首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The increased use of silver nanomaterials presents a risk to aquatic systems due to the high toxicity of silver. The stability, dissolution rates and toxicity of citrate- and polyvinylpyrrolidone-coated silver nanoparticles (AgNPs) were investigated in synthetic freshwater and natural seawater media, with the effects of natural organic matter investigated in freshwater. When sterically stabilised by the large PVP molecules, AgNPs were more stable than when charge-stabilised using citrate, and were even relatively stable in seawater. In freshwater and seawater, citrate-coated AgNPs (Ag–Cit) had a faster rate of dissolution than PVP-coated AgNPs (Ag–PVP), while micron-sized silver exhibited the slowest dissolution rate. However, similar dissolved silver was measured for both AgNPs after 72 h in freshwater (500–600 μg L−1) and seawater (1300–1500 μg L−1), with higher concentrations in seawater attributed to chloride complexation. When determined on a mass basis, the 72-h IC50 (inhibitory concentration giving 50% reduction in algal growth rate) for Pseudokirchneriella subcapitata and Phaeodactylum tricornutum and the 48-h LC50 for Ceriodaphnia dubia exposure to Ag+ (1.1, 400 and 0.11 μg L−1, respectively), Ag–Cit (3.0, 2380 and 0.15 μg L−1, respectively) and Ag–PVP (19.5, 3690 and 2.0 μg L−1, respectively) varied widely, with toxicity in the order Ag+ > Ag–Cit > Ag–PVP. Micron-sized silver treatments elicited much lower toxicity than ionic Ag+ or AgNP to P. subcapitata. However, when related to the dissolved silver released from the nanoparticles the toxicities were similar to ionic silver treatments. The presence of natural organic matter stabilised the particles and reduced toxicity in freshwater. These results indicate that dissolved silver was responsible for the toxicity and highlight the need to account for matrix components such as chloride and organic matter in natural waters that influence AgNP fate and mitigate toxicity.  相似文献   

3.
The effect of soil properties on the toxicity of molybdenum (Mo) to four plant species was investigated. Soil organic carbon or ammonium-oxalate extractable Fe oxides were found to be the best predictors of the 50% effective dose (ED50) of Mo in different soils, explaining > 65% of the variance in ED50 for four species except for ryegrass (26-38%). Molybdenum concentrations in soil solution and consequently plant uptake were increased when soil pH was artificially raised because sorption of Mo to amorphous oxides is greatly reduced at high pH. The addition of sulphate significantly decreased Mo uptake by oilseed rape. For risk assessment, we suggest that Mo toxicity values for plants should be normalised using soil amorphous iron oxide concentrations.  相似文献   

4.
The ecotoxicity of silver nanoparticles (Ag-NPs) to wastewater biota, including ammonia oxidizing bacteria (AOB), is gaining increasing interest as the number of products containing Ag-NPs continues to rise exponentially and they are expected to accumulate in wastewater treatment plants. This research demonstrated that the addition order of Ag-NP and the media constituents had a profound influence on the stability of the Ag-NP suspension and the corresponding repeatability of results and sensitivity of Nitrosomonas europaea. N. europaea, a model AOB, was found to be extremely sensitive to ionic silver (Ag+) and two sizes of Ag-NPs (20 and 80 nm). Ag+ exposures resulted in the highest level of toxicity with smaller Ag-NPs (20 nm) being more toxic than larger Ag-NPs (80 nm). The increased sensitivity of N. europaea to smaller Ag-NPs was caused by their higher rates of dissolved silver (dAg) release, via dissolution, due to a greater surface area to volume ratio. dAg was shown to be responsible for the vast majority of the observed Ag-NP toxicity, as determined by abiotic Ag-NP dissolution tests. For the sizes of Ag-NP studied (20 and 80 nm), there appears to be a negligible nanoparticle-specific toxicity. This was further supported by similarities in inhibition mechanisms between Ag+ and Ag-NP, with both causing decreases in AMO activity and destabilization of the outer-membrane of N. europaea. Finally, equal concentrations of total silver were found to be tightly associated to both Ag+ and Ag-NP-exposed cells despite Ag-NP concentrations being five times greater, by mass, than Ag+ concentrations.  相似文献   

