is examined, addressing the extent to which compensatory mitigation is acceptable. The role of mitigation is examined both generically and specifically: first in the requirements of the Clean Water Act and NEPA, and then in the case study of the proposed Two Forks Dam. In both cases, the paper describes dual purposes of environmental protection legislation and mitigation: to protect the biophysical environment and maintain associated human values. Mitigation is found to be sometimes necessary and acceptable as compensation for unavoidable impacts of project development. However, the Two Forks case exemplifies that compensatory mitigation has also been employed as a mechanism to facilitate project development when practicable alternatives entailing less environmental impact are available. Acceptance of compensatory mitigation in such cases violates both the Guidelines of the Clean Water Act and the intent of that Act and NEPA to protect the biophysical environment and human welfare. A recent memorandum of agreement between the Corps and the EPA clarifies this policy, and suggests that permit applications which rely on compensatory mitigation when impacts are available may be denied.  相似文献   

13.
Ribaudo, Marc O. and Jessica Gottlieb, 2011. Point‐Nonpoint Trading – Can It Work? Journal of the American Water Resources Association (JAWRA) 47(1):5‐14. DOI: 10.1111/j.1752‐1688.2010.00454.x Abstract: Water quality trading between point and nonpoint sources is of great interest as an alternative to strict command and control regulations on point sources for achieving water quality goals. The expectation is that trading will reduce the costs of water quality protection, and may speed compliance. The United States Environmental Protection Agency has issued guidance to the States on developing point‐nonpoint trading programs, and United States Department of Agriculture is encouraging farmer participation. However, existing point‐nonpoint trading programs have resulted in very few trades. Supply side and demand side impediments seem to be preventing trades from occurring in most trading programs. These include uncertainty over the number of discharge allowances different management practices can produce, high transactions costs of identifying trading partners, baseline requirements that eliminate low‐cost credits, the reluctance of point sources to trade with unfamiliar agents, and the perception of some farmers that entering contracts with regulated point sources leads to greater scrutiny and potential future regulation. Many of these problems can be addressed through research and program design.  相似文献   

14.
    
Regulatory practitioners use hydroclimatic data to provide context to observations typically collected through field site visits and aerial imagery analysis. In the absence of site-specific data, regulatory practitioners must use proxy hydroclimatic data and models to assess a stream's hydroclimatology. One intent of current-generation continental-scale hydrologic models is to provide such hydrologic context to ungaged watersheds. In this study, the ability of two state-of-the-art, operational, continental-scale hydrologic modeling frameworks, the National Water Model and the Group on Earth Observation Global Water Sustainability (GEOGloWS) European Centre for Medium-Range Weather Forecasts (ECMWF) Streamflow Model, to produce daily streamflow percentiles and categorical estimates of the streamflow normalcy was examined. The modeled streamflow percentiles were compared to observed daily streamflow percentiles at four United States Geological Survey stream gages. The model's performance was then compared to a baseline assessment methodology, the Antecedent Precipitation Tool. Results indicated that, when compared to baseline assessment techniques, the accuracy of the National Water Model (NWM) or GEOGloWS ECMWF Streamflow Model was greater than the accuracy of the baseline assessment methodology at four stream gage locations. The NWM performed best at three of the four gages. This work highlighted a novel application of current-generation continental-scale hydrologic models.  相似文献   

15.
ABSTRACT: This paper summarizes key provisions of the Clinton Administration's proposals for change in the Clean Water Act. Two of the important themes for change are tougher controls for non-point source pollution and the use of market-based instruments. A detailed analysis of market-based abatement suggests limited potential for reducing costs. The keys to nonpoint source pollution control are clearer definition of property rights combined with changes in government programs that encourage polluting activities.  相似文献   

16.
Nine hectares (23 acres) of a degraded section of Patuxent Research Refuge in Laurel, Maryland, USA, were converted to wetland habitat by the Baltimore Gas and Electric Company in 1994. The wetlands were created as mitigation for 5.7 ha (14 acres) of wetlands that were impacted as part of the construction of an 8.5-km (5.3-mile) 500-kV overhead transmission line on the refuge. The area consists of a created forested wetland of 5.5 ha (13.5 acres), a seasonally inundated green-tree reservoir of 7.6 ha (6.5 acres), and an impounded pond wetland of 1.2 ha (3 acres). Construction included the planting of 6131 trees, 4276 shrubs, and 15,102 emergent plants. Part of the site has been studied intensively since completion and survival of trees and shrubs after two years was 88%. Measurements of these transplants have shown growth greater than on other created sites in Maryland. Grasses and other herbaceous vegetation were dominant plants in the meter-square plots in the first two years of sampling of the created forested wetland. Wildlife surveys for birds, mammals, amphibians, and reptiles have revealed diverse communities. Although these communities represent species consistent with open habitat, more typical forest species should colonize the area as it undergoes succession into a more mature forested wetland. The creation, management, and research of this mitigation site represents an excellent example of a partnership between a private electric power company and a federal wildlife refuge. This partnership has increased local biodiversity and improved regional water quality of the Patuxent River and the Chesapeake Bay.  相似文献   

