首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
高效液相色谱法测定南昌市环境空气PM10中16种多环芳烃   总被引:3,自引:1,他引:3  
建立了以二极管阵列检测器和荧光检测器串联的高效液相色谱分析方法,在标样未完全分离的情况下,采用双激发波长有效地改善了色谱分离条件.在设定的色谱条件下,各种多环芳烃(PAHs)的检出限为0.11~39.83μg/L,平均回收率为76.7%~98.3%,相对标准偏差为3.6%~12.6%.在南昌市布设4个环境空气采样点,测定PM10中PAHs含量.结果表明,八一广场、南昌市区二中老校区和罗家集区苯并(a)芘日均质量浓度最大值均超过<环境空气质量标准>(GB 3095-1996)的限值,PAHs污染状况较严重.  相似文献   

2.
对2005年7月至2006年2月采集到的南京市气溶胶Pm2.5 进行季节性初步分析,并对其中的15种优控多环芳烃(PAHs)进行分析研究,通过比值法判断南京市PAHs夏季主要来源于柴油型燃烧,冬季主要来源于柴油和煤型相结合的燃烧.对15种优控PAHs两两之间的相关性分析,发现各化合物之间显著相关,表明各化合物的来源有相似之处.  相似文献   

3.
采用稀释通道采样系统对北京市部分污染源排放的PM2.5进行了采集,用气相色谱-质谱-质谱法分析了PM2.5中24种多环芳烃(PAHs)的浓度,获得典型排放源PM2.5中PAHs成分谱。结果表明,不同种类污染源排放的PAHs的组分浓度差异比较大,形成的百分浓度轮廓图有各自的特征。生物质燃烧和化石燃烧排放的PM2.5中PAHs含量高于其他污染源;燃煤电厂和供暖/工业锅炉排放的PM2.5中低环数的PAHs比例较高,而生物质燃烧和餐饮源则是高环数的污染物比例较高。燃烧温度高,燃烧较充分,采用布袋除尘方式的污染源排放的PAHs含量要低于其他污染源。  相似文献   

4.
建立了声场中PM2.5颗粒碰撞运动模型。模拟结果表明,颗粒碰撞前速度与水平面的夹角θ是影响颗粒运动轨迹的一个重要因素,它的改变将决定颗粒在声场中是否碰撞、碰撞的位置以及碰撞后颗粒如何运动;颗粒碰撞前的速度大小将决定颗粒碰撞后是沿声波方向运动还是逆声波方向运动或是停留在原地振动;声场频率的不同改变了颗粒在发生碰撞时的运动趋势及颗粒的在碰撞时的运动趋势,同时,声场频率的改变将影响碰撞后颗粒的振幅;声场声强的改变不但影响了颗粒运动的振幅,而且影响了颗粒碰撞后运动趋势。  相似文献   

5.
通过对现有道路实施智能交通系统(ITS)以提高道路通行能力,缓解城市道路交通矛盾,减少机动车污染物排放,改善交通环境。以某城市主干道为例,实施ITS后,道路通行状况明显改善,车辆平均通行时间、平均通行速度以及平均停车率分别改善了57%、77%、91%,不同时段车流量提高4%~41%。PM2.5监测结果表明,路边5m处PM2.5浓度最高,实施ITS后在高峰时段车流量为原来1.31倍的情况下,PM2.5浓度下降达7.5%。根据ADMS软件模拟结果,ITS技术可实现单车PM2.5排放量减少约52.4%,对改善大气环境质量有一定的效果。  相似文献   

6.
为了解焦化厂在装煤过程中产生的PM2.5及其周边区域空气环境PM2.5中多环芳烃(PAHs)的含量,采用微纤维石英滤膜对PM2.5采样,并通过气相色谱-质谱仪分析PM2.5上负载的16种毒性较大PAHs。结果表明:焦炉装煤除尘烟气PM2.5中PAHs的成分主要受到炼焦配煤的影响;布袋除尘器对装煤除尘烟气中高环PAHs的处理效果显著;焦化厂周边空气环境中PM2.5中的PAHs浓度呈明显空间递减趋势。采用特征比值法分析得到该区域空气环境中PAHs主要来源于煤炭燃烧,用毒性当量法分析得到焦化厂区域PM2.5中PAHs的毒性为其他区域的9~90倍,高环PAHs的毒性贡献较大。  相似文献   