5.
This study, for the first time, investigates and quantifies the influence of slight changes in solution pH and ionic strength (IS) on colloidal microsphere deposition site coverage by Suwannee River Humic Acid (SRHA) in a column matrix packed with saturated iron-oxide coated sand.Triple pulse experimental (TPE) results show adsorbed SRHA enhances microsphere mobility more at higher pH and lower IS and covers more sites than at higher IS and lower pH. Random sequential adsorption (RSA) modelling of experimental data suggests 1 μg of adsorbed SRHA occupied 9.28 ± 0.03 × 109 sites at pH7.6 and IS of 1.6 mMol but covered 2.75 ± 0.2 × 109 sites at pH6.3 and IS of 20 mMol. Experimental responses are suspected to arise from molecular conformation changes whereby SRHA extends more at higher pH and lower ionic strength but is more compact at lower pH and higher IS. Results suggest effects of pH and IS on regulating SRHA conformation were additive.  相似文献   

6.
In this study, we report that silver ions (Ag+) from the oxidative dissolution of silver engineered nanoparticles (Ag-ENs) determined the EN toxicity to the marine diatom Thalassiosira weissflogii. Most of the Ag-ENs formed non-toxic aggregates (>0.22 μm) in seawater. When the free Ag+ concentration ([Ag+]F) was greatly reduced by diafiltration or thiol complexation, no toxicity was observed, even though the Ag-ENs were better dispersed in the presence of thiols with up to 1.08 × 10−5 M Ag-ENs found in the <0.22 μm fraction, which are orders of magnitude higher than predicted for the natural aquatic environment. The secretion of polysaccharide-rich algal exopolymeric substances (EPS) significantly increased at increasing [Ag+]F. Both dissolved and particulate polysaccharide concentrations were higher for nutrient-limited cells, coinciding with their higher Ag+ tolerance, suggesting that EPS may be involved in Ag+ detoxification.  相似文献   

7.
Migration of contaminants with low affinity for the aqueous phase is essentially governed by interaction with mobile carriers such as humic colloids. Their impact is, however, not sufficiently described by interaction constants alone since the humic carriers themselves are subject to a solid–liquid distribution that depends on geochemical parameters.In our study, co-adsorption of the REE terbium (as an analogue of trivalent actinides) and humic acid onto three clay materials (illite, montmorillonite, Opalinus clay) was investigated as a function of pH. 160Tb(III) and 131I-labelled humic acid were employed as radiotracers, allowing experiments at very low concentrations to mimic probable conditions in the far-field of a nuclear waste repository. Humate complexation of Tb was examined by anion and cation exchange techniques, also considering competitive effects of metals leached from the clay materials.The results revealed that desorption of metals from clay barriers, occurring in consequence of acidification processes, is generally counteracted in the presence of humic matter. For all clay materials under study, adsorption of Tb was found to be enhanced in neutral and acidic systems with humic acid, which is explained by additional adsorption of humic-bound Tb.A commonly used composite approach (linear additive model) was tested for suitability in reconstructing the solid–liquid distribution of Tb in ternary systems (Tb/humic acid/clay) on the basis of data determined for binary subsystems. The model can qualitatively explain the influence of humic acid as a function of pH, but it failed to reproduce our experimental data quantitatively. It appears that the elementary processes (metal adsorption, metal–humate complexation, humic acid adsorption) cannot be considered to be independent of each other. Possible reasons are discussed.  相似文献   

8.
首次研究凹凸棒土对饮用水中腐殖酸的低温吸附性能,考察5℃条件下,吸附时间与腐殖酸初始浓度、吸附剂投加量、pH对凹凸棒土吸附腐殖酸的影响,确定吸附剂的吸附等温线、吸附动力学和热力学等相关理论参数,研究凹凸棒土对腐殖酸的吸附性能与机理。结果表明,江苏盱眙凹凸棒土在温度5℃、pH=4、水中腐殖酸初始浓度为5 mg/L,投加量为15 g/L的条件下,吸附180 min后对腐殖酸的去除率可达97.26%。凹凸棒土对腐殖酸的吸附符合二级吸附动力学方程与Freundlich吸附等温式,吸附过程由孔隙内扩散过程控制,吸附为自发的吸热过程,包括物理吸附与化学吸附。根据Fre-undlich吸附等温式拟合计算,5℃、pH=7时理论最大吸附量为9 mg/g,说明凹凸棒土对于低温饮用水中腐殖酸具有良好的吸附效果。  相似文献   

