首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A natural fish population is assumed to be subjected to a number of fishing experiments, during which the captured fish are released after tagging all untagged fish. Assuming that, in thek th sampling survey, the tagged and untagged fish are subjected toP tk andP uk fishing rates, andS tk andS uk survival rates, respectively, the population size can be estimated from an estimate ofP uk $$\begin{gathered} i.e., 1 - P_{uk} = \hfill \\ P_{tk \cdot } \frac{{S_t (k + 1)}}{{S_u (k + 1)}}\frac{\begin{gathered} Number of fish captured for the first time in \hfill \\ the (k + 1)^{th} survey plus fish belonging to this \hfill \\ group captured later \hfill \\ \end{gathered} }{\begin{gathered} Number of fish captured for the first time in \hfill \\ the k^{th} and captured again in the (k + 1)^{th} \hfill \\ \exp eriment plus fish belonging to this group \hfill \\ which are captured later \hfill \\ \end{gathered} } \hfill \\ \end{gathered}$$ All terms of the right hand side of the above equation are provided by capture-recapture experiments, except the survival rate of untagged fish which may be obtained by other information. This estimate of fishing rate of untagged fish is free from type (A) errors.  相似文献   

2.
In capture-recapture experiments, fish populations can be studied by two different sampling procedures. In both procedures, tagged fish are released on capture, but untagged fish are in one procedure released after tagging, in the second procedure they are retained. Using the two sampling techniques, Rafail (1971a,b) gave expressions for the estimation of an assumed constant (C) of proportionality between probabilities of capture of tagged to untagged fish which are simplified here to forms easier for calculation. The estimation of this constant (C) aids in estimation of abundance and mortality rates of untagged fish which are assumed to differ from those of tagged fish.  相似文献   

3.
The multiple-recapture technique can be used to study some aspects of the dynamics of large fish populations, if a part of the fishing fleet is considered as experimental fishing boats by appointing obserers to release tagged fish which are captured, while untagged fish captured are retained. The tagged and untagged populations are assumed to have different properties such as catchability and survival rates. The fish are sampled during a number of sampling surveys with equal duration and no intervening time intervals between them. It is assumed that fish suffer from mortalities during sampling surveys. The parameters of untagged populations can be estimated with the help of the readily estimated parameters of tagged fish (Rafail, 1972), the relationship between the parameters of tagged and untagged populations, and the numbers of untagged fish captured during the sampling surveys. The estimates are free from Types A and B tagging errors.  相似文献   

4.
Efford MG 《Ecology》2011,92(12):2202-2207
The recent development of capture-recapture methods for estimating animal population density has focused on passive detection using devices such as traps or automatic cameras. Some species lend themselves more to active searching: a polygonal plot may be searched repeatedly and the locations of detected individuals recorded, or a plot may be searched just once and multiple cues (feces or other sign) identified as belonging to particular individuals. This report presents new likelihood-based spatially explicit capture-recapture (SECR) methods for such data. The methods are shown to be at least as robust in simulations as an equivalent Bayesian analysis, and to have negligible bias and near-nominal confidence interval coverage with parameter values from a lizard data set. It is recommended on the basis of simulation that plots for SECR should be at least as large as the home range of the target species. The R package "secr" may be used to fit the models. The likelihood-based implementation extends the spatially explicit analyses available for search data to include binary data (animal detected or not detected on each occasion) or count data (multiple detections per occasion) from multiple irregular polygons, with or without dependence among polygons. It is also shown how the method may be adapted for detections along a linear transect.  相似文献   

5.
Johnson DW 《Ecology》2006,87(2):319-325
Experimental manipulation of population density has frequently been used to demonstrate demographic density dependence. However, such studies are usually small scale and typically provide evidence of spatial (within-generation) density dependence. It is often unclear whether small-scale, experimental tests of spatial density dependence will accurately describe temporal (between-generation) density dependence required for population regulation. Understanding the mechanisms generating density dependence may provide a link between spatial experiments and temporal regulation of populations. In this study, I manipulated the density of recently settled kelp rockfish (Sebastes atrovirens) in both the presence and absence of predators to test for density-dependent mortality and whether predation was the mechanism responsible. I also examined mortality of rockfish cohorts within kelp beds throughout central California to evaluate temporal (between-generation) density dependence in mortality. Experiments suggested that short-term behavioral responses of predators and/or a shortage of prey refuges caused spatial density dependence. Temporal density dependence in mortality was also detected at larger spatial scales for several species of rockfish. It is likely that short-term responses of predators generated both spatial and temporal density dependence in mortality. Spatial experiments that describe the causal mechanisms generating density dependence may therefore be valuable in describing temporal density dependence and population regulation.  相似文献   