7.
利用ENVI-met模拟得到兰石工业园区现状下和垂直绿化模式下细颗粒物(PM2.5)浓度的变化,基于泊松回归相对风险度模型,结合流行病学研究中的暴露—反应关系及支付意愿法,将垂直绿化模式下PM2.5浓度的变化与健康经济效益相关联,定量评估垂直绿化对工业园区PM2.5污染的改善效果及带来的健康经济效益。结果表明,垂直绿化对工业园区PM2.5污染的改善效果受污染源和垂直绿化相对高度的影响,垂直绿化高度超过污染源高度时改善效果更优;垂直绿化模式下不同健康终端可获得的健康经济效益与其基线风险水平呈正相关关系,4种健康终端的健康经济效益为全因死亡>心血管疾病死亡>呼吸系统疾病死亡>慢性阻塞肺病死亡;垂直绿化模式下同一健康终端可获得的健康经济效益随垂直绿化高度的增加而增加。研究结果可为工业园区PM2.5污染防治及绿色工业园区建设提供参考。  相似文献   

8.
高效液相色谱法测定废水中的辛硫磷、毒死蜱   总被引:1,自引:0,他引:1  
建立了HPLC法测定废水中辛硫磷及毒死蜱的方法,优化了检测波长、溶剂、流动相等试验条件。辛硫磷、毒死蜱在0.050—1.000mg/L范围内线性良好,检出限为0.0033~0.0045mg/L,RSD为2.2%-4.1%,加标回收率为97.4%~105%。  相似文献   

9.
区域大气环境中PM2.5/PM10空间分布研究   总被引:7,自引:0,他引:7  
提出了一种利用移动监测技术研究区域大气环境中PM2.5/PM10空间分布的方法,并在2004年12月进行了宁波市全市域PM2.5/PM10空间分布的研究。数据显示:相同路径所代表的地区PM2.5和PM10具有很好的相关性,多数路径上PM2.5与PM10数据的相关系数平方在0.95以上,而不同路径上PM2.5与PM10的比值不同。文中给出了宁波市PM2.5/PM10污染的空间分布图,直观地显示出PM2.5/PM10污染的空间分布情况,突出了污染的重点点位和地区。  相似文献   

10.
西安采暖期PM2.5及其水溶性无机离子的时段分布特征   总被引:2,自引:0,他引:2  
为了探讨西安市采暖期大气颗粒物PM2.5及其水溶性无机成分的污染水平,于2010年1月4日—2月1日按一天8个时段(每个时段3 h)连续采集PM2.5样品四周,每周更换一次滤膜。结果显示,西安市采暖期PM2.5的质量浓度时段差异较大,呈现明显的双峰分布特征:21:00—24:00时段(147.516μg/m3)和09:00—12:00时段(141.678μg/m3)。4种被测水溶性无机组分总浓度为39.801μg/m3,占PM2.5总浓度的30.5%。SO24-和NO3-是最主要组分,占到4种无机组分的86.2%。各离子间相关分析显示,Cl-只与NO3-有较强的相关性,表明机动车尾气对Cl-有较大的贡献。SO24-和NO3-时段分布规律较为相似,与PM2.5浓度的时段分布特征相反:在PM2.5污染最轻的15:00—18:00时段,SO24-和NO3-的相对含量达到一天中的最高浓度时段,而在PM2.5双峰时段,它们的含量有所降低。  相似文献   