9.
In this study, the influence of the co-existence of TiO2 nanoparticles on the speciation of arsenite [As(III)] was studied by observing its adsorption and valence changing. Moreover, the influence of TiO2 nanoparticles on the bioavailability of As(III) was examined by bioaccumulation test using carp (Cyprinus carpio). The results showed that TiO2 nanoparticles have a significant adsorption capacity for As (III). Equilibrium was established within 30 min, with about 30% of the initial As (III) being adsorbed onto TiO2 nanoparticles. Most of aqueous As (III) was oxidized to As(V) in the presence of TiO2 nanoparticles under sunlight. The carp accumulated considerably more As in the presence of TiO2 nanoparticles than in the absence of TiO2 nanoparticles, and after 25-day exposure, As concentration in carp increased by 44%. Accumulation of As in viscera, gills and muscle of the carp was significantly enhanced by the presence of TiO2 nanoparticles.  相似文献   

10.
Aggregation, an important environmental behavior of silver nanoparticles (AgNPs) influences their bioavailability and cytotoxicity. The work studied the influence of dissolved oxygen (DO) or the redox potential on the stability of AgNPs in aqueous environments. This study employed time-resolved dynamic light scattering (TR-DLS) to investigate the aggregation kinetics of citrate-coated AgNPs. Our results demonstrated that when DO was present, the aggregation rates became much faster (e.g., 3-8 times) than those without DO. The hydrodynamic sizes of AgNPs had a linear growth within the initial 4-6 h and after the linear growth, the hydrodynamic sizes became random for AgNPs in the presence of DO, whereas in the absence of DO the hydrodynamic sizes grew smoothly and steadily. Furthermore, the effects of primary particles sizes (20, 40, and 80 nm) and initial concentrations (300 and 600 μg/L) of AgNPs on aggregation kinetics were also investigated.  相似文献   

11.
以活性炭粉为载体,钴氧化物为催化活性组分,经造粒后制得PAC-Co催化粒子电极,研究了用于腐殖酸(HA)降解的PAC-Co催化粒子电极的制备条件,并采用扫描电子显微镜、X射线衍射和比表面积分析仪等对粒子电极进行表征。结果显示,焙烧温度600℃、焙烧时间2 h、Co(NO3)2浸渍液浓度0.1 mol·L-1为PAC-Co最佳制备条件。在I=0.2 A、进水流量9 mL·min-1、Na2SO4电解质0.01 mol·L-1、pH=7条件下,对于初始COD0=200 mg·L-1的模拟HA废水,反应70 min后,PAC-Co对UV254、色度及COD的去除分别达到95.09、97.84与91.45%,去除率均高于普通活性炭颗粒所制备的GAC-Co粒子电极。  相似文献   

12.
水环境中腐殖酸的荷电特性与聚集特性   总被引:1,自引:0,他引:1  
通过腐殖酸的Zeta电位和粒径的变化规律研究,探讨化学条件对腐殖酸的荷电状态和聚集状态的影响。结果表明,腐殖酸具有自我凝聚的特性;在pH较低和溶液离子强度较高时,腐殖酸胶粒的Zeta电位绝对值减小而聚合度增大,从而使腐殖酸胶粒聚集而凝聚;随腐殖酸浓度增大,腐殖酸胶粒的Zeta电位绝对值增大,腐殖酸胶粒的缩聚程度降低而使粒径减小。  相似文献   

13.
This article describes an approach for quantifying microsphere deposition onto iron-oxide-coated sand under the influence of adsorbed Suwannee River Humic Acid (SRHA). The experimental technique involved a triple pulse injection of model latex microspheres (microspheres) in pulses of (1) microspheres, followed by (2) SRHA, and then (3) microspheres, into a column filled with iron-coated quartz sand as a water-saturated porous medium. A random sequential adsorption model (RSA) simulated the gradual rise in the first (microsphere) breakthrough curve (BTC). Using the same model calibration parameters a dramatic increase in concentration at the start of the second particle BTC, generated after SRHA injection, could be simulated by matching microsphere concentrations to extrapolated RSA output. RSA results and microsphere/SRHA recoveries showed that 1 μg of SRHA could block 5.90 ± 0.14 × 109 microsphere deposition sites. This figure was consistent between experiments injecting different SRHA masses, despite contrasting microsphere deposition/release regimes generating the second microsphere BTC.  相似文献   