17.
Returning canal spoil banks into canals, or backfilling, is used in Louisiana marshes to mitigate damage caused by dredging for oil and gas extraction. We evaluated 33 canals backfilled through July 1984 to assess the success of habitat restoration. We determined restoration success by examining canal depth, vegetation recolonization, and regraded spoil bank soils after backfilling. Restoration success depended on: marsh type, canal location, canal age, marsh soil characteristics, the presence or absence of a plug at the canal mouth, whether mitigation was on- or off-site, and dredge operator performance.Backfilling reduced median canal depth from 2.4 to 1.1 m, restored marsh vegetation on the backfilled spoil bank, but did not restore emergent marsh vegetation in the canal because of the lack of sufficient spoil material to fill the canal and time. Median percentage of cover of marsh vegetation on the canal spoil banks was 51.6%. Median percentage of cover in the canal was 0.7%. The organic matter and water content of spoil bank soils were restored to values intermediate between spoil bank levels and predredging marsh conditions.The average percentage of cover of marsh vegetation on backfilled spoil banks was highest in intermediate marshes (68.6%) and lowest in fresh (34.7%) and salt marshes (33.9%). Average canal depth was greatest in intermediate marshes (1.50 m) and least in fresh marshes (0.85 m). Canals backfilled in the Chenier Plain of western Louisiana were shallower (average depth = 0.61 m) than in the eastern Deltaic Plain (mean depth range = 1.08 to 1.30 m), probably because of differences in sediment type, lower subsidence rate, and lower tidal exchange in the Chenier Plain. Canals backfilled in marshes with more organic soils were deeper, probably as a result of greater loss of spoil volume caused by oxidation of soil organic matter. Canals ten or more years old at the time of backfilling had shallower depths after backfilling. Depths varied widely among canals backfilled within ten years of dredging. Canal size showed no relationship to canal depth or amount of vegetation reestablished. Plugged canals contained more marsh reestablished in the canal and much greater chance of colonization by submerged aquatic vegetation compared with unplugged canals. Dredge operator skill was important in leveling spoil banks to allow vegetation reestablishment. Wide variation in dredge performance led to differing success of vegetation restoration.Complete reestablishment of the vegetation was not a necessary condition for successful restoration. In addition to providing vegetation reestablishment, backfilling canals resulted in shallow water areas with higher habitat value for benthos, fish, and waterfowl than unfilled canals. Spoil bank removal also may help restore water flow patterns over the marsh surface. Increased backfilling for wetland mitigation and restoration is recommended.  相似文献   

18.
Floress, Kristin, Jean C. Mangun, Mae A. Davenport, and Karl W.J. Williard, 2009. Constraints to Watershed Planning: Group Structure and Process. Journal of the American Water Resources Association (JAWRA) 45(6):1352‐1360. Abstract: The roles that agencies and other partners play in collaborative watershed management are not always clearly identified. Key factors contributing to group‐level outcomes in watershed groups include both structural and procedural elements. Structural elements include membership systems, project partners, and funding, while procedural elements include leadership, shared vision, and mission development. The current research reports on a case study conducted with a Midwestern watershed group that received Clean Water Act Section 319 funds to undertake a watershed planning process. Data come from focus groups, interviews, public comments, and meeting observation, and were analyzed using grounded theory. Findings of this study indicate that homogenous skill set, discord over group and partner roles, and failed problem identification contributed to the organizational inertia experienced by the watershed group. Implications of this research for groups receiving 319 funds are provided.  相似文献   

19.
The United States Environmental Protection Agency (USEPA) Region V Clean Lakes Program employs artificial and modified natural wetlands in an effort to improve the water quality of selected lakes. We examined use of wetlands at seven lake sites and evaluated the physical and institutional means by which wetland projects are implemented and managed, relative to USEPA program goals and expert recommendations on the use of wetlands for water quality improvement. Management practices recommended by wetlands experts addressed water level and retention, sheet flow, nutrient removal, chemical treatment, ecological and effectiveness monitoring, and resource enhancement. Institutional characteristics recommended included local monitoring, regulation, and enforcement and shared responsibilities among jurisdictions. Institutional and ecological objectives of the National Clean Lakes Program were met to some degree at every site. Social objectives were achieved to a lesser extent. Wetland protection mechanisms and appropriate institutional decentralization were present at all sites. Optimal management techniques were employed to varying degrees at each site, but most projects lack adequate monitoring to determine adverse ecological impacts and effectiveness of pollutant removal and do not extensively address needs for recreation and wildlife habitat. There is evidence that the wetland projects are contributing to improved lake water quality; however, more emphasis needs to be placed on wetland protection and long-term project evaluation.  相似文献   

20.
    
Marsh creation is currently receiving wide attention in the United States as an important tool for mitigating the impacts of development in coastal wetlands. The perception that there is no net loss in valuable coastal wetlands when development is mitigated by the creation of man-made marshes can have a substantial impact on the permitting and decision-making processes. The effective result may be the trading of natural salt marshes for man-made marshes.Techniques for marsh creation were developed by the US Army Corps of Engineers to enhance and stabilize dredge spoil materials. Most research sponsored by the Corps has been directed at determining whether these goals have been accomplished. A survey of the research indicates that there is insufficient evidence to conclude that man-made marshes function like natural salt marshes or provide the important values of natural marshes. It is necessary, therefore, for decision-makers to understand the limitations of present knowledge about man-made marshes, realistically evaluate the trade-offs involved, and relegate mitigation to its proper role in the permitting process—post facto conditions imposed on developments that clearly meet state qualifications and policies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号