11.
Twenty-four hour PM2.5 samples from a rural site, an urban site, and a suburban site (next to a major highway) in the metropolitan Atlanta area in December 2003 and June 2004 were analyzed for 19 polycyclic aromatic hydrocarbons (PAH). Extraction of the air samples was conducted using an accelerated solvent extraction method followed by isotope dilution gas chromatography/mass spectrometry determination. Distinct seasonal variations were observed in total PAH concentration (i.e. significantly higher concentrations in December than in June). Mean concentrations for total particulate PAHs in December were 3.16, 4.13, and 3.40 ng m?3 for the urban, suburban and rural sites, respectively, compared with 0.60, 0.74, and 0.24 ng m?3 in June. Overall, the suburban site, which is impacted by a nearby major highway, had higher PAH concentration than did the urban site. Total PAH concentrations were found to be well correlated with PM2.5, organic carbon (OC), and elemental carbon (EC) in both months (r2 = 0.36–0.78, p < 0.05), although the slopes from the two months were different. PAHs represented on average 0.006% of total PM2.5 mass and 0.017% of OC in June, compared with 0.033% of total PM2.5 and 0.14% of OC in December. Total PAH concentrations were also correlated with potassium ion (r2 = 0.39, p = 0.014) in December, but not in June, suggesting that in winter biomass burning can potentially be an important source for particulate PAH. Retene was found at a higher median air concentration at the rural site than at the urban and suburban sites—unlike the rest of the PAHs, which were found at lower levels at the rural site. Retene also had a larger seasonal difference and had the weakest correlation with the rest of the PAHs measured, suggesting that retene, in particular, might be associated with biomass burning.  相似文献   

12.
A high pressure liquid chromatographic procedure has been developed and applied to the analysis of polycyclic aromatic hydrocarbons (PAH's) in 70 samples of smoked food products commercially available in Canada, and in 6 charcoal broiled meats. In some cases a gas-liquid chromatographic procedure was used as a confirmatory technique. In the commercial samples PAH's were detected in approx. 70% of the samples. Total PAH's ranged from 0-141 ppb and individual PAH's from 0-38 ppb. With the charcoal-broiled samples, total PAH's and individual PAH's ranged from 0-164 ppb and 0-60 ppb respectively. These levels are similar to those observed in other countries.  相似文献   

13.
Empirical equations which correlate high performance liquid chromatography capacity factor (k′) to aromatic hydrocarbon aqueous solubility are developed. The correlations of k′ to octanol-water partition coefficients, and k′ to hydrocarbon surface area are also shown.  相似文献   

14.
Adam Zsolnay 《Chemosphere》1973,2(6):253-260
One liter of the water sample is extracted with 1,1,2-trichlorotrifluoroethane. This non-polar solvent with a low boiling point is then concentrated and a portion of the concentrated extract is injected in a high performance liquid chromatography system. Polar material is separated from the hydrocarbons by means of a silica gel column. The detector measures the UV absorbance at 254 nm at which wavelength aromatic compounds absorb especially well. The quantitative values are given as phenanthrene equivalents and amounts as small as 20 ng/l can be detected. The standard deviation of the method is ± 50 ng/l. Both these values can be improved with a limited amount of difficulty. A concentrated sample extract can be injected and evaluated in less than 6 minutes, and the method is simple enough to have been used at sea.  相似文献   

15.
南昌市夏季PM_(2.5)中多环芳烃来源解析   总被引:1,自引:0,他引:1  
在南昌市设立了5个不同功能区采样点,分别为居民区、工业区、商业区、交通干线区以及郊区,于2008年夏季进行PM2.5采样,对样品进行测定和分析后,通过因子分析法判断PM2.5中多环芳烃(PAHs)的主要污染源,再利用多元线性回归法确定各主要污染源对PAHs的贡献率。结果表明,南昌市夏季PM2.5中PAHs的主要污染源为车辆排放源、高温加热源、燃煤污染源,它们对PAHs的贡献率分别为37.9%、28.2%和22.0%;要控制南昌市夏季PM2.5中的PAHs,主要是要对机动车尾气排放量进行控制,并加强机动车尾气治理工作。  相似文献   

16.
Organic carbon (OC), elemental carbon (EC), and 90 organic compounds (36 polycyclic aromatic hydrocarbons [PAHs], 25 n-alkane homologues, 17 hopanes, and 12 steranes) were concurrently quantified in atmospheric particulate matter of PM2.5 and PM10. The 24-hr PM samples were collected using Harvard Impactors at a suburban site in Doha, Qatar, from May to December 2015. The mass concentrations (mean ± standard deviation) of PM2.5 and PM10 were 40 ± 15 and 145 ± 70 µg m?3, respectively, exceeding the World Health Organization (WHO) air quality guidelines. Coarse particles comprised 70% of PM10. Total carbonaceous contents accounted for 14% of PM2.5 and 10% of PM10 particulate mass. The major fraction (90%) of EC was associated with the PM2.5. In contrast, 70% of OC content was found in the PM2.5–10 fraction. The secondary OC accounted for 60–68% of the total OC in both PM fractions, indicating photochemical conversions of organics are much active in the area due to higher air temperatures and solar radiations. Among the studied compounds, n-alkanes were the most abundant group, followed by PAHs, hopanes, and steranes. n-Alkanes from C25 to C35 prevailed with a predominance of odd carbon numbered congeners (C27–C31). High-molecular-weight PAHs (5–6 rings) also prevailed, within their class, with benzo[b + j]fluoranthene (Bb + jF) being the dominant member. PAHs were mainly (80%) associated with the PM2.5 fraction. Local vehicular and fugitive emissions were predominant during low-speed southeasterly winds from urban areas, while remote petrogenic/biogenic emissions were particularly significant under prevailing northwesterly wind conditions.