6.
A generic age-structured model is developed to derive analytical results on optimal harvesting. Given two age classes, knife-edge selectivity, and no stock-dependent harvesting cost, the steady state is a unique saddle point. Adding harvesting cost does not alter the uniqueness, given that the utility is linear. Under specific conditions such as nonselective gear, optimal harvesting is proved to be a stationary cycle that represents pulse fishing. Optimal steady states are different if age-structured information is ignored and optimization is based on traditional biomass variables. This implies that the existence of optimal sustainable harvesting depends on age-structured information. Given a specific set of conditions such as low interest rate and knife-edge selectivity, optimal harvesting converges toward a unique saddle point independently of the number of age classes.  相似文献   

7.
Economics of harvesting age-structured fish populations   总被引:2,自引:0,他引:2  
A generic age-structured model is developed to derive analytical results on optimal harvesting. Given two age classes, knife-edge selectivity, and no stock-dependent harvesting cost, the steady state is a unique saddle point. Adding harvesting cost does not alter the uniqueness, given that the utility is linear. Under specific conditions such as nonselective gear, optimal harvesting is proved to be a stationary cycle that represents pulse fishing. Optimal steady states are different if age-structured information is ignored and optimization is based on traditional biomass variables. This implies that the existence of optimal sustainable harvesting depends on age-structured information. Given a specific set of conditions such as low interest rate and knife-edge selectivity, optimal harvesting converges toward a unique saddle point independently of the number of age classes.  相似文献   

8.
9.
In 8 intermittently reproducing mollusk species, it was possible to estimate production properties on the basis of the population's size-weight structure. The increase in weight of individuals and the variations in the number of individuals per population allow to calculate the annual growth production of a population from quantitative samples obtained at different seasons. A mathematical model was employed to simulate natural production processes of a population. The computor programme yielded estimates of pure production in the sense of previous authors, and revealed that 4 samples taken in different seasons are sufficient for determining the average annual production with an error of less than 5%. When the average annual growth production is estimated from a single sampling, the best results are received from analysing a population in the middle of the period during which the young appear. Supporting production (quantity of substances formed and retained by a population within 1 year) secures the dynamic numerical balance in a population of a given age structure. Its Ps/B coefficient (Ps: supporting production; B: biomass) changes only insignificantly within 1 year, and is inversely proportional to the maximum age of individuals prevalent in the population. Related species and species with similar size-weight indices have a similar growth rate and approximately similar growth-curve characteristics. The rate of production is related with the species' thermal properties; different biogeographical groups of species attain their maximum productivity in different seasons. Even in certain parts of the same coastal basin (which differ in their temperature regime), production processes of one and the same species may vary. Seasonal fluctuations in productivity are highest in species with short life cycles and in populations subjected to marked environmental changes. Numerical stability is a constant property of populations as long as the hydrobiological environment does not change significantly over the years. Quantitative relationships between supporting production, biomass and growth production may serve as a measure for assessing the degree of the industrial exploitation of a population.  相似文献   

10.
Criscione CD  Cooper B  Blouin MS 《Ecology》2006,87(4):823-828
DNA-based assignment of individuals to their population of origin has many applications such as mixed-stock analysis, identifying individuals from protected populations, and elucidating migration patterns. However, low genetic differentiation among populations will cause misassignments. Thus, an alternative means of determining an individual's population of origin is needed in cases where there is little or no neutral differentiation among source populations. Here, we test the hypothesis that parasite genotypes can be used to identify the origins of hosts more accurately than host genotypes. Using microsatellite markers from steelhead trout and their trematode parasites, we show that the odds of correct assignment are four times greater with the parasite's genotypes than with the host's genotypes. Our analyses show that this result is simply explained by the greater genetic structure among populations of the trematode parasite. Recent studies on the comparative genetic structure of other host and parasite species suggest that our results are not unusual or unique to the host-parasite system we studied. Thus, our work indicates that parasites will be useful for a wide range of applied and basic research that requires the assignment of individuals to source populations.  相似文献   