14.
Liu S  Lim M  Fabris R  Chow C  Chiang K  Drikas M  Amal R 《Chemosphere》2008,72(2):263-271
The photocatalytic removal of humic acid (HA) using TiO2 under UVA irradiation was examined by monitoring changes in the UV254 absorbance, dissolved organic carbon (DOC) concentration, apparent molecular weight distribution, and trihalomethane formation potentials (THMFPs) over treatment time. A resin fractionation technique in which the samples were fractionated into four components: very hydrophobic acids (VHA), slightly hydrophobic acids, hydrophilic charged (CHA) and hydrophilic neutral (NEU) was also employed to elucidate the changes in the chemical nature of the HA components during treatment. The UVA/TiO2 process was found to be effective in removing more than 80% DOC and 90% UV254 absorbance. The THMFPs of samples were decreased to below 20 μg l−1 after treatments, which demonstrate the potential to meet increasingly stringent regulatory level of trihalomethanes in water. Resin fractionation analysis showed that the VHA fraction was decreased considerably as a result of photocatalytic treatments, forming CHA intermediates which were further degraded with increased irradiation time. The NEU fraction, which comprised of non-UV-absorbing low molecular weight compounds, was found to be the most persistent component.  相似文献   

15.

Contamination of soil with pesticides can be evaluated using toxicity tests with worms because their ecological niche makes them good bioindicators. Bioaccumulation in compost worms of [methyl- 14C] paraquat (1,1′-dimethyl-4,4′-bipyridinium dichloride) was measured after three-month exposure in two substrates with differing physicochemical characteristics, in particular their organic matter and clay contents. The treatments were 1.2, 12, and 120 μg paraquat g?1 substrate. The action of the worms did not influence the loss of 14C from the substrates, as the 14C-recovered was essentially quantitative at the end of the study in both the presence and absence of the worms. The organic matter and clay contents of the substrates determined the extent of the paraquat uptake by the worms; worms from the substrate with smaller amounts of clay and organic matter had the higher values of the bioconcentration factor (BCF), these being about 5 (fresh-weight basis) and independent of the application rate. The BCF values in the substrate containing more organic matter and clay were smaller but increased from 1.1 to 3.8 with the increasing rates of application. However, in both substrates the amounts of paraquat bioaccumulated in the worms was always less than 1% of that applied, indicating the very strong binding of paraquat to the substrates and hence low availability to the worms.  相似文献   

16.
Quan X  Niu J  Chen S  Chen J  Zhao Y  Yang F 《Chemosphere》2003,52(10):1749-1755
Fourteen sediment samples with different content of Fe2O3 were collected from the lower reaches of the Liao River in China. The photodegradation of lindane on the surfaces of these sediments was investigated to observe the effects of Fe2O3 and other photoinducable substances, such as TiO2 and organic substances, on photodegradation of lindane. A partial least-squares (PLS) analysis model was developed to find out the statistical relationship between the photodegradation and the contents of these photoinducable substances. It was concluded from the PLS analysis that inorganic carbon and organic carbon have negative effects, whereas Fe2O3 and TiO2 accelerate the photodegradation of lindane in the sediment samples when 365 nm UV light was used as light source. In all cases of the experiments, the photodegradation of lindane in the sediment samples were fitted for pseudo-first-order kinetics.  相似文献   

17.
The transport of bacteriophage PRD1, a model virus, was studied in columns containing sediment mixtures of quartz sand with goethite-coated sand and using various solutions consisting of monovalent and divalent salts and humic acid (HA). Without HA and in the absence of sand, the inactivation rate of PRD1 was found to be as low as 0.014 day(-1) (at 5+/-3 degrees C), but in the presence of HA it was much lower (0.0009 day(-1)), indicating that HA helps PRD1 to survive. When the fraction of goethite in the sediment was increased, the removal of PRD1 also increased. However, in the presence of HA, C/C0 values of PRD1 increased by as much as 5 log units, thereby almost completely eliminating the effect of addition of goethite. The sticking efficiency was not linearly dependent on the amount of goethite added to the quartz sand; this is apparently due to surface charge heterogeneity of PRD1. Our results imply that, in the presence of dissolved organic matter (DOM), viruses can be transported for long distances thanks to two effects: attachment is poor because DOM has occupied favourable sites for attachment and inactivation of virus may have decreased. This conclusion justifies making conservative assumptions about the attachment of viruses when calculating protection zones for groundwater wells.  相似文献   