Implications: An unprecedented study in Qatar established concentration profiles of EC, OC, and 90 organic compounds in PM2.5 and PM10. Multiple tracer organic compounds for each source can be used for convincing source apportionment. Particle concentrations exceeded WHO air quality guidelines for 82–96% of the time, revealing a severe problem of atmospheric PM in Doha. Dominance of EC and PAHs in fine particles signifies contributions from combustion sources. Dependence of pollutants concentrations on wind speed and direction suggests their significant temporal and spatial variability, indicating opportunities for improving the air quality by identifying sources of airborne contaminants.  相似文献   


17.
18.
Polycyclic aromatic hydrocarbons (PAHs) are suspected to be carcinogenic and mutagenic. This study describes the presence of PAHs in light, medium and dark roasted coffee including instant and decaffeinated brands. Total PAHs concentration was related to the degree of roasting with light roasted coffee showing the least and dark roasted coffee showing the highest level. Both instant and decaffeinated coffee brand showed lower levels of PAHs. Naphthalene, acenaphthylene, pyrene and chrysene were the most abundant individual isomers. The concentrations ranged from 0 to 561 ng g?1 for naphthalene, 0 to 512 ng g?1 for acenaphthylene, 60 to 459 ng g?1 for pyrene and 56 to 371 ng g?1 for chrysene. Thus, roasting conditions should be controlled to avoid the formation of PAHs due to their suspected carcinogenic and mutagenic properties.  相似文献   

19.
Twenty-eight different tea samples sold in the United States were evaluated using high-performance liquid chromatography (HPLC) with fluorescence detection (FLD) for their contamination with polycyclic aromatic hydrocarbons (PAHs). Many PAHs exhibit carcinogenic, mutagenic, and teratogenic properties and have been related to several kinds of cancer in man and experimental animals. The presence of PAHs in environmental samples such as water, sediments, and particulate air has been extensively studied, but food samples have received little attention. Eighteen PAHs congeners were analyzed, with percentage recovery higher than 85%. Contamination expressed as the sum of the 18 analyzed PAHs was between 101 and 1337 μg/kg on dry mass and the average contents in all of the 28 examined samples was 300 μg/kg on dry mass. Seven of the congeners were found in all samples with wide ranges of concentrations as follows: fluorene (7–48 μg/kg), anthracene (1–31 μg/kg), pyrene (1–970 μg/kg), benzo(a)anthracene (1–18 μg/kg) chrysene (17–365 μg/kg), benzo(a)pyrene (1–29 μg/kg), and indeno(1,2,3-cd)pyrene (4–119 μg/kg). The two most toxic congeners benzo(a)pyrene and dibenzo(a,h)anthracene were found at high concentrations only in Earl Grey Twinnings, Earl Grey Harney& Sons Fine Teas, and Chai Ultra Spice Black Tea Twinnings. Six PAH congeners are considered as suspected carcinogens (U.S.EPA), formed the basis of the estimation of the toxic equivalent (TEQ), Chai Ultra-Spice Black Tea Twinnings had the highest TEQ (110.9) followed by two grey tea samples, Earl Grey Harney & Sons Fine Tea (57.7) and Earl Grey Twinnings (54.5). Decaffeinated grey teas had the lowest TEQs, decaffeinated Earl Grey Bigelow (9.4) and Green Tea Honey Lemon Decaffeinated Lipton (9.6).  相似文献   

20.
Environmental Science and Pollution Research - Environmentally persistent free radicals (EPFRs) are an emerging class of environmental hazardous contaminants that extensively, stably exist in...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号