11.
Juvenile lesser blue crabs, Callinectes similis Williams, were exposed to a range of salinities for measurement of survival and bioenergetics. Effects of salinity on survival were determined by exposing juvenile crabs to salinity treatments ranging from 0 to 74‰. All crabs survived 21 d of exposure to 5 and 45‰S. The 21 d LC50 values for salinity tolerance (calculated from survival data) were 2.6 and 60.8‰S at low and high salinities, respectively. Energy-budget components and scope for growth were determined for crabs exposed to 2.5, 10, 25, 35 and 50‰S. Energetic absorption rates were highest at 2.5 and 35‰S. Energetic expenditure rates (energy lost to respiration and excretion) were greatest at 2.5‰S, and decreased as salinity increased. Respiration constituted the majority of energetic expenditure at all salinities (92.3% average). Scope for growth was significantly affected by salinity and was highest in crabs exposed to 35‰S. Increased respiration at low salinity may indicate that C. similis incurs greater costs due to osmoregulation. The results of this study indicate that C. similis is capable of surviving and growing in waters with salinities as low as 10‰. Received: 10 January 1997 / Accepted: 11 February 1997  相似文献   

12.
Mapping and predicting the potential risk of fishing activities to large marine protected areas (MPAs), where management capacity is low but fish biomass may be globally important, is vital to prioritizing enforcement and maximizing conservation benefits. Drifting fish aggregating devices (dFADs) are a highly effective fishing method employed in purse seine fisheries that attract and accumulate biomass fish, making fish easier to catch. However, dFADs are associated with several negative impacts, including high bycatch rates and lost or abandoned dFADs becoming beached on sensitive coastal areas (e.g., coral reefs). Using Lagrangian particle modeling, we determined the potential transit of dFADs in a large MPA around the Chagos Archipelago in the central Indian Ocean. We then quantified the risk of dFADs beaching on the archipelago's reefs and atolls and determined the potential for dFADs to pass through the MPA, accumulate biomass while within, and export it into areas where it can be legally fished (i.e., transit). Over one-third (37.51%) of dFADs posed a risk of either beaching or transiting the MPA for >14 days, 17.70% posed a risk of beaching or transiting the MPA for >30 days, and 13.11% posed a risk of beaching or transiting the MPA for >40 days. Modeled dFADs deployed on the east and west of the perimeter were more likely to beach and have long transiting times (i.e., posed the highest risk). The Great Chagos Bank, the largest atoll in the archipelago, was the most likely site to be affected by dFADs beaching. Overall, understanding the interactions between static MPAs and drifting fishing gears is vital to developing suitable management plans to support enforcement of MPA boundaries and the functioning and sustainability of their associated biomass.  相似文献   