18.
Verge C  Moreno A  Bravo J  Berna JL 《Chemosphere》2001,44(8):1749-1757
In the present work, the influence of Ca2+ concentration on the toxicity of single cut linear alkylbenzene sulfonate (LAS) homologues was studied. Precipitation boundary diagrams for each homologue were obtained, indicating turbid and clear zones depending on the LAS and Ca2+ concentrations. The separation between transparent and turbid zones is given by the so-called precipitation line. LAS toxicity to Daphnia magna was determined at concentrations close to this precipitation line. It was observed that when Ca(LAS)2 precipitation progresses, LAS bioavailability decreases for test animals, and the toxicity diminishes even at high nominal LAS concentrations. According to the “free ion activity model” (FIAM), the toxicity of a given chemical compound is mainly due to the ionic species (Ca2+–LAS) and not due to the precipitated molecule, Ca(LAS)2. The significance of the present study is in connection with the assessment of LAS sorption/precipitation studies in soils and sediments, where in situ toxicity is strongly influenced by Ca2+/Mg2+ ions, according to the results presented in this work.  相似文献   

19.
Sewage sludges are frequently used as soil amendments due to their high contents of organic matter and nutrients, particularly N and P. However, their effects upon the chemistry of soil humic acids, one of the main components of the soil organic matter, need to be more deeply studied in order to understand the relation between organic matter structure and beneficial soil properties. Two sewage sludges subjected to different types of pre-treatment (composted and thermally dried) with very different chemical compositions were applied for three consecutive years to an agricultural soil under long-term field study. Thermal analysis (TG–DTG–DTA) and solid-state 13C NMR spectroscopy were used to compare molecular and structural properties of humic acids isolated from sewage sludges, and to determine changes in amended soils. Thermally dried sewage sludge humic acids showed an important presence of alkyl and O/N-alkyl compounds (70%) while composted sludge humic acids comprised 50% aromatic and carbonyl carbon. In spite of important differences in the initial chemical and thermal properties of the two types of sewage sludges, the chemical and thermal properties of the soil humic acids were quite similar to one another after 3 years of amendment. Long-term application of both sewage sludges resulted in 80–90% enrichment in alkyl carbon and organic nitrogen contents of the soil humic acid fraction.  相似文献   

20.
Consumption inhibition in natural populations, namely due to contaminants, may have direct and immediate effects on ecosystems, by hampering ecosystem key functions (e.g., organic matter decomposition, grazing), long before effects at the individual level (e.g., reproduction, growth, emergence) have time-delayed consequences at successively higher levels of biological organization. The present study aimed at developing a cost-effective (short and easy) toxicity test based on the postexposure feeding of a freshwater amphipod present in the Iberian Peninsula and at evaluating the immediate impact of contamination on the population-level consumption rate. First, methodologies to quantify postexposure feeding were developed and optimized, the most important criterion being a feeding period as short as possible to minimize physiological recovery from the contaminant exposure. Second, the sensitivities of 48-h postexposure feeding and 48-h lethality tests were compared, using a reference chemical - copper. Third, the latter responses were integrated in a single parameter, the median population consumption inhibitory concentration. When Echinogammarus meridionalis males were fed on 100 defrosted Artemia franciscananauplii during 30 min in darkness at 19-21 °C, the eaten proportion was approximately 80%, without truncated data distributions. The 48-h median effective copper concentration for postexposure feeding was approximately two times lower than the 48-h LC50 - 91 versus 198 μg L−1, respectively. Two techniques were used to quantify the median population consumption inhibitory copper concentration, both leading to similar values (75 and 68 μg L−1). In conclusion, when contaminant concentrations elicit both lethality and feeding depression, the integration of both responses can provide an ecologically relevant evaluation on the potency of a contaminant to immediately disrupt ecosystem functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号