13.
Many exploited reef fish are vulnerable to overfishing because they concentrate over hard-bottom patchy habitats. How mobile reef fish use patchy habitat, and the potential consequences on demographic parameters, must be known for spatially explicit population dynamics modeling, for discriminating essential fish habitat (EFH), and for effectively planning conservation measures (e.g., marine protected areas, stock enhancement, and artificial reefs). Gag, Mycteroperca microlepis, is an ecologically and economically important warm-temperate grouper in the southeastern United States, with behavioral and life history traits conducive to large-scale field experiments. The Suwannee Regional Reef System (SRRS) was built of standard habitat units (SHUs) in 1991-1993 to manipulate and control habitat patchiness and intrinsic habitat quality, and thereby test predictions from habitat selection theory. Colonization of the SRRS by gag over the first six years showed significant interactions of SHU size, spacing, and reef age; with trajectories modeled using a quadratic function for closely spaced SHUs (25 m) and a linear model for widely spaced SHUs (225 m), with larger SHUs (16 standardized cubes) accumulating significantly more gag faster than smaller 4-cube SHUs (mean = 72.5 gag/16-cube SHU at 225-m spacing by year 6, compared to 24.2 gag/4-cube SHU for same spacing and reef age). Residency times (mean = 9.8 mo), indicative of choice and measured by ultrasonic telemetry (1995-1998), showed significant interaction of SHU size and spacing consistent with colonization trajectories. Average relative weight (W(r)) and incremental growth were greater on smaller than larger SHUs (mean W(r) = 104.2 vs. 97.7; incremental growth differed by 15%), contrary to patterns of abundance and residency. Experimental manipulation of shelter on a subset of SRRS sites (2000-2001) confirmed our hypothesis that shelter limits local densities of gag, which, in turn, regulates their growth and condition. Density-dependent habitat selection for shelter and individual growth dynamics were therefore interdependent ecological processes that help to explain how patchy reef habitat sustains gag production. Moreover, gag selected shelter at the expense of maximizing their growth. Thus, mobile reef fishes could experience density-dependent effects on growth, survival, and/or reproduction (i.e., demographic parameters) despite reduced stock sizes as a consequence of fishing.  相似文献   

14.
Toxicological effects of some biochemical parameters of freshwater fish Channa punctatus (Bloch), under the stress of Nickel (NiSO4. 6H2O), at various concentrations of 10, 20, 30 and 40 ppm for 30 days were observed. Gradual decrease in the levels of liver protein and liver ascorbic acid due to proteolysis and liver glucose breakdown respectively was observed. Contradictorily, high liver cholesterol level, may be due to hepatic disfunctioning and accumulation in brain. There was also gradual decrease in the brain protein level showing significant alterations but the brain ascorbic acid level showed no significant alterations. Decrease in the protein and ascorbic acid level and increase of cholesterol level thus indicates stressful condition of the fish.  相似文献   

15.
Soil ingestion can be an important route of exposure to contaminants present in the environment. This study examined the effects of exposure to contaminants in aqueous soil extracts from an industrial urban settlement in renal biochemical parameters of treated rats. Male Wistar rats were gavaged with an aqueous soil extract, from the municipality of Rio Grande, Southern Brazil. After exposure, plasma and urine concentrations and plasma protein were assessed compared to rats treated with aqueous soil from relatively unpolluted site (control soil). There was increase in plasma creatinine and total protein in urine, and a decreased glomerular filtration rate in treated rats compared to control. It is possible that Cd, Cr, As, Cu, Pb, Zn, and Ni analyzed in the soil samples and unidentified components may have provoked the observed changes in renal biochemistry of the exposed rat. This may suggest that exposure to contaminated soils can cause damage to the viscera in mammals and it is of public health importance.  相似文献   

16.
《Ecological modelling》2005,186(3):290-298
A mathematical model is introduced for the analysis of changes in the habitat of certain species and consequent migration processes. The weak formulation for the resulting partial differential non-linear equation is presented, as well as a linearization method. Existence and uniqueness results are analyzed. In addition, a numerical method is suggested. Finally, results from numerical simulations with empirical parameters are shown and discussed from an ecological point of view.  相似文献   

17.
Repertoire size, the number of unique song or syllable types in the repertoire, is a widely used measure of song complexity in birds, but it is difficult to calculate this exactly in species with large repertoires. A new method of repertoire size estimation applies species richness estimation procedures from community ecology, but such capture-recapture approaches have not been much tested. Here, we establish standardized sampling schemes and estimation procedures using capture-recapture models for syllable repertoires from 18 bird species, and suggest how these may be used to tackle problems of repertoire estimation. Different models, with different assumptions regarding the heterogeneity of the use of syllable types, performed best for different species with different song organizations. For most species, models assuming heterogeneous probability of occurrence of syllables (so-called detection probability) were selected due to the presence of both rare and frequent syllables. Capture-recapture estimates of syllable repertoire size from our small sample did not differ significantly from previous estimates using larger samples of count data. However, the enumeration of syllables in 15 songs yielded significantly lower estimates than previous reports. Hence, heterogeneity in detection probability of syllables should be addressed when estimating repertoire size. This is neglected using simple enumeration procedures, but is taken into account when repertoire size is estimated by appropriate capture-recapture models adjusted for species-specific song organization characteristics. We suggest that such approaches, in combination with standardized sampling, should be applied in species with potentially large repertoire size. On the other hand, in species with small repertoire size and homogenous syllable usage, enumerations may be satisfactory. Although researchers often use repertoire size as a measure of song complexity, listeners to songs are unlikely to count entire repertoires and they may rely on other cues, such as syllable detection probability.Communicated by A. Cockburn  相似文献   

18.
Variation in maternal reproductive traits was examined in field and reared populations of a geographically widespread reef fish, Pomacentrus coelestis (Pomacentridae), drawn from three different latitudes in Japan. Size-specific clutch size and clutch weight of wild fish increased with increasing latitude. Conversely, latitudinal variation in egg size of wild fish was obscure in same-season comparisons, probably because of the temperature effect on egg size. Common-environment experiments conducted at three temperatures showed that egg size decreased with increasing temperature in all populations. In the experiments, egg size, clutch size and clutch weight differed among populations at all temperatures, showing clear latitudinal clines. Females from low latitude spawned larger eggs at every experimental temperature. Size-specific clutch size and weight were greater in females from high latitude. Thus, the northern fish had a larger reproductive output per spawning and a larger number of smaller eggs in a spawning. Such interpopualtion variation in this fish is likely to be partially genetically based, although environmental effects on the variation cannot be entirely ruled out. This study provides evidence of potential latitudinal variation in the egg size and number in a coastal fish, by common-environment experiments. The close correspondence between latitudes and these maternal reproductive traits may be a consequence of local adaptation.  相似文献   

19.
Clinal differentiation of stipe traits in Laminaria (simplices) populations occurs on a gradient of exposure to wave action. Crossability tests and the production of fertile hybrids established interfertility between populations from the extremes of the morphological range. Reciprocal transplantation experiments between exposed and sheltered sites did not produce significant changes in stipe morphology. Quantitative genetic analysis of the degree of resemblance between relatives indicated a relatively high genetic component in the interpopulation differentiation. This is consistent with the results of the transplantation experiments. Within-population heritability estimates at the exposed site were low, perhaps because of intensive local stabilising selection which acts to reduce genetic variability. The question of conspecificity of L. saccharina and L. longicruris in view of these results is discussed.  相似文献   

20.
We investigated spatial patterns of synchrony among coral reef fish populations and environmental variables over an eight-year period on the Great Barrier Reef, Australia. Our aims were to determine the spatial scale of intra- and interspecific synchrony of fluctuations in abundance of nine damselfish species (genus Pomacentrus) and assess whether environmental factors could have influenced population synchrony. All species showed intraspecific synchrony among populations on reefs separated by < or =100 km, and interspecific synchrony was also common at this scale. At greater spatial scales, only four species showed intraspecific synchrony, over distances ranging from 100-300 km to 500-800 km, and no cases of interspecific synchrony were recorded. The two mechanisms most likely to cause population synchrony are dispersal and environmental forcing through regionally correlated climate (the Moran effect). Dispersal may have influenced population synchrony over distances up to 100 km as this is the expected spatial range for ecologically significant reef fish dispersal. Environmental factors are also likely to have synchronized population fluctuations via the Moran effect for three reasons: (1) dispersal could not have caused interspecific synchrony that was common over distances < or =100 km because dispersal cannot link populations of different species, (2) variations in both sea surface temperature and wind speed were synchronized over greater spatial scales (>800 km) than fluctuations in damselfish abundance (< or =800 km) and were correlated with an index of global climate variability, the El Ni?o-Southern Oscillation (ENSO), and (3) synchronous population fluctuations of most damselfish species were correlated with ENSO; large population increases often followed ENSO events. We recorded regional variations in the strength of population synchrony that we suspect are due to spatial differences in geophysical, oceanographic, and population characteristics, which act to dilute or enhance the effects of synchronizing mechanisms. We conclude that synchrony is common among Pomacentrus populations separated by tens of kilometers but less prevalent at greater spatial scales, and that environmental variation linked to global climate is likely to be a driving force behind damselfish population synchrony at all spatial scales on the Great Barrier Reef.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号